
Noname manuscript No.
(will be inserted by the editor)

Design Principles for Safety in Human-Robot Interaction

Manuel Giuliani · Claus Lenz · Thomas Müller · Markus Rickert ·
Alois Knoll

the date of receipt and acceptance should be inserted later

Abstract The interaction of humans and robots has

the potential to set new grounds in industrial appli-

cations as well as in service robotics because it com-

bines the strengths of humans, such as flexibility and

adaptability, and the strengths of robots, such as power

and precision. However, for a successful interaction the

safety of the human has to be guaranteed at all times.

This goal can be reached by the use of specialised robot

hardware but we argue that safety in human-robot in-

teraction can also be done with regular industrial robots,

if they are equipped with additional sensors to track

the human’s position and to analyse the human’s ver-

bal and non-verbal utterances, and if the software that

is controlling the robot is especially designed towards

safety in the interaction. For this reason, we propose

three design principles for an increased safety in robot

architectures and any other software component that

controls a robot for human-robot interaction: robust-

ness, fast reaction time, and context awareness. We present

a robot architecture that is based on these principles

and show approaches for speech processing, vision pro-

cessing, and robot control that also follow these guide-

lines.

Keywords Human-Robot Interaction, Safety Issues,

Speech Processing, Vision Processing, Robot Control

Technische Universität München

Robotics and Embedded Systems
Boltzmannstraße 3

85748 Garching bei München

Germany
E-mail: {giuliani,lenz,muelleth,rickert,knoll}@in.tum.de

1 Introduction

Robots are used in factories all over the world because

they are fast, they can lift heavy weights, they can oper-

ate in environments that are dangerous for humans, and

they can repeat the same movements over and over in a

precise way. However, the application of robots has one

main disadvantage: robots need to be reprogrammed

for every new task they should execute. Of course, one

could argue that then robots should be used for repeti-

tive tasks that need to be executed many times, such as

welding a car body, but would it not be useful to com-

bine the obviously excellent capabilities of a robot with

the flexibility and adaptability of humans? The com-

bination of the strengths of humans and robots could

potentially lead to new ways in production in which

customers can choose a product that is especially cus-

tomised for them but still was made with robot preci-

sion.

When humans should work together with industrial

robots there is one big limitation: industrial robots are

heavy machines that can move very fast and can easily

hurt a human user. Haddadin et al. report in [21] the

possible dangers arising for a human who is interact-

ing with an industrial robot. They conducted a system-

atic series of tests with several industrial robots hitting

crash test dummies and listed the injuries that might

be caused by uncontrolled robot movements, which in-

cluded fractures and shearing of limbs. This is the rea-

son why in factories robots usually are set up behind

fences and the only interaction of human and robot

takes place when the robot is turned off for mainte-

nance.

But how can robots be made safer for the inter-

action with humans? One way would be to build safe

robot hardware, which was for example done for Justin,

2

a light-weight robot especially designed for interaction

with unknown environments and with humans [32]. This

approach has two main disadvantages: first, robots that

are especially built for a safe interaction as a trade-off

often lose one or more of their abilities that makes them

interesting. For example they cannot lift heavy loads

any more or have to move slowly. Second, the devel-

opment and money that companies invested in regular

industrial robots would be lost if they had to switch to

new safer robots for human-robot interaction (HRI).

Therefore, in order to make industrial robots safe for

HRI, we argue that these robots need to be equipped

with additional sensors that enable the robot to deter-

mine the human’s position and to understand the hu-

man’s utterances (which includes not only speech and

gestures, but also also other cues, including affective

states). Additionally, the robot needs to be controlled

with a robot architecture and software that is especially

tailored for safety in HRI. The safety of the human

that interacts with a robot is one of the prerequisites

to build social robots, since a friendly social interac-

tion is not possible if one of the partners is a threat

to the other. For this reason, we propose three elemen-

tary design principles for every software that controls a

robot in a safe way: robustness, fast reaction times, and

context awareness. These design principles are the out-

come of development work in several projects for HRI

(for example JAST1 and JAHIR2) and have proven to

be essential for any software component in this field.

The remainder of this publication is organised as

follows: Section 2 introduces the three design principles

for safety in HRI and shows how modules for input pro-

cessing and robot control can be combined in a robot

architecture that follows these principles. After that,

we show how the safety design principles can be ap-

plied in approaches for speech processing (Section 3),

vision processing (Section 4), and robot control (Sec-

tion 5). Finally, Section 6 concludes this publication

and discusses future research directions.

2 Safety Design Principles

In this section, we describe three design principles for

robot architectures for safe HRI and show an exam-

ple of such an architecture. Our research should extend

previous work by the CoSy project [22], which devel-

oped three design principles for cognitive systems. We

also regard these principles as essential for any goal-

directed robotic system that shows cognitive abilities:

1http://www6.in.tum.de/Main/ResearchJast
2http://www6.in.tum.de/Main/ResearchJahir

– Concurrent modular processing. Robot archi-

tectures have to consist of single modules that run

in parallel. With this design, complicated tasks can

be split into subtasks that are executed in parallel

by specialised parts of the system, for example the

vision system may track a human while the actuator

control makes sure that the robot does not collide

with the human. This design principle also implies

that the system consists of several specialised subar-

chitectures, which can be renewed or extended easily

due to the modular architecture design.

– Structured management of knowledge. This

principle organises the information representation in

the system and the flow of information between the

single parts of the system. The information inside

the architecture is defined by subarchitecture on-

tologies and general ontologies, were the term “on-

tology” is a general expression that stands for a rep-

resentation format. This means that each subcom-

ponent of the system has its own representation for

its knowledge. For example, the vision system might

have an internal representation for objects that con-

sists of vectors that contain colour and shape in-

formation while externally it might translate this

information into a string format for other subarchi-

tectures.

– Dynamic contextual processing. This principle

says that in order to implement a goal-oriented be-

haviour in the cognitive system there have to be con-

trol mechanisms that steer the information flow of

the concurrently working system components. The

CoSy project proposed to implement this behaviour

in a way were subcomponents have to announce

their intent to process information while a control-

ling system component tells them if they are allowed

to do that or not.

We agree with these design principles. However, the

CoSy project developed these principles for cognitive

robots in general without having in mind the safety

of the human user working with the robot. Therefore,

we propose three additional design principles that are

necessary to ensure the safety of the human:

– Robustness. In a complex system for HRI there are

many potential sources for errors; at the input and

output modules of the robot as well as at the rea-

soning modules that control the robot’s behaviour.

For example, one cannot assume that input recog-

nition modules work correctly all the time; in fact,

many times the opposite will be true and recogni-

tion errors and missing input can be anticipated.

From this, two consequences follow to make sure

that the safety in the interaction is increased: the

3

system must be able to compensate for erroneous

or missing input, and when errors occur the system

has to be able to identify these errors and to develop

strategies to solve them.

– Fast reaction time. Robots have to process and

react fast to the input they are getting from their

environment. This has two obvious reasons: on the

one hand, humans will only accept robots if they are

reacting fast to what they say or do. Most confusion

in the interaction between human and robot arises

when the robot is either not reacting at all or if it

needs too much time to react to the human’s utter-

ances. On the other hand, the robot also needs to

quickly detect dangerous situations for the human,

for example by the use of sensors or when the hu-

man says certain keywords that signal the robot to

stop.

– Context awareness. When the robot processes

the input of its sensor modules, it will inevitably

have situations in which the input is ambiguous or

where it has not enough input information to com-

pute a complete hypothesis of which action to exe-

cute next. In these situations, the robot has to make

use of context information, for example it could recog-

nise the human’s gestures or look at the objects

in its vicinity. Therefore, the robot needs suitable

representation formats for its knowledge about the

world and defined interfaces to the software mod-

ules that provide the information about the robot’s

environment.

The design principles we are discussing here are of

course also important for robotics in general, so why are

we regarding these principles as crucial for HRI? Espe-

cially, when we are talking about robustness and fast

reaction time here, we are thinking of specialised forms

of these properties that a robot designed for a safe in-

teraction with a human needs. Usually, robustness in an

industrial robot means that the robot is working even

if parts of the system are malfunctioning. This can for

example be reached by duplicating critical system com-

ponents. What we mean by robustness is that the robot

shows a robust behaviour. It must be aware that in the

interaction with a human there might be unclear or un-

expected situations, to which the robot has to react in

a reasonable way, for example by at least not hurting

the human.

Similarly, in general every robot should execute the

tasks it was programmed for as fast as possible, but

that is not what we mean by “fast reaction time”. We

argue that in order to increase the safety for the human,

the robot has to react to unknown situations fast and

also with a reaction that takes into account the par-

tially available context of this situation as fast as pos-

Fig. 1 Robot architecture for safe human-robot interaction.

sible. This means that the robot has to “understand”

the current situation rather than to just react to signal

input. Also, only with a reasonable fast reaction time

of the robot the human can judge the robot’s actions,

which also increases the safety for the human, as we

already mentioned above.

Therefore, with these design principles we propose

a robot architecture that combines approaches that are

reaction-based or low-level, which could be seen as part

of the embodiment movement as described by Pfeifer

and Bongard [33], and high-level methods for reason-

ing, which are part of more traditional artificial intel-

ligence (AI). This mixture of new and old approaches

is also in agreement with Sloman [39], who argues that

an architecture for a truly cognitive technical system

has to combine methods from embodiment and tradi-

tional AI, which also shows similarities to how human

perceive and reason about their environment.

Figure 1 shows a schematic overview of our proposed

robot architecture. In this architecture, input process-

ing modules, which are depicted by ovals, send the pro-

cessed data to a central buffer which we call data flow.

In this schematic architecture overview we show input

modules for speech, object, and gesture recognition, and

for hand and person tracking ; however, due to the archi-

tecture design new input modules can always be added

to the system. Reasoning modules, depicted by rounded

rectangles, get the data from all input modules that are

relevant for them from the data flow. In our example,

we have reasoning modules for speech processing, which

gets data from speech recognition, an object inventory,

which represents results from object and gesture recog-

nition for reference resolution in the speech process-

ing module, and robot control, which uses information

mostly from the tracking modules but also gets input

from speech processing and uses the object inventory

to locate objects in the robot’s environment.

4

After this short introductory overview, we discuss

were the design principles for safety in HRI can be

found in the architecture and how they affect its design.

As the reader will see in the remainder of this publica-

tion, we will do this discussion for all the approaches

we are presenting here.

Robustness. Robustness seems to be mostly a mat-

ter for the input processing modules that have to inter-

pret the robot’s environment in a stable way. However,

the robot architecture itself can also contribute to in-

creasing the overall robustness of the system. For this,

the architecture has to guarantee a robust transmission

of information in the data flow as well as to provide

mechanisms that help subcomponents of the architec-

ture to recover in case of breakdowns.

Fast reaction time. The robot architecture is im-

portant for fast reaction times in two ways: first, with-

out a suitable infrastructure none of the system’s sub-

components can provide fast reaction times. The archi-

tecture has to take care that information between com-

ponents flows fast and reliably. Second, the architec-

ture has to provide dedicated fast processing channels

for security-related parts of the system. For example,

the architecture needs special channels for robot con-

trol, which is represented by the two broad arrows in

Figure 1. Over these channels the robot can be stopped

at all times. This can be done for example from out-

side the system by pressing an emergency button or

by dedicated input processing modules. For instance

a specialised module that measures the loudness of the

human utterances could stop the robot in case the loud-

ness reaches a certain threshold, which would indicate

an emergency situation.

Context awareness. We think that context aware-

ness has to be a built-in feature of a robot architecture

in order for the robot to interact with its environment in

a reasonable and safe way. Therefore every robot archi-

tecture has to be developed already with the context in

mind in which the robot has to interact. In our architec-

ture, context awareness is included in two ways: First,

the architecture provides the infrastructure for the in-

put modules so that they can publish their recognition

results system-wide—and thus in a sense “generate” the

context for the robot. For example, the object inventory

that represents results from object and gesture recog-

nition is a fixed part of the system. Second, since the

safety of the human co-worker of the robot is also part

of the context the robot is working in, the architecture

has built-in mechanisms to increase the safety for the

human. For example, we already mentioned the dedi-

cated subcomponents that are used to stop the robot

in case of emergency situations.

Now that we introduced the design principles for

safety in HRI and outlined how these apply to robot

architectures, we discuss in the following sections how

the principles influence our approaches for speech pro-

cessing (Section 3), vision processing (Section 4), and

robot control (Section 5).

3 Speech Processing

Speech is one of the cognitive abilities that sets humans

apart from other mammals. Without speech, humans

would not be able to joint-actly work together so effec-

tively and safely as they do. Thus, a robot that should

interact with a human in a safe way needs to be able

to comprehend speech and other human utterances, in-

cluding gestures or emotions.

However, the problem with natural speech is that

humans do not speak grammatically correct and they

also tend to leave out parts of the sentences they want

to say. Additionally, as Foster et al. showed in [12],

many spoken expressions that refer to objects in the

world can only be understood together with the ges-

tures that accompany the spoken part of the message.

For example, Foster et al. present a real dialogue from

a joint construction task, in which two humans assem-

ble tangram models together. The dialogue between the

two is shown in Figure 2.

human 1: And I’ll get this
human 1: And then the red one

human 2: ’Kay I’ve got the yellow

human 1: Cool

Fig. 2 Example of a real dialogue between two humans during

a joint construction task.

In the example, the two humans are talking about

several triangles, which both of them can see. None of

them ever mentions the word triangle, because they can

see which object the other person is handling and there-

fore they know which object the other person is talking

about. The dialogue also shows how both of them never

say a full grammatically correct sentence.

But how can speech contribute to increase the safety

in HRI? If the robot can understand what the human

is saying, for example when it knows which object the

human is going to pick up next, then it can plan its

actions so that it does not necessarily has to operate

in the same area as the human. Also, if the robot de-

tects that the human is in the way of its planned path,

then it might warn the user by producing an adequate

speech output. Additionally, speech is a natural way of

5

communication for humans, so if the robot can under-

stand what the human is saying then this increases the

perceived safety feeling of the human.

In speech processing, the main design principle we

have to work on is the increase of the robustness of

the methods. That starts already with using reliable

and fast hardware for speech recognition, but experi-

ence shows that the recognition process is always hard

to control and that it can produce erroneous input eas-

ily. Therefore, the methods for speech processing have

to take into account that the input from speech recogni-

tion is erroneous and fragmentary. In the next sections,

we will explain in more detail our approach for robust

speech processing.

3.1 Processing Overview

Our approach for speech processing enables the robot

to robustly recognise and understand what the human

is saying, to resolve which objects the human is talking

about, and to generate an adequate response to the hu-

man. In the current version of the approach the robot

is not able to have a sophisticated conversation with

the human. However, due to the modular setup of the

speech processing architecture, the integration of a di-

alogue manager to the system would be a potential ex-

tension in the future.

Figure 3 shows the speech processing subarchitec-

ture for the robot with the single steps of our approach.

Rectangular boxes represent processing modules, roun-

ded rectangular boxes are standing for the context in-

formation that is available to the processing modules.

The single processing steps are as follows: we recognise

the speech by a human user with a commercial speech

recogniser, in our case Dragon NaturallySpeaking 10.

Following speech recognition, the output of the speech

recogniser is preprocessed to increase the robustness of

the system. After preprocessing, the input is parsed by

a grammar to translate it into a logical representation

that can be used to resolve the references in the hu-

man utterance (i.e. to find out which objects the hu-

man is talking about) and to generate a response from

the robot to the human. In this response the robot can

either confirm that it understood the whole utterance

correctly or ask for clarification if it was not able to

resolve all references.

The context information that is available to the sys-

tem consists on the one hand of a grammar that is used

in the parsing and output generation steps and from

which sentence lists and vocabulary for preprocessing

and speech recognition can be automatically generated.

On the other hand, the robot gets information from the

Fig. 3 Speech processing subarchitecture; rectangular boxes

stand for processing steps, rounded boxes stand for context in-
formation.

vision system about objects in the world and about ges-

tures the human made.

In the following sections we will give a more detailed

description of the steps for speech processing. Since we

use a commercially available software for speech recog-

nition as already mentioned above we will skip speech

recognition and start this description with the second

step in the processing chain.

3.2 Preprocessing

In our speech processing approach we neither want to

limit the words or sentences the human can say to the

robot nor want to give the users instructions on what

they can say. However, we still want to be able to use

a grammar to parse the human utterances, which has

many advantages over simpler approaches such as key-

word spotting. For this reason, we transform the in-

put by the human into sentences which a grammar can

parse. This way, we can use a grammar formalism that

has already been proven to work well for human-robot

interaction (e.g. in JAST [17], and CoSy [26]) with only

slight adjustments to the approach.

For the input transformation, we compare the input

sentence we got from speech recognition with a set of

6

input “take a” “take take a cube”

take a cube 1 1

take a bolt 1 2
take a green cube 2 2

take a yellow cube 2 2
take a red cube 2 2

take a green bolt 2 3

take a yellow bolt 2 3
take a red bolt 2 3

Fig. 4 Sentence list with Levenshtein distances for the input

sentences “take a” and “take take a cube”.

sentences that can be generated automatically with the

grammar we are using in the parsing step (see Section

3.3). For the sentence comparison we currently use an

extended Levenshtein algorithm [28]. Figure 4 shows an

example for two input sentence comparisons.

The left column of the table shows the list of sen-

tences that has been generated with a grammar. The

two columns on the right contain the distances of the

two input sentences “take a” and “take take a cube”

to the list of sentences. For example, the distance be-

tween “take a” and “take a cube” is 1 because we need

one insertion to yield “take a cube” from “take a”. The

two input sentences show good examples for typical er-

rors in speech recognition, which are missing words or

recognising short words twice.

In the example, the two most likely full sentences

that would be chosen for input sentence 1 “take a” are

“take a cube” and “take a bolt”. In this case, the robot

would have to ask the user for clarification which ob-

ject it should grasp or get the missing information from

some other modality. However, since it occurs quite of-

ten that some information in the input sentence is miss-

ing, we added sentences with placeholders, which we

call empty words, to the list of sentences. In Figure 5

you can see the list of sentences extended by the sen-

tences with empty words and their distances to the two

input sentences from the example in Figure 4.

If we compare the input sentence “take a” to the

extended sentence list that contains the empty words

we get three sentences that have distance 1 to the input

sentence. One of these sentences is “take a emptyNoun”

which would be chosen for parsing as we will show in

the next section.

3.3 Parsing

The preprocessing step yields an input sentence that

can be parsed by a grammar. In our speech processing

implementation, we are using combinatory categorial

grammar (CCG) to parse and represent speech input.

CCG was introduced by Ades [1] and Steedman [40]. It

is an extension to the categorial grammar, which is also

input “take a” “take take a cube”

take a cube 1 1

take a bolt 1 2
take a green cube 2 2

take a yellow cube 2 2
take a red cube 2 2

take a green bolt 2 3

take a yellow bolt 2 3
take a red bolt 2 3

emptyVerb a cube 2 2

take a emptyNoun 1 2
take a emptyAdjective

cube

2 2

emptyVerb a emptyAd-
jective cube

3 3

emptyVerb a emptyAd-

jective emptyNoun

3 4

Fig. 5 Extended sentence list with empty words and Levenshtein

distances for two input sentences.

called lexicalised grammar, of Ajdukiewicz [2] and Bar-

Hillel [4]. Traditional context-free grammar formalisms

use a top-down approach for parsing sentences, while

combinatory grammars utilise a bottom-up approach,

which brings advantages in computability and grammar

development. Due to the addition of combinatory logic

to the grammar formalism, CCGs produce a seman-

tic representation of a sentence during the parsing pro-

cess. We are using a CCG that was implemented with

OpenCCG. OpenCCG [43] is a Java-based implementa-

tion of the CCG formalism. It is capable of both, pars-

ing and realising sentences; that means it can translate

utterances into a logical form as well as take a given log-

ical form and convert it back to a sentence. OpenCCG

generates hybrid logic expressions for the parsed sen-

tence instead of combinatory logic, as explained in [3].

Figure 6 shows such a hybrid logic formula that was

parsed with our grammar and represents the sentence

“take this yellow cube.”. The grammar we are using for

our current work is based on a grammar that was de-

veloped for the JAST project.

@t1:action(take-verb ∧
〈mood〉 imp ∧
〈Actor〉 x1 : animate− being ∧
〈Patient〉 (c1 : thing ∧ cube-np ∧

〈det〉 dem-prox ∧
〈num〉 sg ∧
〈HasProp〉 (y1 : proposition ∧ yellow)))

Fig. 6 Hybrid logic formula that was generated with a combina-

tory categorial grammar for the sentence “take this yellow cube.”.
In hybrid logic all actions and entities in the sentence have so-
called nominals, which can be seen as identifiers.

To understand this logic formula, we have to illus-

trate the two concepts of nominals and diamond oper-

ators that are part of hybrid logics. Nominals can be

7

seen as identifiers that are used to name parts of the log-

ical form. In the present case we used nominals to name

the actions expressed in a sentence and the entities that

are involved in the action. In the example, the nominal

t1:action is used to name the take action expressed in

the sentence, while the two nominals x1:animate-being

and c1:thing name the actor that should execute the

requested action and the cube that should be taken, re-

spectively. The use of nominals to identify actions and

entities is very useful for reference resolution, as we will

see in the next section, which was one reason to use the

CCG formalism for our approach.

In the logical formula we can also see the diamond

operators 〈mood〉, 〈Actor〉, 〈Patient〉, 〈det〉, and

〈num〉. These operators represent the syntactic proper-

ties of the parsed sentence, including such information

as that the sentence was uttered in imperative mood or

that a proximal demonstrative was used as determiner

to further specify a certain cube. For a more detailed

description of the use of CCG, OpenCCG, and hybrid

logic, please refer to [17].

Our grammar contains the vocabulary that is nec-

essary for the domain in which our robot is working.

This vocabulary consists of verbs that express the robot

actions, nouns that describe the entities (i.e. humans,

robots, and objects) in the environment of the robot, as

well as adjectives that describe properties of the entities

(e.g. colours and shapes). As we have already started

to explain in the previous section, we added so-called

empty words to the grammar. These words stand for ac-

tions, entities and properties that have not been recog-

nised correctly. For example, the logical form in Figure

7 expresses the fact that the user requested the robot to

take an object that is not further specified at the mo-

ment. This is signalled by the keyword emptyNoun-np.

@t1:action(take-verb ∧
〈mood〉 imp ∧
〈Actor〉 x1 : animate− being ∧
〈Patient〉 (e1 : thing ∧ emptyNoun-np ∧

〈det〉 indef ∧
〈num〉 sg))

Fig. 7 Logical form with an empty object that has not been
recognised correctly.

With the addition of empty words, the robot is able

to parse utterances by the human even if the sentence

was not recognised correctly. However, the robot then

needs strategies to resolve the actions and entities in

the logical form as we will see in the next section.

3.4 Reference Resolution

As it was shown in the former section, the parsing step

generates a logical form of the spoken utterances that

contains the structure of the sentence as well as mark-

ers (nominals) for the actions and entities that are con-

tained in the sentence. Therefore, the logical form is

perfectly suited to map all the entities the human is

talking about to objects and persons in the world. This

process is called reference resolution or binding.

In our approach, reference resolution follows the fol-

lowing steps: (1) since the structure of the sentence is

known, we can determine from it the kind of direc-

tive sentence that was uttered. According to Quirk [34]

(pp. 827) in the English language there are seven ways

to utter directive sentences (or commands) that are rel-

evant to our approach. (2) When the sentence struc-

ture has been determined, the entities of the sentence

can be extracted, this includes in our approach only

physical objects with their properties since our robot

is only working with one human and has not to know

about any other potential co-workers. (3) In the next

step, the logical form has to be analysed if it contains

any deictic expressions that are cues for the robot that

it has to check for pointing gestures by the human as

well. Deictic expressions are for example demonstrative

determiners like “this” in the expression “take this yel-

low cube”. (4) Now that all objects and gestures that

need to be resolved are known, the object inventory,

which was introduced in Section 2, can be used to map

objects and gestures respectively. For that the object

inventory has interfaces over which other modules can

make requests if the robot can see objects or gestures

with certain properties in its environment.

Finally, reference resolution generates a hypothesis

about the spoken utterance that contains the logical

form of the utterance together with the referenced ob-

jects. Every hypothesis has one of four types:

– Resolved. When a hypothesis is resolved then the

system was able to find a mapping for each object

the human was talking about.

– Unresolved. If a hypothesis is unresolved, then the

system was not able to find a mapping for each of

the objects. In this case, the system has to ask for

clarification, as we will discuss in the next Section.

– Ambiguous. When the hypothesis is ambiguous,

one or more of the found mappings between talked

about objects and physical objects is not clear. This

means that there are several objects that match the

object properties of the logical form. In that case the

robot can either choose one of the objects randomly

or also ask for clarification.

8

– Conflicting. The system generates a conflicting hy-

pothesis when the human is talking about an object

but pointing to another object that has not the same

properties as the object he/she is talking about.

3.5 Output Generation

The application of CCGs in HRI has another advantage:

as it was already mentioned in Section 3.3, OpenCCG

can produce a natural language expression from a given

hybrid logic formula, a process that is called output gen-

eration or realisation. Therefore, the logic formula that

was produced in the parsing and reference resolution

steps can be transformed to generate an output expres-

sion by the robot to the human. In the easiest case,

when everything was understood correctly, this can be

used to confirm that the order by the human was under-

stood correctly. Since the robot knows the objects it is

talking about after reference resolution, it can also refer

to these objects by using gestures, for example it could

point to the objects or look at them if it is equipped

with an animatronic head. This behaviour has positive

effects on the acceptance of the robot by the human,

which was reported in [13].

Output generation can also be used to ask for spe-

cific parts of an utterance that have not been under-

stood correctly during the first three processing steps.

At this point, the empty words we introduced in the

grammar designate the not understood parts of the log-

ical form and can be filtered out easily. This clarifica-

tion process was recently discussed by Kruijff et al. [25],

who specify four forms of clarification requests: atten-

tion when the communication channel between the two

conversation agents has to be clarified, identification

when the utterance was not understood on an acous-

tic level, recognition which refers to clarification in the

analysis of the utterance, and consideration that is used

to analyse the meaning of an utterance.

With our approach we can solve clarification re-

quests from the recognition level, which means that

the robot can ask for clarification when it has a lexi-

cal problem (“what is a slat?”), a grammatical problem

(“should I move the cube itself or move myself to its po-

sition?”), or referential problems (“which object should

I take?”, “what should I do with the green cube?”).

3.6 Discussion

After this overview of our approach for speech process-

ing in HRI we will discuss the qualification of this ap-

proach to increase the safety for the human. We will

show how the safety design principles for robot architec-

tures we stated in Section 2 are applied for speech pro-

cessing. Additionally, we show how our approach could

be improved to increase the safety level for the human

even further.

Robustness. In speech processing for HRI, robust-

ness is weak because most of the time methods from

computational linguistics cannot be applied, since un-

like written language, natural language is often ungram-

matical and incomplete. Also, speech recognition is still

unreliable and needs a lot of tuning although there have

been continuous improvements in the field. In our ap-

proach, we react to these facts with the preprocessing

step before we parse the input by the human. This

allows us to use methods from computational linguis-

tics afterwards (parsing with CCG) that have proven

to work robustly and fast. Additionally, we added the

empty words to the grammar to cope with the uncer-

tainty that comes with using input from speech recogni-

tion. At the moment, we react to the underspecification

that is expressed by the empty words with clarification

requests by the robot. This ensures that the robot does

not execute actions the user did not asked it to do and

so increases the safety of the human. However, an im-

provement to this approach would be the addition of a

learning component to give the robot the opportunity

to learn new words from the human.

Currently we are working on a more sophisticated

method to compare the input sentence to the sentences

that can be parsed by the grammar. This method should

also consider the semantics of the sentences as well as

their validity in the current context. The approach that

was introduced by Li et al. [29], which uses semantic

nets and corpus statistics for comparison of short sen-

tences, could be a basis for this.

Fast reaction time. The usage of CCG in our ap-

proach ensures that the input is processable at all times

and processing times are much faster in comparison to

other grammar formalisms. However, speech processing

in general is far away from reaching real time process-

ing, which is mostly due to the fact that most methods

for speech recognition and parsing are based on the as-

sumption that their input are whole sentences. To im-

prove on this problem, incremental speech processing

how it is proposed by [26] and [5] could be an answer.

Context awareness. The usage of grammars for

speech processing and output generation implicitly pro-

vides context information for the robot by defining the

vocabulary of the application. Of course, one can argue

that this way the vocabulary of the robot is constrained

and some information of the original sentence the hu-

man said might get lost because it contains words that

are not in the sentence list. However, we think that a

9

robot which is programmed for a specific task should

also be equipped with a vocabulary for this task. For

example a robot that builds cars does not need a vo-

cabulary for hotel reservations. A possible improvement

to increase the robot’s vocabulary could be the use of

WordNet [9], which is a lexical database that stores

English words that are stored into sets of synonyms.

WordNet could be used to automatically retrieve syn-

onyms for the words in the grammar to increase the

robot’s vocabulary.

In this section, we showed how the design princi-

ples for safety in HRI influences speech processing; in

the next section, we switch to another channel of input

processing and show how we apply the design principles

to vision processing.

4 Vision Processing

Every robot that should safely interact with a human

needs to be able to interpret the natural environment

of the human in a fast and reliable way. Therefore,

we present a multithreaded vision subarchitecture that

shows a non-blocking and wait-free behaviour. With

this architecture we reach an almost linear speed up

in performance, which enables the robot to recognise

objects as well as human gestures in realtime.

Specifically, we postulate the following requirements

that have to be met by the vision subarchitecture:

– Object and gesture recognition. The vision sys-

tem needs to be able to recognise objects, object as-

semblies, gestures of the human collaborator (e.g.

pointing gestures), and parts of the robot.

– Parallel processing. The system has to be capable

of exploiting a multithreaded environment, indepen-

dent from actual hardware based degree of paralleli-

sation.

– Subarchitecture communication. The commu-

nication of the single parts of the vision subarchi-

tecture needs to be efficient and fast.

– Publication of recognition results at different

processing stages. Preliminary recognition results

from early processing stages need to be published

in realtime; final recognition results have to be pub-

lished as fast as possible, but not necessarily in re-

altime

The design of our vision subarchitecture is indepen-

dent from hardware assumptions or operating system

specifications. In order to achieve optimal performance,

we have to take the requirements of multicore comput-

ers into account.

In the following sections, we will first give an over-

view of the vision subarchitecture in Section 4.1. After

that, we explain the single steps of our vision processing

approach, which are

– Examine vision processing steps and data. We

determine a functional decomposition of the overall

recognition process. Options for hierarchical organ-

isation of processing modules are discussed as well.

In addition, we model occurring data in the identi-

fied stages as items or partitions in order to allow

simultaneous analysis. This step is discussed in de-

tail in Section 4.2 and Section 4.3.

– Organise parallel processing. In this step we de-

cide how to apply the asynchronous concept of com-

munication, how to implement a suitable data struc-

ture, and we design a task scheduling algorithm.

Section 4.4 provides more detailed information on

this.

– Data maintenance. Finally, we show a data man-

agement layer for storage and maintenance of data.

This layer has to provide threadsafe access to data

items, therefore necessary operations for processing

modules must be designed. Here, synchronisation

and consistency issues as well as error management

must be taken into account, which is explained in

detail in Section 4.5.

To conclude the section about vision processing,

we discuss in Section 4.6 how the design principles for

safety in HRI influenced our vision processing approach.

4.1 Vision Subarchitecture Overview

In order to reach the goal of realtime visual processing

we need to speed up the inter-module communication
and simultaneous data access in our vision subarchitec-

ture. We propose a multithreaded vision system based

on a high level abstraction from hardware, operating

system, and low level vision tasks including morpholog-

ical operations. This allows us to minimise the overhead

for communication tasks, as the amount of data needed

to be transferred decreases in an abstract representa-

tion with a magnitude of a few hundred.

Figure 8 shows an overview of the computer vision

(CV) subarchitecture. On the left, the processing layer

including its decomposition in the functional domain

(see Section 4.2) and data domain (see Section 4.3) is

depicted. The right column in the figure shows the data

management layer (details follow in Section 4.5), which

handles internal information representation and flow of

the CV subsystem according to the second design prin-

ciple of CoSy (“structured management of knowledge”).

The vision system applies an asynchronous com-

munication mechanism (ACM), which leads to a non-

blocking behaviour and guarantees the required fre-

10

Fig. 8 Vision processing subarchitecture.

quency for result publishing, as publishing incomplete,

preliminary analysis results is tolerated (details in Sec-

tion 4.4). Derived from common standards [11], inter-

mediate vision data is managed in limited-size priority-

queues.

4.2 Processing Modules

According to the first design principle of the CoSy pro-

ject (“concurrent modular processing”), the vision sub-

architecture is organised as a combination of functional

entities, where each module can operate independently

of the others. In this parallel subarchitecture, we have to

designate anchor points for distributed computation—

the processing modules. Here, the level of abstraction

considering computational tasks matters in terms of

parallelisation. In order to avoid unnecessary overhead

regarding communication and take full advantage of the

multicore environment, we model concurrent computa-

tion with a moderate level of abstraction.

For function domain parallelisation, we claim that

the division into well-defined functional submodules is

feasible. In the processing layer of the proposed CV

system this is obviously the case, as we can identify

three major functional stages: preprocessing, analysis

and interpretation, and postprocessing.

Table 1 shows the modulewise decomposition of the

CV subarchitecture and lists the data items that are

used in the decomposed tasks. As the recognition pro-

cess is decomposable in the function domain (see Task

column), now, in order to prove our claim, we must

achieve data domain parallelisation. Thus, we have to

specify the functional tasks according to the need of

multiple instantiation of the processing modules.

Table 1 Functional decomposition of tasks for vision processing.

Task Input Output

Preprocessing

Image Loading – Image

Segmentation /
Early Processing

Image Regions of Atten-
tion

Analysis and Interpretation
Object Recogni-

tion

Region and tem-

plates

Objects

Gesture Recogni-

tion

Region Gesture

Robot Detection Region Robotpart

Postprocessing
Result Publish-

ing

Objects, gestures

and robotparts

–

Result Visualisa-
tion

Image, regions,
objects, gestures

and robotparts

–

4.3 Multiple Instantiation of Processing Modules

Consider that the data management layer successfully

stored extracted regions of attention that were extracted

by the early processing modules. Analysis operations

from the second stage are designed to only alter one spe-

cific region (or data item) at a time. Therefore, we can

simultaneously serve requests for a region from several

concurrently active analysis module instances. Also, the

system does not need to wait for the result of an anal-

ysis because results are published as soon as they are

provided by the data management. We publish periodi-

cally in realtime, thus it is of minor relevance to publish

a single result at the exact moment of its completed

analysis.

Generally, we derive the following approach from

the non-blocking paradigm of ACMs: we publish in-

complete analysis results of a scene rather than waiting

for a complete analysis that would block the system in

the meantime. This approach allows us to run multiple

concurrent module instances for the analysis of data

items as long as the data management is implemented

in a threadsafe way, which will be explained in more

detail in Section 4.5. Thus, we are able to implement

data domain parallelisation in a similar way as it was

reported in [6].

4.4 Asynchronous Communication and Scheduling

Originating from functional and data domain decom-

position, we have to consider communication strategies

for a system running processing modules in parallel. In

parallel computation we can generally apply either syn-

chronous or asynchronous communication strategies for

data exchange between processes or threads [7]. With

synchronous communication the partners wait for con-

11

firmation of sent data items, so this strategy has its

main applications where the correct transmission of data

is essential. Though being robust, due to its block-

ing nature a synchronous approach can cause prob-

lems especially for realtime systems where immediate

responses have to be guaranteed.

For this reason, asynchronous non-blocking com-

munication mechanisms (ACMs) have been proposed.

With ACMs information or data is dropped when ca-

pacities exceed—which is acceptable as long as the sys-

tem does not block. Non-blocking algorithms can be

distinguished as being lock-free and wait-free [41]. Lock-

free implementations guarantee at least one process to

continue at any time—though starvation is a risk, be-

cause an operation may never finish due to the progress

of other operations. On the other hand, wait-free im-

plementations exist that avoid starvation as they guar-

antee completion of a task in a limited number of steps

[23]. Generally, it is essential for systems utilising an

ACM to stay responsive, not to guarantee data trans-

mission.

According to Simpson [38], ACMs can be classified

based on the destructiveness of data accesses. Table 2

shows protocols with names given by Simpson for dif-

ferent levels of destruction (N-DR stands for “non-

destructive reading”, etc.) and was taken from [37]. An-

other classification of ACM protocols by Yakovlev [44]

distinguishes data access with respect to their overwrit-

ing and re-reading permission.

Table 2 Common classification for asynchronous communica-

tion mechanisms (ACM).

DR N-DR

DW Signal Pool

N-DW Channel Constant

Concerning ACMs for the proposed CV system the

implementation of a pool ACM in either classification

scheme is relevant. On the one hand, we take into ac-

count the Simpson classification as we do have non-

destructive read operations but write operations in-

clude deletion of items. On the other hand, we use Ya-

kovlev’s classification, as we allow overwriting in a write

operation and do not delete items when reading them

from the storage.

There is one disadvantage in such an implementa-

tion of the ACM: we risk that a module requests data

from the data management, but there is no such data

item at the moment, for example because the specific

queue is empty. In this case the data management de-

livers a null data item, so modules have to deal with

these items as well. Therefore, we propose an algorithm

that whenever a Null data item is received tries to

suspend module instances (i.e. single threads) for an

optimal amount of time until a correct data item is ex-

pected to be delivered again. An incremental back off

time b(c) may be calculated for the instance of a module

as follows:

b(c) = min(c · i, (a · j
n

)) (1)

In (1) the parameter c denotes the counter for the

number of tries since the last correct data item has

been received by the module, i denotes the predefined

back off increment in milliseconds, a is the maximum

age of a data item until it is deleted, j the number of

module instances operating on the same task and n the

current number of items in the queue. If a Null data

item is retrieved, c is incremented and the module is

immediately suspended for a time b(c) again. In case a

correct item could be delivered, c is reset to 0 and the

item is processed.

The back off strategy tries to optimally calculate

suspension periods for instances not needed at the mo-

ment but at the same time to provide an instance when-

ever needed. In detail, the first argument of min calcu-

lates an incremental amount of time for the module

instance to sleep and the second argument represents

the expected mean time until the next correct data item

can be delivered. This value is then used as the maxi-

mum amount of time to suspend a module instance.

The optimal back off strategy ensures that suspend-

ing a single module never blocks the entire vision sys-

tem, as (1) calculating a maximum for the suspension

time guarantees wait-free behaviour (it states an upper

limit); and (2) the vision system guarantees, that new

camera images are continuously acquired, and thus new

data is constantly fed into the system for processing.

4.5 Data Management

A crucial point is the implementation of an adequate

data access strategy for concurrent requests. The strat-

egy has to ensure integrity and consistency of data and

needs to provide error management policies as well. One

also has to consider priorisation whenever a module re-

quests to write while another module simultaneously

wants to read data from or write data to the storage.

Another important point is the deletion of data items

when they expire.

Considering modularity, we organise data access in

a data management layer. A natural approach for the

implementation is based on the singleton design pattern

[16]. Singleton implementations only provide a single

12

instance of an object to the overall system; so in our

case any request from an analysis module must call the

single instance of the data management.

Error handling of the data management layer can

be implemented straight forward as the layer delivers

Null data items whenever an erroneous request was

received, a queue was empty or no suitable data item

could be found. The error handling approach utilising

Null data items is even wait-free because it completes

in a limited number of steps [41]. Organising the sin-

gleton instance in a threadsafe manner concerning read

and write accesses ensures integrity and consistency. In

order to achieve this, the data management module is

organised as a bundle of queues.

4.5.1 Data Operations

Threadsafe concurrent data access is realised by encap-

sulating synchronisation. An instance of a processing

module sends a request for storage or retrieval of a data

item of a certain kind by calling one of the three oper-

ations provided to the processing layer. In detail, these

operations are defined as follows:

– A Write operation requests storage of the passed

data item from the data management layer. In pseu-

do code we can define this access operation as fol-

lows:

write<Queue>(Item):void

– The Read operation requests delivery of a data item

from the data management. A Read request enables

the module from the processing layer to specify the

type of data to be delivered but the concrete item

is stochastically determined. The pseudo code nota-

tion for this operation is:

read<Queue>():Item

– The ReadAll operation requests delivery of all data

items from a specific queue. This can be specified as:

readAll<Queue>():Item[]

4.5.2 Randomised Weighted Data Retrieval

Considering a request from the processing layer, accord-

ing to what strategy should the data management select

an item from the specified queue? The retrieval strategy

implemented in data management selects a data item

to deliver according to the evaluation of a stochastical

function. The function is based on the assumption that

a data item (re-)detected in the near past must be pri-

oritised to one that last occurred many cycles ago as it

may have already disappeared or removed. Since each

item in a queue Q has a timestamp, we weigh the items

i ∈ Q according to their age ai = now − timestamp(i)
such that the weight increases, the younger items are:

∀i ∈ Q : wi = 1− ai
maxage

(2)

A new queue of pointers to data items from the original

queue is built afterwards. The new queue on which the

actual retrieval operation is performed with a random

selection is filled with at least one pointer to each data

item. In fact, according to the weight wi of an item i,

a number of duplicates di of each pointer is pushed to

the queue:

∀i ∈ Q : di =
1

argminj∈Q(wj)
·wi (3)

Afterwards the random selection on the pointer queue

is performed where more recent items are prioritised

automatically as more pointers to the corresponding

data items exist.

Before applying the weight to the items of a queue,

we have to exclude elements that match certain precon-

ditions. As an item cannot be altered by two processing

modules concurrently, we introduce a locking mecha-

nism for items. The non-blocking nature of data access

can though still be guaranteed due to the error han-

dling approach described earlier. Before a data item is

delivered to the processing layer, the state of the item

is changed to locked. Locked items are not allowed to

be delivered to any other instance and so are excluded

from the weighting step. Releasing the lock is in respon-

sibility of the module processing the item.

4.5.3 Queue Locking

Another important question to discuss is the behaviour

of the system in case of concurrent Write or Read op-

erations concerning a specific queue. Concurrent Read

operations are allowed at any time, but in case a Write

operation is requested all retrieval requests and con-

current Write requests must be blocked meanwhile.

Therefore, the system has to implement a mechanism

that uses cascaded mutual exclusions. Thus, each data

queue storing a specific kind of data item is protected

by a ReadWrite mutex, which exactly matches the

above requirements.

Though a single operation may be blocked, the over-

all system is not. If a mutex can not be acquired at the

moment, in case of a Read operation a null item is de-

livered and in case of a Write operation no operation

is executed. This behaviour is again conform to the def-

inition of an asynchronous non-blocking algorithm as it

is wait-free.

13

4.5.4 Storage Cleanup

Due to system limitations in a realtime environment we

only allow the data management to store a configurable

amount of data from the past. Thus, data items must be

marked with a timestamp to allow age determination.

Consequently there is no Delete operation provided

to the processing layer, but items are deleted automat-

ically during a CleanUp step when they expire. The

CleanUp operation is invoked periodically by a sepa-

rate data management thread. The thread is scheduled

to wait for a certain predefined period of time before it

invokes the operation. After performing the operation

on all data, the thread is suspended again. Of course,

as this operation is equivalent to a Write operation,

it must be protected by the same mutex mechanism.

Similar to the Write operation, no operation is per-

formed in case the mutex for a certain queue can not

be acquired.

4.5.5 Enhancements

In order to enhance the performance of Read and

ReadAll operations we introduce the concept of in-

terpretation preselection. We assume that certain data

items are not relevant for dedicated tasks. For example

a gesture recognition module could only be interested in

a region that comes into the scene from the bottom or

an visualisation module is only displaying objects from

within the last 100ms, but skipping gestures totally.

In order to completely leave the relevance decision

to the processing modules, we propose a mechanism

that evaluates a predicate that is passed within a re-

quest. According to the predicate, the exclusion step

before weighting the items of a queue is adapted. Now

not only locked items but also items that do not match

the predicate are removed from the set of items from

which pointers are duplicated according to their weight.

In this way, the search space for retrieval can be re-

stricted, but the non-deterministic selection algorithm

can still be applied. Having defined the retrieval method

stubs in Section 4.5.1, we now extend these definitions:

read<Queue>(Predicate):Item

readAll<Queue>(Predicate):Item[]

Predicate is a non-empty binary predicate that

evaluates to True or False on each data item of the

specified queue. If the set of items after preselection is

empty, a Null data item is delivered. As some items

also support state attributes for tracking (tracked /

new) or interpretation (static / moving), a processing

module can use these attributes for the implementation

of its own predicate.

Moreover, a processing module can in principle spec-

ify arbitrary predicates on members of the data items

in a queue. For example, considering that data items in

a queue are timestamped, it is possible to track them

from one cycle to the following. Therefore, we define

a comparison predicate that is applied when a stor-

age Write query is requested. The predicate evaluates

symbolic or meta attributes, including classification,

colour, approximate pose, number of points, or width,

height, and depth. When the data management receives

a Write request for a formerly recognised item, only

necessary attributes may be updated, all other attributes

(especially the unique id) instead can be kept. For ex-

ample, considering an item static and fully analysed,

the existing item just gets all ordinary attributes (such

as the timestamp, position, etc.) updated, but the up-

dated item is not marked for analysis again.

4.6 Discussion

Following this overview of our approach for vision pro-

cessing, we discuss how the design principles for safety

in HRI influence the method.

Robustness. To increase the robustness of object

and gesture recognition, we are using multiple modali-

ties in the recognition process: the use of colour, shape,

and size information makes sure that a good recogni-

tion result can be guaranteed at all times, even in cases

were one of the object properties cannot be determined

correctly.

Fast reaction time. For a decreased processing

time we took two actions: first, we make use of the

multicore architectures of current computers to paral-

lelise our approach for object and gesture recognition.

Because parallelisation scales very well considering the

proposed approach, with its introduction, the process-

ing times for analysis of a complete frame could approx-

imately be cut into 1/n, where n = 4 on the quad-core

computer utilised [31].

Second, we are using tracking to follow already recog-

nised objects and gestures. If the size and position of

an object only changes slightly, we assume that it still

is the same object and thus do not initiate the whole

recognition process for this object. Considering this, we

are able to increase processing times again, as the ac-

tual object recognition is the most time-consuming task

in the vision system.

As a future step, we plan to realise a mechanism

called attention-based early processing, which has been

introduced in [30]. In this method, object recognition

publishes its preliminary recognition results at an early

processing stage. This way, the robot already gets infor-

mation about the rough position and size of an object

14

but does not know the exact type and properties of

the object yet. This can for example be used to avoid

collision with moving objects.

Context awareness. For object recognition, con-

text is mostly important to further increase the robust-

ness and processing time of the approach. In our case

we are using the information about the position of the

robot’s arm to determine whether it is moving within

the field of view of one of the used cameras. In that case,

the vision system may interrupt the recognition process

which decreases squandering of computing power and

avoids false recognition results.

Now that we have highlighted the input side of HRI

and showed our work on speech and vision processing,

we want to switch to the output side and explain how

the design principles for safety influence our approach

for robot control.

5 Robot Control

The consideration of the safety design principles is of ut-

most importance controlling a collaborative robot. Es-

pecially working in a shared workspace might sooner or

later lead to situations where human and robot collide

with each other. That this can be very harmful to the

human especially when standard industrial robots are

used, was shown in [19,20,18].

In this section, we discuss how the safety design

principles influence the controller module of a robot. We

are mainly concerned to speed up the reaction times of

the robot and to increase the context awareness of the

system. For that, on the one hand we are splitting up

the robot actions in several tasks that can be stacked

up in a task hierarchy. This speeds up the online cal-

culation of the robot movements and allows the robot

to be reconfigured for various applications easily. On

the other hand, we equip the robot with an internal

representation of its environment in which the sensor

data from vision processing, person tracking, and hand

tracking is updated continuously in an asynchronous

fashion, so that the robot always knows about its sur-

rounding.

In the remainder of this section we show in Section

5.1 how single robot tasks, including posture, opera-

tional position, and collision avoidance, can be arranged

in a task hierarchy so that the safety for the human is

increased without constraining the robot’s capabilities.

Section 5.2 gives an overview of the internal robot rep-

resentation, and Section 5.3 presents how our approach

for robot control can be applied in an application for

HRI in an industrial setting. Section 5.4 concludes the

section about robot control and discusses how the safety

design principles influence our approach.

5.1 Robot Task Hierarchy

According to [36], actions consist of several atomic tasks

that are arranged in a task-oriented way. That means on

the reverse that various different actions can be gener-

ated by rearranging the same set of atomic tasks. How-

ever, an encoding of priorities in the task hierarchy is

of importance, because it needs to be prevented that

contrary tasks interfere with each other and lead to un-

controllable or unwanted behaviour of the robot, which

might lead to situations in which the safety of a human

is in danger.

Based on the syntax of [45], an action A can be for-

mulated as a composition of tasks Tk with a projection

rule /k that ensures the behaviour of the task:

A = 〈T 〉n0 = Tn /n Tn−1 /n−1 . . . /1 T0. (4)

As most industrial robots are only controllable on the

position or velocity level, we transform the task descrip-

tions in terms of joint velocities (q̇):

q̇
Action

= q̇
Tn
/n q̇Tn−1

/n−1 . . . /1 q̇T0
. (5)

According to the defined control structure, we need to

take care of only a few points for each task: compute

the velocity to solve the single task, set the constraints

according to the current situation or use static con-

straints, and finally transform the lower priority task

velocity into a safe subspace respecting the active con-

straints. For the latter we are using null spaces with or-

thogonal projectors as in [36,35] in the posture and the

operational position task and a constraint least square

optimisation for the collision avoidance task. With these

projectors we are able to decouple the tasks from each
other which is also shown in Figure 9.

Task 1 Task 2 ... Task N

priority level

constraints ... constraints

velocity task 1
constraint velocity

velocity task 2
...
...

constraint velocity
velocity task N

+ + +

Output

Fig. 9 Actions are defined through task compositions. The as-

sociated constraints are respected through projections into corre-

sponding subspaces, with execution priorities ranging from lowest
(left) to highest (right).

5.1.1 Respecting Hardware Limits

An important issue that needs to be respected are the

limitations of joint angles, velocities, and accelerations.

The resulting velocity q̇—as well as intermediate results—

needs to be in a certain bounding region l ≤ q̇ ≤ u, that

15

does not violate these limits. Therefore, we adaptively

recompute the bounding limits in every time step ac-

cording to

li = max(q̇min
i , q̇lowerJL

i , q̇AL
i) (6)

for the lower boundary and

ui = min(q̇max
i , q̇upperJLi , q̇DL

i) (7)

for the upper boundary. The values for q̇max
i and q̇min

i

are the maximum and minimum velocity for joint i as

defined by the manufacturer of the robot.

q̇lowerJL
i =

qmin
i − qi(t)

∆t
(8)

is the velocity that is needed to reach the lower joint

limit of joint i in the next time step t+ 1 and

q̇upperJLi =
qmax
i − qi(t)

∆t
(9)

is the velocity to reach the upper joint limits respec-

tively. These velocities converge to zero as the joint an-

gle is approaching the joint limit.

To respect that the acceleration and the decelera-

tion abilities of the motors of the robot are also lim-

ited, the maximum velocities of the joints need to be

constraint. Therefore, we approximate this factor with

q̇AL
i = q̈acc

i
·∆t+ q̇i(t− 1) (10)

for the acceleration and

q̇DL
i = q̈dec

i
·∆t+ q̇i(t− 1) (11)

for the deceleration of the joints.

With the limit information for each joint, a limit

method C(q̇) can be defined that scales the velocity

vector to respect all above mentioned limits without

changing the trajectory of the motion:

C(q̇) = s(l, u) · q̇. (12)

In the following sections, we explain the tasks pos-

ture, operational position, and collision avoidance. These

tasks can be stacked in an arbitrary hierarchy to per-

form various actions.

5.1.2 Task: Joint Position (Posture)

The goal of the posture task is to set the robot to a

certain joint configuration q
goal

. With this posture con-

troller the robot can be set to specific postures, for ex-

ample to a “human friendly” or upright posture.

The velocity for this task is calculated by

q̇
po

= C

(
q
goal
− q(t)
∆t

)
. (13)

To constrain certain degrees of freedom in joint space

that cannot be influenced by lower priority tasks a n×n
matrix Spo is used to select them, with n being the num-

ber of joints. This means the guaranteed velocity can

be expressed as

q̇∗
po

= S · q̇
po
. (14)

Using the projector NPo of the selected constraints, we

get as output for the projection of an input velocity q̇
in

:

q̇∗ = q̇∗
po

+Npo · q̇in (15)

with

Npo = I − Spo. (16)

5.1.3 Task: Operational Position

The operational position task drives the tool centre

point of the robot to a defined goal position and ori-

entation xgoal in Cartesian coordinates according to:

ẋ =
xgoal − x(t)

∆t
. (17)

After calculating the velocity in Cartesian space,

constraints can be set using a diagonal selection 6 × 6

matrix SOp to select the degrees of freedom (in Carte-

sian space) that should not be influenced by lower prior-

ity tasks. Transformed into limited joint velocities using

a singularity robust pseudo-inverse J†e of the Jacobian

Je of the end effector, we get

q̇∗
op

= C(J†e ·Sop · ẋop). (18)

Using the null space Nop of the selected constraints,

we get as output for the orthogonal projection of an

input velocity q̇
in

:

q̇∗ = q̇∗
op

+Nop · q̇in (19)

with

Nop = I − J†eSopJe. (20)

16

5.1.4 Task: Collision Avoidance

With this task, the robot can be controlled so that

it avoids collision with static entities (for example a

workbench) and dynamic entities (for example the hu-

man or moving objects) in its environment. In this task,

the avoidance is done in a reactive way with dynami-

cally updated collision scenes that is interfaceable with

a variety of sensors. The vision system we presented in

Section 4 also connects to the robot controller via this

interface.

The main challenge that arises here, is that the

planned motion and the avoidance motion must be han-

dled in a way such that they do not interfere with each

other. Therefore, we fuse potential field methodology

to repel the robot from the obstacle with a constraint

least square optimisation that restricts the motion of

the robot to safe orthogonal subspaces of the collision

avoidance.

Virtual Forces

To compute the velocity that repels the robot from sur-

rounding obstacles, we need to compute the minimum

distances of all objects in the environment model (in-

cluding self collision) to all body parts of the robot.

Figure 10 shows the body parts of the robot we are us-

ing in our examples in different colours along with an

example of the minimum distances di (red lines) from

an obstacle to a given joint configuration.

Fig. 10 Computing the repelling forces of an obstacle: the red
lines illustrate the minimum distances of an obstacle to the body
parts of the robot in a given joint configuration. If a distance
is below a chosen security threshold (transparent bubble), the

distance is used to compute virtual forces on the robot using
potential fields.

Opposite to simplified and only approximated mod-

els of manipulators (which was for example used in the

skeleton algorithm presented in [8]), we measure the

distances of arbitrary shapes to a convex version of the

real CAD model of the robot in order to reach a high

precision of the virtual forces. With an efficient imple-

mentation of the GJK algorithm [42], we compute these

distances faster than the update rate of the robot con-

troller.

After calculating the minimum distance vectors vx,i
in Cartesian space (i.e. the direction of the applied vir-

tual force), we need to transform them to velocities in

joint space and find the overall motion of the robot to

avoid the collision. This is done according to

q̇ =

I∑
i

q̇
i

=

I∑
i

JT
Pr(i)

·Urep,i(q) · vx,i(q), (21)

with I being the number of bodies of the robot, the

current joint configuration of the robot q, the Jacobian

of the minimum distance point on the robot JPr(i), and

the repelling potential function Urep,i:

Urep,i(q) =

{
1
2ηi

(
1

di(q)
− 1

Q∗

)2
if di(q) ≤ Q∗

0 if di(q) > Q∗
,

with Q∗ being the distance at which the potential field

function is applied, which is represented by the trans-

parent bubble in Figure 10.

Constraint Least Square Minimisation

To ensure that we project the lower priority task in an

orthogonal subspace of the collision avoidance task, we

use the mathematical framework of quadratic program-

ming [10] to minimise the quadratic error between op-

timal velocity of the lower priority task subject and the

constraints of the higher priority task. The low priority

task execution (q̇
in

) is optimised regarding must have

constraints of the higher priority task. The projection

is described according to:

min
q̇
in

‖Je · q̇in − ẋt‖
2, (22)

where ẋt is the ideal linear and angular velocity to solve

the lower priority task subject to the linear constraints

of the form

CT q̇
t
≥ 0 (23)

with the constraint matrix

CT =

q̇T
1
...

q̇T
I

 (24)

17

and q̇
i

calculated according to (21). This means, only

those velocities are valid, which are orthogonal to the

direction of the collision avoidance velocities or point

in a direction that leaves the defined safety region. The

output of the minimisation process is then equal to the

constrained joint velocity q̇∗. Quadratic Programming

in combination with collision avoidance on the level of

joint acceleration was used in [15,14].

5.2 Internal World Representation

The robot controller has an internal representation of

its surrounding environment (internal world represen-

tation, IWR) that is kept up to date with changes in

the world that are of interest for the robot.

Since the robot in the shown collaboration scenario

is stationary, many things in the environment can be

added to the IWR as static components. This includes

the worktable, the cage, the assembly belt in the back-

ground, as well as the robot’s position in relation to

the table. Multiple sensor modules perceive dynamic

objects—including the human—and add, update or re-

move them at runtime. Object properties such as the

colour or the location of the object, as well as the

robot’s posture, which is also constantly updated when

the robot moves are also part of the IWR.

Fig. 11 Schema for the internal world representation compo-

nent.

Figure 11 shows a schematic overview of this rep-

resentation. The ID generator is a central component

of the IWR. Input processing modules, for example an

object recognition or a person tracking module, request

globally unique IDs from the generator. With these IDs

the input processors can introduce, update, and remove

new entities (i.e. persons or objects) in the IWR. Here,

the input processing modules have to organise the IDs

they are using by themselves, which also means that

they have to take care that they remove entities from

the IWR when they do not track them anymore. Fig-

ure 5.2 shows the interfaces for handling entities in the

IWR.

addSingleObject(groupID, bodyID, shape, pose);

updateSingleObject(bodyID, pose);

removeSingleObject(bodyID);

addGroupObject(groupID, object, pose);

updateGroupObject(groupID, pose);

removeGroupObject(groupID);

Fig. 12 Interfaces for the internal robot representation; input

processing modules use these interfaces to add, remove, or update
entities in the representation.

Robot control uses the IWR on the one hand to keep

track of the current status of the environment. On the

other hand, it also forwards the information from the in-

put processing modules to a virtual scene, in which the

controller also presents information about the robot’s

appearance and position. For this, the virtual scene first

loads information about the static environment of the

robot and then gets the additional information about

dynamic entities in the world from the controller. This

virtual scene can be displayed to the human users so

that they also get a quick overview of the robot’s be-

lief about the current state of the world. Figures 13(b)

to 13(d) show an example for a 3D representation of a

virtual scene.

5.3 Application Example: Mobile Storage Box

With the task-based hierarchical control structure we

can solve a wide range of tasks that can be used in pro-

duction scenarios in which human and robot work to-

gether as a team. In the following section, we present an

application of our robot control approach that was used

on the demonstration platform JAHIR (Joint-Action

for Humans and Industrial Robots) [27], which is em-

bedded in a factory setting [46].

The JAHIR platform consists of an industrial robot

arm that is mounted behind a workbench. A human

who stands face to face to the robot shares the workspace

with the robot during collaborative tasks. Figure 13(a)

shows the system interacting with a human. During

interaction, the human wears a jacket on which a set

of infrared markers are attached on the palm and on

the lower and upper arm. An infrared tracking system

tracks these markers and sends the sensor data to the

internal representation of the robot. This way, the robot

constantly updates its knowledge about the position of

18

the human’s arm and hand. Figures 13(b) to 13(d) show

a 3D model of the internal robot representation in var-

ious interaction situations. In the representation, the

human’s body is roughly estimated by several cylin-

ders which ensures that the human’s safety zone is big

enough.

Our application example is set in a manual produc-

tion setting. In manual production human workers need

to have all parts they need for an assembly within reach

so that they can build it efficiently. At the same time,

the workers need a place were they can put already

assembled subcomponents of an assembly, from which

they can retrieve the subcomponent in a later produc-

tion stage.

Thus, we programmed the JAHIR robot to assist

the human as a mobile storage box. The robot is able

to supply assembly parts as well as to take already fin-

ished subcomponents of the assembly and to keep them

in range of the human. For this, the robot holds a stor-

age box and keeps it near the human’s hand. To do

this in a safe way, the robot has to bring in line the

tasks to follow the human’s hand and to avoid collision

with the human and with its environment at the same

time. Given these requirements, we configure the robot

controllers as presented in Equation (25) to compose

action A1.

A1 = Torientation / Tavoidance / Tposition / Tposture. (25)

Torientation is the task with the highest priority, which

takes care of keeping the box always in a horizontal

orientation. The operational position controller is used

here with the selection matrix

Sorientation = diag (0, 0, 0, 1, 1, 1) (26)

to fix the orientation of the box. Task Tavoidance
avoids collisions with the surrounding environment and

the human hand. The position task Tposition follows the

human hand through updates of the hand tracking sys-

tem to the goal position xgoal, that should be 0.1 m in

front and below of the hand. To keep the position fixed,

the selection matrix

Sposition = diag (1, 1, 1, 0, 0, 0) (27)

is used. In the posture task, we defined that the robot

should have an upright joint configuration. Because the

posture task has the lowest priority, we can include all

joints in the velocity calculation.

The orientation has the highest priority in this ex-

ample, because the spare parts, that are inside the box,

should not fall to the ground. Although this seems to

limit the safety for the human at first glance, each task

in the controller can suspend the whole movement of

the robot. This means, that if the human comes to close

to the robot and the collision shapes touch, the robot

stops until the collision is cleared. The collision shapes

have a bigger size than the real objects, for example

the hand is approximated as a sphere. Another issue

that should be considered is, that although the orien-

tation is fixed with highest priority, the robot has three

positional degrees of freedom left to avoid the collision.

Figure 13 shows some impressions from the mobile

storage box application. The robot is carrying a red

box with assembly subcomponents in its gripper, so

that the human can retrieve parts of the box, which

is shown in Figure 13(a). In order to allow the human

to grasp a subcomponent from the box, the motion of

the robot needs to be stopped. For this the robot con-

troller uses information from the avoidance task that

measures the distance between robot and human. The

controller stops the current motion, if the distance of

robot and human falls below a defined threshold.

5.4 Discussion

To conclude the section about robot control, we discuss

how the design principles for safety in HRI influence

our approach. Additionally, we show how the approach

can be even further improved.

Robustness. To increase robustness in robot con-

trol, we take three steps: first, we compute the trajec-

tories of the robot actuator online every seven millisec-

onds. This way, the robot can react quickly on new

events sent by the input processing modules in an asyn-

chronous fashion. Second, the decomposition of robot

tasks into single actions decreases the complexity of

the trajectory computation and therefore increases ro-

bustness. Third, in the internal world representation

we chose shapes to represent human body parts, which

are bigger than the body part in reality. Together with

the computed virtual repelling forces for collision avoid-

ance, this ensures that the robot stops its movement

long before an actual collision can occur. All tasks can

suspend the motion of the robot, for example when a

collision or an error in the computation occurs.

To further improve our approach and to increase the

stability of the collision avoidance, we plan to use more

distances than only the minimum distance to compute

the virtual forces. Additionally, we want to add more

atomic tasks to the controller, including singularity and

joint limit avoidance, and we plan to track the whole

human body pose at best without the use of any mark-

ers.

Fast reaction time. Fast and efficient computa-

tion is very important for robot control. Therefore, in

19

(a) (b)

(c) (d)

Fig. 13 Mobile storage box: The robot has a storage box as tool which follows the human hand in safe distance and avoids collision
with the hand and the surrounding, so that the human can pick up parts or place assembled products in there. (a) real scene; (b), (c)

and (d) 3D representation with robot behaviour.

our approach we compute robot trajectories faster than

the robot update time, even on a standard dual core

personal computer. To improve our approach in the fu-

ture, we plan to parallelise the computation by sourcing

out computationally intensive parts of the approach—

e.g. computation of collision avoidance—to other com-

puters.

Context awareness. We increased the context a-

wareness in our approach by adding the internal world

representation to robot control. This way, the robot al-

ways has an exact information about the current status

of its environment and can make sure that it does not

collide with a human or any objects.

In the next step, we plan to increase the context

awareness of the robot even further by adding full body

tracking of the human to the internal world represen-

tation. Additionally, we plan to equip the setup with

a depth sensor camera. This will enable the robot to

measure the size of objects, even if they are unknown,

so that it can avoid collision.

6 Conclusion

In this publication, we presented three design princi-

ples for safety in human-robot interaction, robustness,

fast reaction time, and context awareness, which are es-

sential for every software component that controls the

behaviour of a robot that interacts with a human. We

showed how these design principles can be applied to

robot architectures and how they influence approaches

for speech processing, vision processing, and robot con-

trol. We also presented an example application that in-

20

corporates these design principles. In this application,

a human works together with a robot that assists the

human as a mobile storage box. Due to the effective

implementation of the design principles, the efficiency

of the human worker is increased without having to de-

crease the safety level for the human.

The main contributions of our work, which all in-

crease the safety for the human that interacts with a

robot are as follows: we proposed a method for speech

processing that enables the robot to deal with situa-

tions in which it did not understand the whole utter-

ance of its human collaborator completely, which in-

creases the robustness of speech processing. In vision

processing we presented a new algorithm for recogni-

tion of objects and gestures, which makes use of mod-

ern multicore computers and guarantees a fast, reliable,

and non-blocking recognition. Finally, we showed how

the robot can be programmed with a hierarchical task

structure, which enables the robot to fulfil its assign-

ments while making sure that the safety of the human

is guaranteed at all times.

Our design principles are one step towards increased

safety in HRI and we showed how we apply these prin-

ciples to several parts of a robot system. However, in

the next step we have to analyse how the design princi-

ples influence other components of HRI systems, espe-

cially reasoning components such as task planners and

dialogue managers. Additionally, we have to find out

how the combination of several approaches for safety

in HRI can be combined, for example a combination of

specialised safe robotics hardware with standard indus-

trial robots would be interesting.

Another aspect of safety in HRI—which we did not

touch in this publication at all—is how humans per-

ceive robots and how their perceived feeling of safety

can be increased. For this, it has to be studied how

the robot’s motions (trajectories and speed) influence

the human’s acceptance rate. For example Huber et

al. [24] showed that humans report an increased level

of perceived safety when the robot uses human-like mo-

tion trajectories. Also, we need to determine what the

robot should say or do in order that the human knows

the robot’s next actions. Overall, we are convinced that

the combination of the approaches of other researchers

and the approaches we are proposing here will lead to

a boost for more human-robot interaction in industrial

settings and also in assistive robotics.

Acknowledgements This work is supported by the German

Research Council (DFG), under the excellence initiative cluster
“Cognition for Technical Systems” (CoTeSys3) and the Collabo-

3http://www.cotesys.org

rative Research Center SFB 453 on “High-Fidelity Telepresence
and Teleaction”.

References

1. A. E. Ades and M. J. Steedman. On the order of words.
Linguistics and philosophy, 4:517–558, 1982.

2. K. Ajdukiewicz. Die syntaktische konnexität. Studia Philo-

sophica, 1:1–27, 1935.

3. J. Baldridge and G.-J. Kruijff. Coupling ccg and hybrid logic
dependency semantics. In Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics

(ACL 02), Philadelphia, PA: University of Pennsylania, 2002.

4. Y. Bar-Hillel. A quasi-arithmetic notation for syntactic de-

scription. Language, 29:47–58, 1953.

5. T. Brick and M. Scheutz. Incremental natural language pro-
cessing for hri. In Proceedings of the ACM/IEEE interna-

tional conference on Human-robot interaction, pages 263–

270. ACM New York, NY, USA, 2007.

6. T. P. Chen, D. Budnikov, C. J. Hughes, and Y.-K. Chen.
Computer vision on multi-core processors: Articulated body

tracking. In 2007 IEEE International Conference on Multi-
media and Expo, pages 1862–1865. Intel Corporation, IEEE

ICME, 2007.

7. D. E. Culler, J. P. Singh, and A. Gupta. Parallel Com-

puter Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers, 1999.

8. A. De Santis, A. Albu-Schäffer, C. Ott, B. Siciliano, and

G. Hirzinger. The skeleton algorithm for self-collision avoid-
ance of a humanoid manipulator. In Proceedings of the

IEEE/ASME International Conference on Advanced Intelli-

gent Mechatronics, pages 1–6, 2007.

9. C. Fellbaum et al. WordNet: An electronic lexical database.

MIT press Cambridge, MA, 1998.

10. R. Fletcher. Quadratic programming. In Practical Meth-
ods of Optimization, chapter 10, pages 229–258. Wiley, New

York, second edition, 1987.

11. Message Passing Interface Forum. Mpi, a message-passing
interface standard. Technical report, University of Tennessee,

Knoxville, Tennessee, June 1995.

12. M. E. Foster, E. G. Bard, R. L. Hill, M. Guhe, J. Oberlander,
and A. Knoll. The roles of haptic-ostensive referring expres-

sions in cooperative, task-based human-robot dialogue. In

Proceedings of the 3rd ACM/IEEE International Conference
on Human Robot Interaction (HRI 2008), pages 295–302,

Amsterdam, March 2008.

13. M. E. Foster, M. Giuliani, A. Isard, C. Matheson, J. Ober-
lander, and A. Knoll. Evaluating description and reference

strategies in a cooperative human-robot dialogue system. In
Proceedings of the Twenty-first International Joint Confer-
ence on Artificial Intelligence (IJCAI-09), Pasadena, Cali-

fornia, July 2009.

14. E. Freund and J. Rossman. The basic ideas of a proven dy-
namic collision avoidance approach for multi-robot manipu-

lator systems. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1173–
1177, 2003.

15. E. Freund, M. Schluse, and J. Rossmann. Dynamic collision

avoidance for redundant multi-robot systems. In Proceed-
ings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, pages 1201–1206, 2001.

16. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Orientated Software.

Addison-Wesley Professional Computing Series, 1998.

21

17. M. Giuliani and A. Knoll. Integrating multimodal cues using
grammar based models. In Constantine Stephanidis, editor,

Proceedings of the 4th International Conference on Universal

Access in Human-Computer Interaction, HCI International,
Part II, volume 4555 of Lecture Notes in Computer Science,

pages 858–867, Beijing, July 2007. Springer.
18. S. Haddadin, A. Albu-Schäffer, M. Frommberger, J. Ross-

mann, and G. Hirzinger. The “dlr crash report”: Towards a
standard crash-testing protocol for robot safety-part ii: Dis-

cussions. In IEEE Int. Conf. on Robotics and Automation

(ICRA2008), Kobe, Japan, pages 280–287, 2009.
19. S. Haddadin, A. Albu-Schäffer, and G. Hirzinger. Safety eval-

uation of physical human-robot interaction via crash-testing.
In Robotics: Science and Systems Conference (RSS2007),

pages 217–224, 2007.
20. S. Haddadin, A. Albu-Schäffer, and G. Hirzinger. The role

of the robot mass and velocity in physical human-robot

interaction-part ii: Constrained blunt impacts. In IEEE Int.
Conf. on Robotics and Automation (ICRA2008), Pasadena,

USA, pages 1339–1345, 2008.
21. S. Haddadin, A. Albu-Schäffer, and G. Hirzinger. Require-

ments for safe robots: Measurements, analysis and new in-

sights. International Journal of Robotics Research, 2009.
22. N. Hawes, J. Wyatt, and A. Sloman. An architecture schema

for embodied cognitive systems. Technical Report CSR-06-
12, University of Birmingham, School of Computer Science,

November 2006.
23. M. Herlihy. Wait-free synchronization. ACM Transac-

tions on Programming Languages and Systems (TOPLAS),
13(1):124–149, 1991.

24. M. Huber, H. Radrich, C. Wendt, M. Rickert, A. Knoll,
T. Brandt, and S. Glasauer. Evaluation of a novel biolog-

ically inspired trajectory generator in human-robot interac-

tion. In Proceedings of the 18th IEEE International Sym-
posium on Robot and Human Interactive Communication.

IEEE, September 2009.
25. G.-J. Kruijff, M. Brenner, and N. Hawes. Continual planning

for cross-modal situated clarification in human-robot inter-

action. In Proceedings of the 17th International Symposium
on Robot and Human Interactive Communication (RO-MAN

2008), Munich, Germany, August 2008.
26. G.-J. Kruijff, P. Lison, T. Benjamin, H. Jacobsson, and

N. Hawes. Incremental, multi-level processing for compre-

hending situated dialogue in human-robot interaction. In
Luis Seabra Lopes, Tony Belpaeme, and Stephen J. Cowley,

editors, Symposium on Language and Robots (LangRo 2007),

Aveiro, Portugal, December 2007.
27. C. Lenz, S. Nair, M. Rickert, A. Knoll, W. Rösel, J. Gast, and

F. Wallhoff. Joint-action for humans and industrial robots
for assembly tasks. In Proceedings of the IEEE International

Symposium on Robot and Human Interactive Communica-
tion, pages 130–135, 2008.

28. V.I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions and reversals. In Soviet Physics Doklady,

volume 10, pages 707–710, 1966.
29. Y. Li, D. McLean, Z.A. Bandar, J.D. O’Shea, and K. Crock-

ett. Sentence similarity based on semantic nets and corpus

statistics. IEEE Transactions on Knowledge and Data En-
gineering, pages 1138–1150, 2006.

30. T. Müller and A. Knoll. Attention driven visual processing
for an interactive dialog robot. In Proceedings of the 24th

ACM Symposium on Applied Computing, Honolulu, Hawaii,
USA, March 2009.

31. T. Müller, P. Ziaie, and A. Knoll. A wait-free realtime system
for optimal distribution of vision tasks on multicore architec-
tures. In Proceedings of the 5th International Conference on
Informatics in Control, Automation and Robotics, Funchal,

Portugal, May 2008.

32. C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand,
C. Borst, A. Albu-Schäffer, B. Brunner, H. Hirschmuller,

S. Kielhofer, et al. A humanoid two-arm system for dexter-

ous manipulation. In Humanoid Robots, 2006 6th IEEE-RAS
International Conference on, pages 276–283, 2006.

33. R. Pfeifer, J. Bongard, and S. Grand. How the body shapes

the way we think: a new view of intelligence. The MIT Press,
2007.

34. R. Quirk, S. Greenbaum, G. Leech, and J. Svartvik. A com-

prehensive grammar of the English language. Oxford Univ
Press, New York, 1985.

35. L. Sentis. Synthesis and Control of Whole-Body Behaviors in
Humanoid Systems. PhD thesis, Standford University, 2007.

36. L. Sentis and O. Khatib. Task-oriented control of humanoid

robots through prioritization. In Proceedings of the IEEE-
RAS/RSJ International Conference on Humanoid Robots,

2004.

37. H.R. Simpson. Methodological and notational conventions in
doris real-time networks. In IED Supporting Predictable Im-

plementation of Requirements in Timing and Safety (SPIR-

ITS) Deliverable, 1994.
38. H.R. Simpson. Protocols for process interaction. IEE

Proceedings-Computers and Digital Techniques, 150(3):157–

182, 2003.
39. A. Sloman. Some requirements for human-like robots:

Why the recent over-emphasis on embodiment has held up
progress. In B. Sendhoff, E. Koerner, O. Sporns, H. Ritter,

and K. Doya, editors, Creating Brain-like Intelligence, pages

248–277. Springer-Verlag, Berlin, 2009.
40. M. Steedman. The syntactic process. MIT Press, Cambridge,

MA, USA, 2000.

41. H. Sundell and P. Tsigas. Fast and lock-free concurrent pri-
ority queues for multi-thread systems. Journal of Parallel

and Distributed Computing, 65(5):609–627, 2005.

42. G. van den Bergen. A fast and robust GJK implementation
for collision detection of convex objects. Journal of Graphics

Tools, 4(2):7–25, 1999.

43. M. White. Efficient realization of coordinate structures in
combinatory categorial grammar. Research on Language &

Computation, 4(1):39–75, 2006.

44. A. Yakovlev, F. Xia, and D. Shang. Synthesis and imple-
mentation of a signal-type asynchronous data communication
mechanism. In Proceedings of the 7th International Sym-
posium on Asynchronous Circuits and Systems (ASYNC),

page 127, 2001.

45. Y. Yang and O. Brock. Elastic roadmaps: Globally task-
consistent motion for autonomous mobile manipulation in

dynamic environments. In Proceedings of the Robotics Sci-

ence and Systems Conference, 2006.
46. M. Zäh, M. Beetz, K. Shea, G. Reinhart, K. Bender, C. Lau,

M. Ostgathe, W. Vogl, M. Wiesbeck, M. E., C. Ertelt,
T. Rühr, and M. Friedrich. Changeable and Reconfig-
urable Manufacturing Systems, chapter The Cognitive Fac-

tory, pages 355–371. Springer, 2009.

Manuel Giuliani received a Master of Arts in com-

putational linguistics in 2004 and a Master of Science

in Computer Science in 2006. He is currently working in

the DFG-funded project AudiComm, which is part of

the cluster of excellence “Cognition for Technical Sys-

tems” (CoTeSys). His research interests include cog-

nitive robotics, human-robot interaction, natural lan-

guage processing, multimodal fusion, and combinatory

categorial grammar.

22

Claus Lenz received a Bachelor of Science degree

in 2005 and a Diplom in 2007 in electrical engineer-

ing with a focus in human-machine communication. He

is currently working in the research cluster “Cognition

for Technical Systems” funded by the DFG in the excel-

lence initiative on the project “Joint-Action for Humans

and Industrial Robots” (JAHIR). His research interest

include cognitive robotics, human-robot interaction and

collaboration, and visual tracking.

Thomas Müller received a Diplom in Computer

Science in 2007. He is currently working in the DFG-

funded Collaborative Research Center SFB 453 on “High-

Fidelity Telepresence and Teleaction”. His research in-

terests include human-robot interaction, bio-inspired

vision systems, Lie algebras and screw theory for senso-

rimotor intergration, and parallelisation / virtualisation

techniques.

Markus Rickert received a Diplom in Computer

Science in 2004. He was working for the EU-funded

project JAST “Joint-Action Science and Technology”.

His research interests include robotics, motion plan-

ning, human-robot interaction, cognitive systems, phy-

sics simulation, computer graphics, and software engi-

neering.

Alois Knoll received his Ph.D. (summa cum laude)

in computer science from the Technical University of

Berlin, Germany, in 1988. He served on the faculty of

the computer science department of TU Berlin until

1993, when he qualified for teaching computer science

at a university (habilitation). He then joined the Tech-

nical Faculty of the University of Bielefeld, where he

was a full professor and the director of the research

group Technical Informatics until 2001. Between May

2001 and April 2004 he was a member of the board of

directors of the Fraunhofer-Institute for Autonomous

Intelligent Systems. At AIS he was head of the re-

search group “Robotics Construction Kits”, dedicated

to research and development in the area of educational

robotics. Since autumn 2001 he has been a professor

of Computer Science at the Computer Science Depart-

ment of the Technische Universität München. He is also

on the board of directors of the Central Institute of

Medical Technology at TUM (IMETUM-Garching); be-

tween April 2004 and March 2006 he was Executive Di-

rector of the Institute of Computer Science at TUM. His

research interests include cognitive, medical and sensor-

based robotics, multi-agent systems, data fusion, adap-

tive systems and multimedia information retrieval. In

these fields he has published over 200 technical papers

and guest-edited international journals.

