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Abstract— We propose a new method for controlling rigid
robot manipulators guaranteeing that a user-defined tracking
performance is ultimately met while facing uncertain system
dynamics and input disturbance. Our control approach is
based on the passivity-based control technique and eliminates
the limitations of existing methods (e.g. impractical tuning
to avoid chattering and difficult estimation of uncertainty
bounds of disturbances) through the use of interval arithmetic.
Our controller guarantees to meet the tracking performance
when considering input disturbance with unknown bounds.
Additionally, our approach can be used for on-the-fly controller
synthesis, which makes it especially appealing for robust control
of modular and reconfigurable robot manipulators. Finally,
we present simulation results and a comparison with the r-α
tracking controller that shows the superior performance of our
proposed method when considering a realistic scenario with
limited sampling rate.

I. INTRODUCTION

Model-based control methods represent a key technology
to enhance the motion-control performance of robot ma-
nipulators [1]. Obviously, the required models only match
the real system dynamics with varying degree. Additionally,
possible changes of end-effectors and payloads influence
the overall system dynamics. New control laws or several
tuning iterations may thus be required for guaranteeing high
motion-control performance. In order to overcome these
shortcomings, the robust control of robot manipulators has
attracted researchers for decades. A survey that describes
works until the early ’90s can be found in [2] and more recent
contributions are [3]–[9], among others. Nowadays, effective
classical and more recent approaches are well documented
in textbooks such as [10]–[13].

Known robust control methods for robot manipulators that
guarantee tracking, where the error asymptotically converges
to zero, rely on discontinuous control laws that are often
difficult to implement in practice [14], [15]. In fact, the re-
sulting control laws lead to an undesired chattering behaviour
of the torque command. A recent contribution that solves
a long-standing inconsistency in the design of the robust
controllers for classical approaches is in [9], where a more
reasonable and effective design methodology is proposed.
The resulting controller, however, is still discontinuous.
Smoothed versions of such controllers can be implemented
to guarantee continuity of the control law as presented in
[15]. The consequence is that the asymptotic convergence
to zero of the tracking error is lost. As an alternative,
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the authors of [15] develop a theory for practical stability
of uncertain systems introducing the concept of uniform
ultimate boundedness of the trajectories that has been widely
adopted in successive literature. One of the most effective
methods that incorporates this smoothing idea is [3] that does
not suffer from the inconsistencies highlighted by [9] and
its performance has been experimentally evaluated in [16].
A remarkable approach for robust control that is not based
on the smoothing of a discontinuous control law is in [5],
where authors present the r-α tracking controller, which is
a simple controller that allows tracking trajectories with a
user-defined rate of convergence α of the tracking error to a
specified tolerance r.

Although the research on robust control for rigid robot
manipulators is relatively mature, we identify limitations
that may be crucial for the practical implementation of
existing methods. In practice, these approaches may suffer
from a difficult estimation of bounds of disturbances due to
imperfect knowledge of the system dynamics. These bounds
typically depend on the desired trajectory and the state of the
manipulator. This aspect is also highlighted in [3], where a
controller that exploits the property of linear parametrization
of the dynamical model [11, Sec. 7.2] is proposed to address
this limitation. However, that controller is based on the idea
of smoothing a discontinuous control law as proposed in
[15]. A limitation appears when a specific tracking perfor-
mance is required. In fact, as also suggested in [10], a scalar
tuning parameter for smoothing the control law should be
selected large enough to avoid the chattering phenomena
which is typical of discontinuous control laws, but enlarging
this parameter also enlarges the bounds that enclose the
trajectories, making the tuning process difficult. An approach
that takes inspiration from the above mentioned method is
presented in [12, Sec. 2.4.2]. In that case, the controller does
not approach a discontinuous control law when increasing the
required tracking performance. Both discussed approaches in
[3] and [12, Sec. 2.4.2] do not directly consider an external
disturbance and, in contrast to our work, are not suitable for
ultimate robust performance control with unknown bounds
of the input disturbance. Additionally, since they exploit
the property of the linear parametrization of the dynamical
model, they require to obtain and compute the regressor
matrix, which is not a requirement of our method.

We propose a novel approach for robust control of rigid
robot manipulators which guarantees that a user-defined
tracking performance is ultimately met even though the
dynamical parameters of the system are uncertain and input
disturbances with unknown bounded norm are considered.



Our method is based on passivity-based control and uses
interval arithmetic to overcome the difficulties for estimat-
ing the bounds in other approaches with the additional
advantage that our design can be easily automated. This
latter feature is particularly valuable for on-the-fly controller
synthesis, which is especially useful for modular robots
whose configuration frequently changes [17]. In contrast to
our proposed approach, the robust controllers proposed so
far which require the estimation of uncertainty bounds of the
disturbances, have no formal guarantees of their properties
since this estimation is not over-approximative.

The rest of this paper is structured as follows. In Sec. II we
describe the control problem for ultimate robust performance
control in detail. Our proposed approach is presented in Sec.
III. Simulation results are shown and discussed in Sec. IV,
followed by the conclusion in Sec. V.

II. PROBLEM DESCRIPTION

We consider a rigid robot manipulator composed of N
serially connected links with uncertain dynamical parame-
ters. For brevity of notation we omit time dependance of
time-varying variables hereafter, except when we want to
stress time dependance particularly. Let q∈R

N be the vector
of generalized coordinates, u ∈ R

N the vector of the joint
forces/torques, d ∈ R

N the input disturbance vector and

∆ = (m1, . . . , mN , cx,1, . . . , cz,N , Ixx,1, . . . , Izz,N)
T ,

the vector of the parameters of the links where the mass, the
coordinates of the center of mass and the inertia tensor of
the ith link are respectively denoted by

mi, ci =





cx,i

cy,i

cz,i



 and Ii =





Ixx,i −Ixy,i −Ixz,i

∗ Iyy,i −Iyz,i

∗ ∗ Izz,i



 .

The mathematical model that describes the dynamics of the
considered system can be written as follows (see [11, Ch. 7]):

M(q,∆)q̈+C(q, q̇,∆)q̇+g(q,∆) = u+d, (1)

where M(q,∆)∈R
N×N is the symmetric and positive definite

inertia matrix, C(q, q̇,∆)q̇ ∈ R
N is the vector of Corio-

lis and centrifugal terms, and g(q,∆) ∈ R
N the vector of

gravity terms. It is important to recall that, with a suitable
factorization of C(q, q̇,∆) ∈ R

N×N , the matrix N(q, q̇,∆) =
Ṁ(q,∆)−2C(q, q̇,∆) is skew-symmetric, and therefore:

xT N(q, q̇,∆)x = 0, ∀x ∈ R
N . (2)

We assume that: a) the model structure is known, b) a
nominal vector of dynamical parameters ∆0 is available, c)
the amount of the uncertainty of each component of ∆ is
known, and d) the input disturbance has bounded norm βd

(we consider both cases of known and unknown bound βd).
All norms in this work are Euclidean norms. Throughout
this paper we do not consider friction for simplicity and
without loss of generality as it becomes evident later. A
central definition follows, that allows us to specify in detail
the control problem we face.

Definition 1 (Ultimate robust performance): Let qd ∈R
N

be the desired trajectory in joint space, q ∈R
N the vector of

the generalized coordinates and ε > 0 a desired upper bound
of the trajectory tracking error norm. A controlled robot
manipulator with uncertain dynamics has ultimate robust
performance if there exists a finite time t1 ≥ 0 such that:

‖qd −q‖< ε , ∀ t ≥ t1. (3)
When ε is unspecified we say that the solutions are uniformly
ultimately bounded with the same meaning and terminology
of [15]. Within the previous assumptions, we face the prob-
lem of designing a continuous control law for the system
of (1) that provides ultimate robust performance for a user-
defined ε > 0.

III. PROPOSED METHOD

As previously introduced, our proposed control approach
is based on results from passivity-based control. Therefore,
the control command is computed using the nominal model
information and an additional term ν ∈ R

N that enhances
robustness (see e.g. [13]):

u = M(q,∆0)q̈a +C(q, q̇,∆0)q̇a +g(q,∆0)−ν, (4)

where ∆0 denotes the vector of the nominal dynamical
parameters and

q̇a = q̇d +Krq̃, q̃ = qd −q,

q̈a = q̈d +Kr ˙̃q, ˙̃q = q̇d − q̇,

with Kr being a diagonal positive definite matrix of proper
dimension. Applying the control law of (4) to the system of
(1), results after rearrangement in (see [12, Sec. 2.4.2]):

M(q,∆)ṙ+C(q, q̇,∆)r = ν +w(q, q̇, q̇a, q̈a,d,∆), (5)

where
r = ˙̃q+Krq̃, (6)

and w(q, q̇, q̇a, q̈a,d,∆) is a disturbance vector due the exter-
nal disturbance inputs and due to the imperfect knowledge
of the system dynamics. This term can be expressed as

w(q, q̇, q̇a, q̈a,d,∆) = M̃(q,∆)q̈a+

C̃(q, q̇,∆)q̇a + g̃(q,∆)−d, (7)

where

M̃(q,∆) = M(q,∆)−M0(q), M0(q) = M(q,∆0),

C̃(q, q̇,∆) = C(q, q̇,∆)−C0(q, q̇), C0(q, q̇) = C(q, q̇,∆0),

g̃(q,∆) = g(q,∆)−g0(q), g0(q) = g(q,∆0).

For now we assume a known bound on the input distur-
bance that will be relaxed later. Since we also know the
amount of the uncertainty of the properties of each link,
we can bound them by multidimensional intervals that are
defined as follows.

Definition 2 (Multidimensional interval): A multidimen-
sional interval is a set of real numbers defined as

[x] := [x,x], x ∈ R
n, x ∈ R

n, xi ≤ xi, for all i = 1, . . . , n.



We denote the scalar case by x instead of x, and we use x
and x to denote the infimum and supremum of an interval
[x], respectively.

It is now possible to define the interval of uncertain values
of the mass, the inertia tensor and the coordinates of the
center of mass of the ith link as [mi], [Ii] and [ci], respectively.
It is worth noting that uncertain payload parameters can be
included in those of the last link. The interval vector of the
uncertain parameters can be written as:

[∆] = ([m1] . . . , [mN ], [cx,1], . . . , [cz,N ], [Ixx,1], . . . , [Izz,N ])
T .

Since our method is based on the on-line evaluation of an
interval-valued function, we provide the following definition.

Definition 3 (Interval-valued function): Given z : Rn →
R

m, its interval evaluation over a set [x] is defined as:

z([x]) := {z(x) | x ∈ [x]}.
We are now ready to state that for d ∈ [d] and ∆ ∈ [∆]:

w(q, q̇, q̇a, q̈a,d,∆)⊆ [Φ] = w(q, q̇, q̇a, q̈a, [d], [∆]), (8)

where the inclusion relation of (8) can be inferred straight-
forwardly form Def. 3. We measure the size of [Φ] using the
following definition.

Definition 4 (Measure of the worst-case disturbance):
Let IR

N be the set of all real interval vectors and
ρ : IRN → R

N . We define the measure of the worst-case
disturbance [Φ] as:

ρ([Φ]) = max
(

|Φ|, |Φ|
)

, (9)
where the max(·) operator is applied element-wise. For later
derivations, we require continuity of ρ([Φ]), which is shown
in the following proposition.

Proposition 1: Let q, q̇, q̇a, q̈a be continuous over time,
then for all [d] ∈ IR

N and [∆] ∈ IR
M (where M is the

dimension of ∆), the measure of the worst-case disturbance
ρ([Φ]) is continuous over time.

Proof: Let us recall that [Φ] = w(q, q̇, q̇a, q̈a, [d], [∆])
(see (8)). For a given q, q̇, q̇a, q̈a, we can choose d∗ ∈ [d] and
∆∗ ∈ [∆] such that Φ is maximal (or Φ is minimal). Since q,
q̇, q̇a, q̈a are assumed to be continuous, w(q, q̇, q̇a, q̈a,d∗,∆∗)
is continuous guaranteeing in turn continuity of |Φ| (or |Φ|).
Since the max operator between two continuous functions
preserves continuity, ρ([Φ]) is continuous.

Lemma 1: For all q, q̇, q̇a, q̈a ∈ R
N , d ∈ [d] and ∆ ∈ [∆]

ρi([Φ])≥ wi(q, q̇, q̇a, q̈a,d,∆),

where the subscript i denotes the ith component of the
respective vectors.

Proof: We prove by contradiction. Let us sup-
pose that ρi([Φ]) < wi(q, q̇, q̇a, q̈a,d,∆). Then we have that

max
(

|Φi|, |Φi|
)

<wi(q, q̇, q̇a, q̈a,d,∆) which shows the con-

tradiction since by definition of [Φi], we have that Φi ≤
wi(q, q̇, q̇a, q̈a,d,∆)≤ Φi, for all d ∈ [d] and ∆ ∈ [∆].

The following theorem introduces the use of ρ([Φ]) for
feedback control and allows us to avoid the difficult estima-
tion of the uncertainty bounds as required in previous work
mentioned in Sec. I.

Theorem 1: Given two positive increasing functions κ(t)
and ϕ(t) with κP ≥ 1 and ϕP ≥ 1 as their respective
minimum, the trajectories r in (5), are uniformly ultimately
bounded when using the feedback control law

ν =−
(

κ(t)‖ρ
(
[Φ]

)
‖+ϕ(t)

)

r. (10)
Proof: Let us consider the Lyapunov candidate for

(5) as:

V (r) =
1
2

rT M(q,∆)r, (11)

which is positive for all r 6= 0 since the inertia matrix is
positive definite for all q. The derivative of this function can
be written as

V̇ (r) = rT M(q,∆)ṙ+
1
2

rT Ṁ(q,∆)r
(5)
= rT

(

ν +w(q, q̇, q̇a, q̈a,d,∆)
)

+
1
2

rT
(

Ṁ(q,∆)−2C(q, q̇,∆)
)

r

(2)
= rT ν + rT w(q, q̇, q̇a, q̈a,d,∆). (12)

Considering (12) and substituting (10), we obtain

V̇ (r) =−ϕ(t)‖r‖2 −κ(t)‖ρ
(
[Φ]

)
‖‖r‖2

+ rT w(q, q̇, q̇a, q̈a,d,∆)
≤−ϕP ‖r‖2

−κP ‖ρ
(
[Φ]

)
‖‖r‖2 +‖r‖‖w(q, q̇, q̇a, q̈a,d,∆)‖

Lem.1
≤ −ϕP ‖r‖2

−κP‖ρ
(
[Φ]

)
‖‖r‖2 +‖r‖‖ρ

(
[Φ]

)
‖

︸ ︷︷ ︸

=:h1(r)

. (13)

Now, by factoring out ‖r‖ in h1(r), it is easy to see that
for ‖r‖ ≥ 1

κP
we obtain V̇ (r) < 0 since h1(r) ≤ 0. The rest

of the proof is inspired by [12, Sec. 2.4.2]. Let us consider
without loss of generality that the state lies outside a ball
Bκ−1

P
of radius 1

κP
, at t = 0. Since V̇ (r)< 0, the trajectories

will converge to the ball and there will be a finite time t1 such
that ‖r(t1)‖= 1

κP
. Until the trajectories reach the edge of the

ball, h1(r)≤ 0 and thus we can write that V̇ (r)≤−ϕP ‖r‖2

from (13). Hence, the following holds

V (r(t1))−V (r(0))≤
∫ t1

0
−ϕP

κ2
P

dt =−t1
ϕP

κ2
P

. (14)

Let us now consider the following property of the inertia
matrix:

λm ‖x‖2 ≤ xT M(q,∆)x ≤ λM ‖x‖2, ∀x ∈ R
N ,

where λm = λmin(M(q,∆))> 0 and λM = λmax(M(q,∆))< ∞
represent the minimum and maximum eigenvalue of the
matrix M(q,∆), respectively. Recalling (11), we can write
that

∀t : γ1(r)≤V (r)≤ γ2(r), (15)

where γ1(r) = 1
2 λm ‖r‖2 and γ2(r) = 1

2 λM ‖r‖2. Since
V (r(0)) ≤ γ2(r(0)) and V (r(t1)) ≥ γ1(r(t1)), using (14) we



have that

γ1(κ−1
P )≤V (r(t1))≤ γ2(r(0))− t1

ϕP

κ2
P

,

and we can now show that t1 is finite given that κP is finite
as

t1 ≤
1
2

λM κ2
P ‖r(0)‖2 −λm

ϕP
.

Once the trajectories entered the ball Bκ−1
P

they could
leave it at a finite time t2 since we have no guarantee that
V̇ (r) < 0. Let us assume that they do leave the ball, for
t > t2 the same reasoning we presented for 0 ≤ t ≤ t1 applies
and we can therefore claim that there will be a finite t3 at
which trajectories re-enter Bκ−1

P
. Considering (15) and the

time interval for t2 < t ≤ t3 we have that

1
2

λm ‖r‖2 ≤V (r(t))<V (r(t2))≤
1
2

λM

κ2
P

,

which let us conclude that the trajectories are ultimately
bounded by

‖r‖ ≤ 1
κP

√

λM

λm
.

Corollary 1: Given that the trajectories r are uniformly
ultimately bounded, the overall controller ultimately reaches
any desired tracking performance with selection of large
enough gains of the matrix Kr.

Proof: This can be immediately seen observing (6)
and considering r as the bounded input. In fact, with Kr

being diagonal and positive definite, this equation represents
a set of first-order linear systems that asymptotically reach
|q̃i| ≤ |ri|

Kr,i
for each axis i [12, Proof of Th. 2.3].

Remark 1: Contrary to the robust controllers based on
[15], such as [3], the tracking performance can be increased
without approaching a discontinuous feedback control law
using our method by increasing ϕP, κP and/or the gains
of Kr. In principle, by increasing the gains the tracking
error can be made arbitrarily close to zero. However, in
practice there will be an upper limit of these gains due to
the finite sampling rate of real applications. The maximum
allowed sampling rate as well as actuator limitations have
therefore a direct consequence on the maximum allowed
tracking precision.

Since the trajectories of the dynamical system of (5) are
uniformly ultimately bounded under the continuous control
law of (10), we can now formulate the following theorem that
allows us to guarantee ultimate robust performance without
the need for finding specific large enough gains of Kr and
the knowledge of λM , λm. Additionally, we also relax the
assumption that the bound on the norm of the external
disturbance (βd) is known.

Theorem 2: The system (1) with the continuous feedback
control law composed of (4), (10) and

ϕ(t) =
(

ϕP +ϕI

∫ t

0
f (‖q̃‖)dt

)

,

κ(t) =
(

κP +κI

∫ t

0
f (‖q̃‖)dt

)

,

where κI , ϕI > 0, and

f (‖q̃‖) =
{

0 if ‖q̃‖< ε ,
‖q̃‖ otherwise,

has ultimate robust performance for any user-defined tracking
precision ε > 0 and gain matrix Kr being diagonal and
positive definite.

Proof: (sketch of proof) Assuming that the bound of
the external disturbance is not known, we cannot include
it in ρ([Φ]). In this case, for computing ρ([Φ]) based on
(8) we use [Φ] = w(q, q̇, q̇a, q̈a,0, [∆]). Therefore, the proof
of the previous theorem for ultimate boundedness of the
trajectories r does not directly hold. Considering (12) and
noticing that w(q, q̇, q̇a, q̈a,d,∆) = w(q, q̇, q̇a, q̈a,0,∆)− d,
the derivative of the Lyapunov candidate can be written in a
slightly different form:

V̇ (r) =−ϕ(t)‖r‖2 −κ(t)‖ρ
(
[Φ]

)
‖‖r‖2

+ rT w(q, q̇, q̇a, q̈a,0,∆)− rT d

≤−ϕ(t)‖r‖2 −κ(t)‖ρ
(
[Φ]

)
‖‖r‖2

+‖r‖‖w(q, q̇, q̇a, q̈a,0,∆)‖+‖r‖βd

Lem.1
≤ −ϕ(t)(1−ξ )‖r‖2

−
(

ϕ(t)ξ +κ(t)‖ρ
(
[Φ]

)
‖
)

‖r‖2 +
(

‖ρ
(
[Φ]

)
‖+βd

)

‖r‖
︸ ︷︷ ︸

=:h2(r)

,

(16)

where ξ (introduced for simplifying the proof) is any scalar
such that 0 < ξ < 1. Now, by factoring out ‖r‖ in h2(r), it
is easy to see that h2(r)≤ 0 for

‖r‖ ≥ ‖ρ
(
[Φ]

)
‖+βd

ϕ(t)ξ +κ(t)‖ρ
(
[Φ]

)
‖ . (17)

Considering the right-hand side of (17), we have that

∀t :
‖ρ

(
[Φ]

)
‖+βd

ϕ(t)ξ +κ(t)‖ρ
(
[Φ]

)
‖ ≤ max

( βd

ϕ(t)ξ
,

1
κ(t)

)

≤ max
( βd

ϕP ξ
,

1
κP

)

.

Assuming that βd is finite, it is now possible to claim
that ultimate uniform boundedness of the trajectories of
(5) follows as in the proof of the previous theorem once
the necessary changes have been made. We proceed by
contradiction. Let us suppose that

6 ∃ t1, ∀ t, t > t1 : ‖q̃‖< ε . (18)

Because of this assumption, the increasing functions κ(t)
and ϕ(t) grow for all t and consequently the maximum
value of ‖r‖, such that V̇ (r) is negative, decreases because

h2(r)≤ 0 for ‖r‖ ≥ max
(

βd
ϕ(t)ξ ,

1
κ(t)

)

. Then, there will be a

large enough t2 > t1 such that for t ≥ t2, max
(

βd
ϕ(t)ξ ,

1
κ(t)

)

is
small enough to guarantee that the trajectories r ultimately
stay within a ball small enough such that ‖q̃‖ < ε for any
selection of the gains Kr (recalling the idea of Cor. 1), which
contradicts assumption (18).



TABLE I

DYNAMICAL PARAMETERS OF THE LINKS.

Link 1 Link 2 Uncertainty
mi, Mass (kg) 10 5+δm 0 ≤ δm ≤ 5

Ii, Inertia (kgm2) 10/12 5/12+δI 0 ≤ δI ≤ 15/12
lci, Center of mass (m) 0.5 0.5+δc 0 ≤ δc ≤ 0.025

TABLE II

SIMULATION SCENARIOS.

Input Sampling Required
disturbance time performance

(Nm) (s) (rad)
Scenario 1 (ideal) none none ‖q̃‖< 10−3

Scenario 2 ‖d‖ ≤ 10 10−4 ‖q̃‖< 10−2

Scenario 3 ‖d‖ ≤ 10 10−3 ‖q̃‖< 10−2

Remark 2: The implementation of our proposed controller
can be easily automated since there is no need for a proce-
dure for estimating the uncertainty bounds, e.g. the measure
of the worst-case disturbance is computed automatically
using interval arithmetic. Additionally, thanks to the second
theorem, accurate tuning of Kr is not required since the
increase of κ(t) and ϕ(t) automatically meets the tracking
performance. Although this is useful by itself, it additionally
opens up the possibility for on-the-fly controller design of
modular and reconfigurable robots, which is possible by
extending [17].

IV. SIMULATION RESULTS

In this section, we present and discuss simulation results
of the proposed control approach and a comparison with the
method of Zenieh and Corless [5] that is also suitable for
ultimate robust performance control. The simulations have
been performed using MATLAB and Simulink R2015a and
the Interval Laboratory [18] for interval arithmetic.

A. RR Planar Manipulator

We consider an exemplary two-link planar robot manipu-
lator with revolute joints that moves in the vertical plane and
thus is subject to gravity. Such a system is a suitable case
study for illustrating control laws and its dynamical model is
shown in fundamental textbooks such as [10, Sec. 7.4], [11,
Sec. 7.3]. The graphical representation of this system as well
as the components of the dynamical model with a proper
factorization of the matrix C(q, q̇,∆) can be found in [10,
Sect. 7.4], which we do not replicate here for space reasons.
We assume perfect knowledge of the dynamical parameters
of the first link while uncertainty is assumed for the second
one. The nominal values and the amount of the uncertainty
is assumed as in [5]. The dynamical parameters of the links
are collected in Tab. I. For completeness, we also perform
simulations including sampling effects using zero-order hold
to simulate more realistic scenarios. Uniformly distributed
input disturbance is considered whose bound is unknown to
demonstrate our method. The presented simulations include
one ideal case (scenario 1) where no sampling effects and
no input disturbances are considered and two additional

time (s)

q d
(t
)

(r
ad

)

0

0

1

1
-1

2 3 4 5 6 7 8

Fig. 1. Test trajectory. The first component of qd(t) is shown in light-gray
color and the second component in black.

scenarios (see Tab. II), where we consider input disturbance
and sampling rates of 10kHz and 1kHz (scenario 2 and
scenario 3, respectively). For simulating all scenarios, we
consider that the real (unknown for control design purposes)
dynamical parameters of the second link are: m2 = 10 kg,
I2 = 20/12 kgm2 and lc2 = 0.525 m. The simulations are
performed using the following test trajectory:

qd(t) =
(π

4
sin(π t/2) sin(π t) − π

8
sin(π t/2) sin(π t)

)T
,

where qd(0) = 0 and q̇d(0) = 0 (see Fig. 1). Simulation
results of our proposed control approach are first presented,
successively we compare its performance with the r-α track-
ing controller [5].

B. Simulations With Our Proposed Robust Controller

We show the behaviour of our proposed controller in Fig. 2
and Fig. 3, considering the first scenario of Tab. II for the
following initial conditions:

IC1 :=

{
q(0) = (0 0)T

q̇(0) = (0 0)T ,
IC2 :=

{
q(0) = 2ε (1 −1)T

q̇(0) = (0 0)T .

The gains of the controller for all the simulations shown in
this work have been selected as:

κP = 2, κI = 1, Kr =
3√
ε

I, ϕP = 1, ϕI = 106.

The simulation results of Fig. 2 and Fig. 3 show that the
ultimate robust performance requirement considering zero
and non-zero initial conditions are met. Continuity of the
control law can be clearly seen by observing the evolution
in time of the torque command, that in both cases is chatter-
free. The simulation results with the other two scenarios are
presented with the comparison in Sec.IV-D.

C. The r-α Tracking Controller

We recall the essence of the control approach proposed
by Zenieh and Corless in [5]. In this case, the resulting
controller is remarkably simple. After a close study of the
uncertain model components for obtaining proper uncertainty
bounds, the control law can be implemented without online
computation of the model terms. The proposed controller
guarantees tracking of a desired trajectory with a prescribed
rate of convergence α within a tolerance r. Since the
tolerance r can be selected by the user, the approach is
suitable for ultimate robust performance control. Applying
the approach to the considered case, the controller design
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Fig. 2. Simulation with our proposed controller for scenario 1 and IC1.

process starts from the computation of the uncertainty bounds
βi for i = 0, . . . ,3, for all q, q̇, d ∈ [d] and ∆ ∈ [∆] such that:

λmin (M(q,∆))≥ β0 ≥ 0, λmax (M(q,∆))≤ β1,

‖C(q, q̇,∆)‖ ≤ β2‖q̇‖, ‖g(q,∆)−d‖ ≤ β3(q).

For the estimation of β2, as proposed in [5], we consider that

β2 ≥
√

∑N
i=1 ‖Li(q,∆)‖2, where Li(q,∆) is a square matrix

such that for y := C(q, q̇,∆)v, yi = q̇T Li(q,∆)v. To obtain an
estimation of the bounds we implement a sampling procedure
for 0 ≤ qi ≤ 2π , −βd ≤ di ≤ βd for i = 1,2, 0 ≤ δm ≤ 5,
0 ≤ δI ≤ 15/12 and 0 ≤ δc ≤ 0.025 using 105 samples. The
procedure gives the following bounds:

β0 = 0.86, β1 = 34.27, β2 = 9.95, β3 = 210.65 .

Since these bounds are not formally determined, the proper-
ties of the r-α tracking controller are not formally guaran-
teed. A method guaranteeing these values is not reported in
the literature to the best knowledge of the authors. Once the
bounds are computed, an additional tuning parameter (ε , that
we replace by η because it interferes with our notation), and
two symmetric positive definite matrices (Λ, Q) are selected
such that

λmin (Λ)≥ α, λmin (Q)≥ α β1, η ≤ (α r)2λmin (Q) β0/β1.

The r-α tracking controller can then be easily implemented
as in [5]. For the simulations shown in this work the
following parameters have been used:

r = 10−2, α = 1, Λ = I, Q = 35I, η = 7 ·10−5.

D. Comparison and Discussion

We test the two controllers using simulations for the more
realistic scenarios (scenario 2 and 3) compared to the first
one. The results are shown in Fig. 4 and Fig. 5. As it can be
inferred from Fig. 4, the r-α tracking controller is conser-
vative for the specified tracking performance behaving as a
high-gain controller and letting the tracking error become far
smaller than required. As a consequence, as soon as sampling
effects are considered, it leads to a control command that
presents the typical problem of discontinuous controllers
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Fig. 3. Simulation with our proposed controller for scenario 1 and IC2.

(input chattering). It should be noted that an experimental
evaluation of the r-α tracking controller was performed with
a direct drive RR planar robot in [16] where this effect is not
noticed. However, the system considered in this work has
more uncertainty and the resulting uncertainty bounds are
thus larger. Additionally, gravity in [16] is not considered
since the manipulator moves in the horizontal plane. This
also has a negative impact on the conservativeness of the
r-α controller in our scenarios. A system equivalent to the
one that we consider is assumed in the work where the r-
α tracking controller is proposed [5]. However, simulation
results only for ideal conditions are presented in that paper.

In contrast to the r-α tracking controller our proposed
control law shows less conservatism, since the performance
remains ultimately closer to the actual requirement. Most
significantly, while the performance of the r-α tracking
controller is greatly deteriorated in scenario 2 and 3, our
controller has a remarkable insensitivity to the decrease of
the sampling rate while still meeting the ultimate robust
performance requirement.

Our proposed method solves the discussed limitations
of existing robust controllers at the price of an increased
computational complexity for the on-line computation of
the measure of the worst-case disturbance, using interval
arithmetic. To provide a rough estimation of the compu-
tational complexity, we estimate the average time required
for computing the measure of the worst-case disturbance in
these simulations to be µ ≈ 2.5ms with standard deviation
σ ≈ 0.215ms. The computations are run using MATLAB
R2015a on a 2.7GHz Intel Core i7 processor with 16GB 1600
MHz DDR3 RAM running Windows 7, 64bit. It is important
to notice that no particular attention has been paid to the re-
duction of the computational complexity for operations with
interval arithmetic (e.g. parallelization and implementation
in C/C++ code) since this was not the purpose of this paper
and standard functions of the Interval Laboratory [18] in
MATLAB scripts have been used. However, when technically
realized, operations with interval arithmetic do not require
considerable computational overhead with respect to standard
operations as shown in Tab. 5 of [19].
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Fig. 4. Comparison of our proposed control law with the r-α tracking
controller for scenario 2 and IC2.

V. CONCLUSION

An effective method for robust performance control of
rigid robot manipulators is presented that allows one to
overcome impractical aspects of previous methods: the dis-
turbance bound estimation is not required thanks to the use of
interval arithmetic, and the input chattering is avoided since
our controller does not directly approach a discontinuous
control law when increasing the desired tracking perfor-
mance. Our method also guarantees the robust performance
requirement to be met when considering input disturbance
with unknown bounded norm. Furthermore, the introduction
of the measure of the worst-case disturbance estimation and
Theorem 2 makes the derivation of the robust performance
control law easy to automate and enables the application to
automatic controller design methods, which are especially
useful for modular and reconfigurable robot manipulators.
In these approaches tuning phases should be avoided or re-
duced, to provide easy commissioning after re-configuration.
Simulations also show that our controller is superior to the r-
α tracking controller when sampling effects are considered.
The application on a real and more general robotic arm will
be subject of future work.
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