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Abstract – Fuzzy quantifiers like ‘almost all’ and ‘about
half ’ abound in natural language. They are used for de-
scribing uncertain facts, quantitative relations and pro-
cesses. An implementation of these quantifiers can provide
expressive and easy-to-use operators for aggregation and
data fusion, but also for steering the fusion process on a
higher level through a safe transfer of expert-knowledge ex-
pressed in natural language. However, existing approaches
to fuzzy quantification are linguistically inconsistent in
many common and relevant situations. To overcome their
deficiencies, we developed a new framework for fuzzy quan-
tification, DFS. We first present the axioms of the theory,
intended to formalize the notion of ‘linguistic adequacy’.
We then argue that the models of the theory are plausible
from a linguistic perspective. We present three computa-
tional models and discuss some of their properties. Finally
we provide an application example based on image data.

Keywords: Fuzzy quantifiers, linguistic data fusion,
weighted aggregation.

1 Introduction
There are many statistical approaches to data fusion

available, some of them have been applied to real-world
tasks with great success (e.g. [1, 2]). They suffer, however,
from two main drawbacks: (a) statistical models are nor-
mally hard to establish and (b) human knowledge is hard to
incorporate into the models and/or the fusion process. Nat-
ural language (NL) holds the potential to express this kind
of human knowledge. NL would be an ideal candidate for
modeling and steering the fusion process. Firstly, knowl-
edge about the data sources (sensors etc.) can be expressed
in NL statements; e.g. by describing the conditional relia-
bility of a sensor throughif -then rules. The fusion criterion
itself can also be expressed in NL. However, an interpre-
tation of NL statements requires appropriate semantic de-
vices. NL concepts (expressed by nouns, verbs, adjectives)
often lack clear boundaries. A practical model of such non-
idealized concepts is provided by linguistic terms of fuzzy
logic. In addition, NL quantifiers likealmost all or many

Conjunctionk1 and . . . and km
corresponds to:all criteriak1, . . . , km are satisfied
Disjunctionk1 or . . . or km
corresponds to:at least onecriterionk1, . . . , km is satisfied
Fuzzy quantificatioñQ(W,G)

corresponds to:̃Q important criteria aresatisfied
Q̃ ∈ {almost all,many, about ten, . . . }: fuzzy quantifier
W : degree of importance,G: degree of validity

Table 1:Fuzzy quantifiers and weighted aggregation

must be dealt with, which are frequently used to express ap-
proximate aggregation. Here we will focus on fuzzy quan-
tifiers, because these are the tools of fuzzy logic that model
linguistic fusion operators.
Let us recall some concepts of fuzzy set theory. Afuzzy
subsetX of a base setE 6= ∅ assigns to eache ∈ E a mem-
bership gradeµX(e) ∈ [0, 1]. An n-ary fuzzy quantifier̃Q
onE assigns an interpretatioñQ(X1, . . . , Xn) ∈ [0, 1] to
all fuzzy subsetsX1, . . . , Xn of E. Table 1 illustrates key
properties that make fuzzy quantifiers suited for informa-
tion fusion. Assuming a setE of criteria, and fuzzy sub-
setsW of importance andG of their fulfillment grades,
each two-place quantifier̃Q defines a weighted aggrega-
tion criterionQ̃ important criteria are satisfied, expressed
asQ̃(W,G), whereQ̃ is, for example,almost all etc.
This approach provides a natural account of weighted ag-
gregation. It relies on linguistic fusion operators which are
familiar to all users of information systems, and which can
be applied for technical fusion purposes in the same way as
in everyday language.
Apparently, the success of this approach is highly depen-
dent on the model of quantification used, which must be lin-
guistically plausible for the fusion results to convey the in-
tended semantics. However, an evaluation of approaches to
fuzzy quantification for their linguistic adequacy, has pro-
duced negative results in all cases [3]. The known models
– i.e. theΣ-Count approach [4], FG-Count approach [4],
OWA approach [5], and FE-Count approach [6] – are ei-
ther too weak (cannot model the interesting cases) and/or
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Figure 1: Results of OWA approach for criterionAt least 60 percent

of Southern Germany are cloudy.(a) Fuzzy region ‘Southern Germany’,

relevant pixels white; (b) desired result:1, OWA: 0.1; (c) desired result:

0, OWA: 0.6. The results show an undesirable dependency on cloudiness

grades in regions III and IV, which do not belong to Southern Germany at

all.

implausible from linguistic considerations. For an exam-
ple in which one of the approaches fails, consider Fig. 1,
which depicts a result of OWA with importance qualifica-
tion [5]. More counter-examples, covering all approaches,
can be found in [3]. It appears that non-monotonic quanti-
fiers (about half of the criteria are satisfied) are notoriously
difficult, as well as the important case of multi-place quan-
tification, e.g. to handle the weights inalmost all important
criteria are satisfied.

2 The linguistic theory of fuzzy quan-
tification

In order to profit from the knowledge of linguists, we de-
cided to discuss fuzzy quantifiers in the framework of the
linguistic theory of quantification. The Theory of Gener-
alized Quantifiers [7] (TGQ) rests on a simple but expres-
sive model of two-valued quantifiers, which provides a uni-
form representation for absolute and proportional quanti-
fiers, unrestricted and restricted quantification (i.e. involv-
ing importances), and even for multi-place quantifiers like
moreA′s thanB′s areC ′s, composite quantifiers likemost
A’s andB’s areC ’s orD’s, and non-quantitative examples
like Johnor almost all marriedX ’s areY ’s. Nonetheless,
TGQ was not developed with fuzzy sets in mind. Hence
all quantifiers and argument sets involved (e.g. weights in
importance qualification) must be crisp. TGQ is therefore
not (directly) suited for real-world applications like linguis-
tic fusion, which need to handle imperfect data and non-
idealized NL concepts. In order to incorporate the notion of
fuzziness, we identify a number of cornerstones of a prin-
cipled theory:

1. Improved Representation throughn-ary semi-fuzzy
quantifiers
Fuzzy quantifiers are often hard to define because the
familiar concept of cardinality of crisp sets is not ap-
plicable to their fuzzy arguments. We propose a sim-

plified concept which embeds all quantifiers of TGQ:
An n-ary semi-fuzzy quantifieronE assigns an inter-
pretationQ(Y1, . . . , Yn) ∈ [0, 1] to all crispsubsets of
E. Because semi-fuzzy quantifiers accept crisp input
only, they are easier to define than fuzzy quantifiers.
The usual crisp cardinality is applicable to the argu-
ments and can be used to define the interpretation of
semi-fuzzy quantifiers.

2. A quantifier fuzzification mechanism(QFM) F as-
signs to each semi-fuzzy quantifierQ a fuzzy quanti-
fierF(Q) with the same arity and base set; it hence ex-
tends the quantifier to fuzzy arguments. An adequate
QFM should preserve all properties of linguistic rele-
vance and should comply with important constructions
on (semi-)fuzzy quantifiers. We enforce this by stating
a set of axioms for ‘admissable’ QFMs, theDFS ax-
ioms.

3. We should findmodels of the axioms, i.e. ‘reasonable’
choices ofF ;

4. Efficient algorithmsmust be developed for implement-
ing the resulting operators.

Following these requirements, we have developed an ax-
iomatic theory of fuzzy quantification known as ‘DFS the-
ory’. We first present the 6 axioms that are required:

1. Correct generalisation, i.e.F(Q)(X1, . . . , Xn) =
Q(X1, . . . , Xn) wheneverX1, . . . , Xn are crisp (the
condition can be restricted ton ≤ 1).
Rationale: a semi-fuzzy quantifierQ has crisp argu-
ments only, whileF(Q) accepts fuzzy sets as well. If
all arguments are crisp,Q andF(Q) must match.

2. Membership assessment.The two-valued quantifier
defined byπe(Y ) =1 if e ∈ Y andπe(Y ) = 0 oth-
erwise for crispY , has the obvious fuzzy counterpart
π̃e(X) = µX(e) for fuzzy subsets ofE. We require
thatF(πe) = π̃e.
Rationale: Membership assessment can be modelled
through quantifiers. For eache ∈ E, we define a two-
valued quantifierπe which checks ife is present in
its argument. Similarly,̃πe returns to which gradee
is contained in its argument. It is natural thatπe be
mapped tõπe, which plays the same role in the fuzzy
case.

3. Dualisation. We require thatF preserves dualisation
of quantifiers, i.e.

F(Q′)(X1, . . . , Xn) = ¬̃ F(Q)(X1, . . . , Xn−1, ¬̃Xn)

holds for all fuzzy argumentsXi, provided that
Q′(Y1, . . . , Yn) = ¬̃Q(Y1, . . . , Yn−1,¬Yn) for all
crispYi.
Rationale: Obviously, a phrase likeall X ’s are Y ’s



should have the same result asit is not the case that
some X’s are not Y’s.

4. Union. We require thatF preserves unions of argu-
ments, i.e.

F(Q′)(X1, . . . , Xn+1)

= F(Q)(X1, . . . , Xn−1, Xn ∪̃Xn+1)

wheneverQ′(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn−1, Yn ∪
Yn+1).
Rationale: It should not matter whethermany
X ’s are Y ’s or Z ’s is computed by evaluating
F(many)(X,Y ∪̃Z) or by computingF(Q)(X,Y, Z)
with Q(X,Y, Z) = many(X,Y ∪ Z).

5. Monotonicity in arguments. We require thatF pre-
serve monotonicity in arguments, i.e. ifQ is non-
decreasing/nonincreasing in thei-th argument, then
F(Q) has the same property. When combined with
the other axioms, the condition can be restricted to the
case thatQ is nonincreasing in itsn-th argument.
Rationale: The statementall men are tallmust express
a stricter condition compared toall young men are tall.

6. Functional application. Finally we require thatF be
compatible with a construction called ‘functional ap-
plication’, i.e.

F(Q′)(X1, . . . , Xn) = F(Q)(f ′1(X1), . . . , f ′n(Xn))

whenever Q′ is defined by Q′(Y1, . . . , Yn) =
Q(f1(Y1), . . . , fn(Yn)), where f ′1, . . . , f

′
n are ob-

tained from the induced extension principle ofF , see
[8].
Rationale: The axiom ensures thatF behaves consis-
tently across domains.

A QFM F which satisfies these axioms is called a de-
terminer fuzzification scheme (DFS). IfF induces the
standard negation¬x = 1 − x and extension principle
µ ˆ̂
f(X)

(e) = sup{µX(e′) : f(e′) = e}, then it is astandard

DFS. These constitute the natural class of standard mod-
els of fuzzy quantification. A large number of properties
of linguistic or logical relevance are entailed by the above
axioms: IfF is a DFS, then

• F induces a reasonable set of fuzzy propositional con-
nectives, i.e. ¬̃ is a strong negatioñ∧ is at-norm,∨̃ is
ans-norm etc., see [8];

• F is compatible with the negation of quantifiers.
Hence

F(Q′)(X1, . . . , Xn) = ¬̃ F(Q)(X1, . . . , Xn)

if Q′(Y1, . . . , Yn) = ¬̃Q(Y1, . . . , Yn), and some
tall men are luckyis equivalent toit is not true that
no tall man is luckyin F ;

• F is compatible with the formation of antonyms.
Hence

F(Q′)(X1, . . . , Xn) = F(Q)(X1, . . . , Xn−1, ¬̃Xn)

if Q′(Y1, . . . , Yn) = Q(Y1, . . . , Yn−1,¬Yn).
E.g.,all tall men are baldis equivalent tono tall men
is not baldin F ;

• F is compatible with intersections. This means that

F(Q′)(X1, . . . , Xn+1)

= F(Q)(X1, . . . , Xn−1, Xn ∩̃Xn+1)

if Q′ is defined by Q′(Y1, . . . , Yn+1) =
Q(Y1, . . . , Yn−1, Yn ∩ Yn+1). Hence the mean-
ings ofat least twoX ’s areY ’s andthe set ofX ’s that
areY ’s contains at least two elementscoincide inF ;

• F is compatible with argument permutations. Hence

F(Q′)(X1, . . . , Xn) = F(Q)(Xβ(1), . . . , Xβ(n))

wheneverQ′(Y1, . . . , Yn) = Q(Yβ(1), . . . , Yβ(n)),
whereβ is a permutation of{1, . . . , n}. In particular,
F preserves symmetries, andabout50 X ’s areY ’s is
equivalent toabout50 Y ’s areX ’s in F .

• Finally,F is compatible with argument insertion, i.e.

F(Q′)(X1, . . . , Xn) = F(Q)(X1, . . . , Xn, A)

wheneverQ′(Y1, . . . , Yn) = Q(Y1, . . . , Yn, A), for
a fixed crisp argumentA ∈ P(E). For example, the
meanings ofmany (marriedX)’s are Y ’s and(many
married)X ’s areY ’s coincide in every DFS.

In addition, every DFS maps quantitative (automorphism-
invariant) quantifiers likealmost all to quantitative fuzzy
quantifiers; and non-quantitative quantifiers likeJohn or
most married to non-quantitative fuzzy quantifiers. More-
over, DFSes arecontextual, i.e. the interpretation of
F(Q)(X1, . . . , Xn) only depends on the behaviour ofQ in-
side the ambiguity rangescore(Xi) ⊆ Yi ⊆ support(Xi),
wherecore(Xi) denotes the elements with unity member-
ship andsupport(Xi) those with non-zero membership.
Every DFS is also known topreserve extension, i.e. insensi-
tive to the domain as a whole: we expect the interpretation
of most tall people are baldnot to depend on the chosen
domain, as long as it is large enough to contain the fuzzy
subsetstall andbald of interest. For a comprehensive dis-
cussion of the adequacy issue, see [8].

3 Models for linguistic data fusion
We now present three models of the theory, which are

suited to support linguistic data fusion. These models use
the fuzzy median,



med 1
2

(u1, u2) =


min(u1, u2) : min(u1, u2) > 1

2

max(u1, u2) : max(u1, u2) < 1
2

1
2

: else

for all u1, u2 ∈ [0, 1]. med 1
2

can be extended to an oper-

ator which accepts arbitrary subsets of[0, 1], viz m 1
2
X =

med 1
2

(inf X, supX) for all subsets of[0, 1]. In the fol-

lowing, we need the cut rangeTγ(X) ⊆ P(E) of a fuzzy
subsetX at the cutting levelγ ∈ [0, 1], which corresponds
to a symmetrical, three-valued cut ofX atγ:

Tγ(X) = {Y ⊆ E : Xmin
γ ⊆ Y ⊆ Xmax

γ } ,

Xmin
γ =

{
X≥ 1

2 + 1
2γ

: γ ∈ (0, 1]
X> 1

2
: γ = 0

Xmax
γ =

{
X> 1

2−
1
2γ

: γ ∈ (0, 1]
X≥ 1

2
: γ = 0

HereX≥α = {e ∈ E : µX(e) ≥ α} denotesα-cut, and
X>α = {e ∈ E : µX(e) > α} the strictα-cut. (γ can
be thought of as a parameter of ‘cautiousness’.) In order to
interpret fuzzy quantifiers for any fixed choice of the cutting
parameter, we stipulate

Qγ(X1, . . . , Xn) = m 1
2
{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} ,

The results at the cautiousness levels must be aggregated.
We hence define

M(Q)(X1, . . . , Xn) =
∫ 1

0

Qγ(X1, . . . , Xn) dγ .

It can be shown thatM is a standard DFS.M is practi-
cal because it is continuous in arguments and quantifiers,
i.e. robust against slight changes or noise in the arguments
and the quantifier. However, the integral used in the def-
inition of M, is not the only possible way of abstracting
from γ. The necessary and sufficient conditions on aggre-
gation mappingsB which makeMB(Q)(X1, . . . , Xn) =
B((Qγ(X1, . . . , Xn))γ∈[0,1]) a DFS are stated in [8]. This
investigation also revealed that there exists a modelMCX

with unique adequacy properties from a linguistic perspec-
tive. It is the only standard modelwhich permits the
compositional interpretation of adjectival restriction by a
fuzzy adjective, like inalmost all youngA’s areB’s, and
hence guarantees thatMCX(almost all young)(A,B) =
MCX(almost all)(young ∩ A,B). It also preserves the
convexity of absolute quantitative quantifiers likeabout 10.
In addition, it is continuous in arguments and quantifiers
and hence robust against noise. It further propagates fuzzi-
ness, i.e. less specific input cannot result in more specific
outputs (for additional properties see [8]).MCX can be
defined in terms of the cut ranges and median-based aggre-
gation, but also in the following more compact form.

MCX(Q)(X1, . . . , Xn)

= sup{QLV,W (X1, . . . , Xn) : V1 ⊆W1, . . . , Vn ⊆Wn}

where

QLV,W (X1, . . . , Xn) = min(ΞV,W (X1, . . . , Xn),

inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆Wi}

ΞV,W (X1, . . . , Xn) =
n

min
i=1

min(inf{µXi(e) : e ∈ Vi},

inf{1− µXi(e) : e /∈Wi}) .

MCX consistently generalises the Sugeno integral/basic
FG-count approach to arbitraryn-place quantifiers without
any monotonicity requirements.

The class of known models has been broadened by ab-
stracting from the median-based aggregation.Qγ is then
replaced with a pair of mappings which specify upper and
lower bounds on the quantification results for all choices of
theYi in the cut ranges:
>Q,X1,...,Xn(γ) = sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)}
⊥Q,X1,...,Xn(γ) = inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} .

In [9], the DFSes definable byFξ(Q)(X1, . . . , Xn) =
ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) have been investigated and
the corresponding conditions onξ have been formalized.
Our last exampleFowa is representative of this new type of
models.

Fowa(Q)(X1, . . . , Xn) = 1
2

∫ 1

0

>Q,X1,...,Xn(γ)dγ

+ 1
2

∫ 1

0

⊥Q,X1,...,Xn(γ)dγ .

Fowa is a standard DFS. It extends the Choquet inte-
gral/basic OWA approach to multiplace and non-monotonic
quantifiers. Its continuity ensures some stability against
noise.Fowa does not propagate fuzziness and is hence infe-
rior toMCX from an adequacy perspective (unspecific in-
put can produce more specific output). Nevertheless,Fowa

can be advantageous if the inputs are overly fuzzy, because
it still discerns cases in which models that propagate fuzzi-
ness ceise to be informative.

4 Conclusion
Fuzzy quantifiers are, in principle, a powerful method for

combining information. These linguistic fusion operators
are easy to use and to understand. In particular, it is much
easier to incorporate expert knowledge into the fusion pro-
cess by means of linguistic descriptions than it is, for exam-
ple, to construct statistical models. Morevover, the linguis-
tic approach holds the potential to specify ‘fusion plans’,
i.e. what is to be fusedwhenand how [10]. The exist-
ing approaches to fuzzy quantification, however, give rise
to implausible results in relevant situations. The most use-
ful tool for improvement we found to be the linguistic the-
ory of quantification, TGQ. Our theory of fuzzy quantifica-
tion, DFS, consistently extends TGQ to incorporate gradual



Image data/Importance

0.2 0.4 0.6 0.7 0.8 0.9 1.0 1.0
Fusion results:

atleast some- often almost always
once times always
some trp 0,0.4,0 trp 0,1,0.5 trp 0.6,1,1 all

Figure 2: Image sequence and fusion results for various choices of the

criterionQ-times cloudy in the last days.Regions that meet the criterion

are depicted white.

interpretations and fuzzy arguments. Due to its axiomatic
foundation, all models of the theory exhibit the desired ad-
equacy properties. We have discovered models which con-
sistently extend existing approaches to non-monotonic and
multiplace quantification (n > 1); viz the basic FG-count
approach/Sugeno integral and OWA approach/Choquet in-
tegral. These models are computational, and algorithms for
the most common quantifiers have been developed [3]. We
conclude with an example which demonstrates the suitabil-
ity of the models to fuse image data, see Fig. 2. The data is
comprised of a sequence of images, depicting fuzzy regions
of cloudiness grades at given points of time. The images are
qualified by importance to a fuzzy temporal condition, ‘in
the last days’. The DFSM was used and a quantifiertrp
(for trapezoidal) was applied that is given by

trp a,b,c(Y1, Y2) =

{
ta,b(|Y1 ∩ Y2|/|Y1|) : Y1 6= ∅

c : Y1 = ∅

ta,b(z) =


0 : z < a
z−a
b−a : a ≤ z ≤ b
1 : z > b .

References
[1] R. Brooks and S. Iyengar.Multi-Sensor Fusion: Fun-

damentals and Applications with Software. Prentice-
Hall, 1997.

[2] I. Goodman, R. Mahler, and H. Nguyen. Mathematics
of data fusion. InTheory and Decision Library. Series
B, Mathematical and Statistical Methods, volume 37.
Kluwer Academic, 1997.
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