
Evolving Modular Fast-Weight Networks

for Control

Faustino Gomez1 and Jürgen Schmidhuber1,2

1 IDSIA, Galleria 2, 6928 Manno (Lugano), Switzerland
2 TU Munich, Boltzmannstr. 3, 85748 Garching, München, Germany

{tino, juergen}@idsia.ch

Abstract. In practice, almost all control systems in use today imple-
ment some form of linear control. However, there are many tasks for
which conventional control engineering methods are not directly appli-
cable because there is not enough information about how the system
should be controlled (i.e. reinforcement learning problems). In this pa-
per, we explore an approach to such problems that evolves fast-weight
neural networks. These networks, although capable of implementing arbi-
trary non-linear mappings, can more easily exploit the piecewise linearity
inherent in most systems, in order to produce simpler and more compre-
hensible controllers. The method is tested on 2D mobile robot version
of the pole balancing task where the controller must learn to switch be-
tween two operating modes, one using a single pole and the other using
a jointed pole version that has not before been solved.

1 Introduction

All real-world systems are non-linear to some degree, yet almost all control sys-
tems in operation today employ some variant of linear feedback control. The
wide applicability of linear methods relies on the fact that most non-linear sys-
tems of interest are either nearly linear around some useful operating point or
can be decomposed into multiple linear operating regions. Methods such as gain-
scheduling provide powerful tools to control such systems [1]: first a linear model
is built for each operating mode, and then a linear controller (e.g. PID) is de-
signed with parameters (i.e. gains) that are switched by a scheduler when the
system transitions from one mode to another.

Gain scheduling works well when the mode of the system is observable, and,
like all classical approaches, when the appropriate type of strategy is known
a priori. For very complex tasks, such as those encountered in robotics, the
designer often does not know what action should be taken in each system state.
One method for solving control tasks under these more general conditions is
neuroevolution [2] where a genetic algorithm is used to search the space of neural
network controllers by repeatedly recombining the best performing candidates
according to the principle of natural selection.

Artificial neural networks can potentially implement global non-linear con-
trollers, but ensuring their stability and analyzing their behavior is difficult [3].

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 383–389, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



384 F. Gomez and J. Schmidhuber

  controller

output

      weight generator 
network

networkin
pu

t

input

Fig. 1. Fast-Weight Network Module. The figure shows the two components of a Fast-

Weight Module. On the left is the generator network that is evolved by the GA. This

recurrent network receives input from the environment and outputs a set of weight val-

ues for the single-layer controller network at right. The controller network also receives

input from the environment and outputs the control action.

This paper explores a method for evolving a special kind of fast-weight neural
network that can potentially provide simpler automatically designed controllers.
The networks consist of separate modules containing a recurrent neural network
that generates weights for a linear controller.

The next section describes the fast-weight network architecture. Section 3
describes the neuroevolution method, Hierarchical Enforced SubPopulation (H-
ESP) that is used to evolve the fast-weight networks. Section 4 presents our
experimental results in applying the method to a two-mode robot pole balancing
task, and section 5 concludes with a brief discussion of the results.

2 Modular Fast-Weight Networks

When neural networks are used to solve tasks in which the output depends on
a history of inputs, they usually contain recurrent connections that feed back
previous activations. Temporal information is encoded in the form of internal
activation patterns (i.e. state) generated by propagating external inputs and
previous activations through a fixed set of weights. Another possibility is to
have dynamic weights or fast weights that can change in value over time. The
little work that has been done using this concept has either used fast-weights
as a mechanism to provide more robust associative memories [4], or to reduce
network learning complexity [5]. Here we use the idea of fast-weights to generate
controllers capable of switching easily between linear functions.

Networks are composed of a separate fast-weight module for each output
unit. Each module consists of a recurrent generating network and a single-layer,
feedforward controller network (figure 1). The output om of module m is:



Evolving Modular Fast-Weight Networks for Control 385

om = δ

(
I∑

k=1

xkŵkm

)
(1)

ŵkm =
H∑

j=1

(
wjk δ

(
I∑

i=1

xiwij +
H∑

h=1

ahwhj

))
(2)

where x ∈ �I is the external input, a ∈ �H is the hidden layer activation from
the previous time step, wij is the weight from unit i to unit j in the generating
network, ŵij is the weight from i to j in the controller network, and δ is the
sigmoid function. Equation 1 computes the output of the controller network after
the generating network has produced the I weights according to equation 2.

This network architecture is theoretically no more powerful than a standard
fully recurrent network. The underlying intuition behind its design is that such
an architecture will bias the search toward controllers that are potentially simpler
and better suited to non-stationary environments characterized by transitions
between operating modes. Although a module can generate weights that are a
non-linear function of the entire history of inputs, it can easily implement a
linear controller, if it is all that is required, by having the generating network
output constant values.

PLANT

Neural Network

H−ESP

input

output

neuron level

network level fitness

Fig. 2. H-ESP. Evolution occurs at both the level of neurons and of networks. The

neuron level (L1) consists of multiple subpopulations of neurons, shown here in different

colors. The network level (L2) consists of complete network representations that have

either migrated up from below or have been created by recombining networks. During

evolution, networks are evaluated in two possible ways: from L2 directly, and from L1

by randomly selecting a neuron from each subpopulation and combining them into

a complete network. The dashed lines from the neuron level to the network being

evaluated indicate a network formed in this manner. A network from L2 that has

higher fitness than any network formed so far in L1, has its neurons copied into their

corresponding subpopulations in L1 (shown with the dashed arrows from L2 to L1). A

network form in L1 that has higher fitness than the worst L2 network is copied into

L2 (the solid arrows from L1 to L2). In this way, the two levels supply each other with

new genetic material with which to search in their respective weight spaces.



386 F. Gomez and J. Schmidhuber

3 Hierarchical Enforced Subpopulations

Fast-weight networks are evolved using a method introduced in [6] called Hierar-
chical Enforced SubPopulations (H-ESP). H-ESP searches the space of recurrent
networks by evolving at two levels in tandem: the level of network components or
neurons, and the level of full networks. The neuron level (i.e. plain ESP) searches
the space of networks indirectly by sampling the possible networks that can be
constructed from the subpopulations of neurons. Network evaluations provide a
fitness statistic that is used to produce better neurons that can eventually be
combined to form a successful network. Figure 2 shows the basic operation of
the algorithm (see [6] for further details).

The network level provides a repository or “hall of fame” of the best networks
found so far by the neuron level, and allows H-ESP to search within the space of
highly fit neuron combinations in a way that is not possible at the neuron level
because it constructs networks at random.

To evolve fast-weight networks each neuron encodes the input, recurrent, and
output weights of one of the units of a generating network.

4 Experiments

To evaluate approach, we evolved controllers for a simulated version of the three-
wheeled Robertino mobile robot (figure 3a). Each wheel can slide along its rota-
tional axis using six small sub-wheels (figure 3b). This holonomic drive enables
the robot to change direction without having to rotate. On top of the robot is
a vertical pole that is attached to the chassis with a ball joint. The pole can be
either a single rigid rod or two rods, one on top of the other, with a ball joint

(a) (b)

Fig. 3. Robertino with pole. (a) A snapshot from the Robertino ODE simulation show-

ing the robot in the center of a walled arena. (b) Robertino wheel. The small sub-wheels

allow the Robertino to slide as well as roll.



Evolving Modular Fast-Weight Networks for Control 387

connecting them. The objective is to balance the both types of poles by applying
a torque to each of the three wheels. Balancing each type of pole requires a dif-
ferent strategy. Both systems are nearly linear around their unstable equilibrium
points (i.e. poles in vertical position), but when the angle of the pole(s) increases
they become non-linear, more so in the case of the jointed pole.

Note that unlike the 2-dimensional version of the classic pole balancer [7], the
system cannot be controlled by solving the 1-dimensional case and then using
two copies of this controller, one for each principle axis. Because the robot can
rotate around its vertical axis using 3 wheels spaced 120◦ from each other, this
simple symmetry cannot be exploited. To move in a given direction, the velocity
of all 3 wheels must be correctly modulated.

Pole

module 1

module 2

module 3

Robot

Fig. 4. Control Architecture for the

Robertino robot. The Robertino (over-

head view) is controlled by of three fast-

weight modules, one for each wheel. At

each time step, the generator networks

produce weights for and activate their re-

spective controller network.

H-ESP was used to evolve networks
consisting of three fast-weight modules,
one for each wheel as shown in figure 4.
The weight generating network of each
module had 5 hidden units and 8 inputs
scaled to the range [-1.0,1.0]: 3 prox-
imity sensors, the angle of the lower
pole in the x-axis θl

x and y-axis θl
y,

the angles for the upper pole θu
x , θu

y ,
and the rotation of the chassis; all an-
gles were measured in absolute (global)
coordinates. For the single pole mode
θu

x,y were set to zero. The neuron level
subpopulations consisted of 200 neu-
rons, and the network level population
of 100 networks. The robot was simu-
lated using the Open Dynamics Engine
(www.ode.org) with a 0.01 second inte-
gration time.

During evaluation the controllers
were tested in two trials: one with a sin-
gle pole of 1.0 meter in length, and one
with a jointed pole with two 0.5 meter
segments. Each trial starts with the robot sitting in the center of a 1.5×1.5 me-
ter walled arena (see figure 3a) with the pole(s) leaning 6◦ (0.5◦) from vertical
in the x direction. Every 0.04 seconds (i.e. 25Hz control frequency) each module
outputs the desired angular velocity for its corresponding wheel [−3.6π, 3.6π],
until the pole angle(s) exceed 36◦. The fitness of the controller was the number of
time steps the pole(s) could be balanced in the shorter of the two trials. The task
was considered solved with a fitness of 10 thousand. In order to solve the task,
the controller must determine which mode it is in and apply the appropriate
strategy for that mode.



388 F. Gomez and J. Schmidhuber

4.1 Results

Figure 5 shows the controller network weight values produced during the suc-
cessful operation of a typical controller for the first 100 time steps of operation,
in each mode. The solid curve is for the single pole and the dotted curve is
for the jointed pole. For most weights, the difference between the modes occurs
at the beginning of the trial when the pole angles are relatively large, and the
controller must employ a different strategy to bring the pole(s) into the linear
region. Other weights, specifically those in module 3, quickly reach a constant
value for the jointed pole mode, and then transition to the same value used for
the single pole after about 80 time steps, by which time the jointed pole has
been stabilized.

lower pole angle y

m
od

ul
e 

3
m

od
ul

e 
1

lower pole angle x upper pole angle yupper pole angle x

m
od

ul
e 

2

 100

−40.5

−40

−39.5

−39

−38.5

 0  20  40  60  80  100
−20

−15

−10

−5

 0

 5

 10

 0  20  40  60  80  100
 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 0  20  40  60  80  100
 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100

 35

 40

 45

 50

 55

 60

 65

 70

 0  20  40  60  80  100

−40

−35

−30

−25

−20

−15

−10

−5

 0

 5

 0  20  40  60  80  100
−30

−25

−20

−15

−10

−5

 0

 0  20  40  60  80  100
−5

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100

−28

−26

−24

−22

−20

−18

−16

−14

−12

 0  20  40  60  80  100

−2

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100 100

 100
 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0  20  40  60  80  100
−44

−42

−40

−38

−36

−34

−32

−30

−28

−26

 0  20  40  60  80  100

−41.5

−42

−42.5

−41

Fig. 5. Fast-weight values during control. Each plot shows the weight value for one of

the inputs for the two modes. Each row corresponds to one of the 3 modules. The solid

curve is for the single pole, the dotted curve is for the jointed pole.

5 Discussion and Conclusion

The experiments show that fast-weight networks can be evolved to produce rel-
atively simple controllers. The weights produced by the generating networks
implement almost piecewise linear controllers. While simpler architectures such
as fully recurrent networks can solve each case, we were unable to do so for
the two mode problem, and even the jointed pole version by itself could not be
solved reliably. Furthermore, with such networks it is often difficult to under-
stand the strategy being implemented. Using fast-weight networks, each period
of constant weight values is a linear controller that can be “cut away” from its
generating network during testing, leaving a set of simple linear filters that are
more amenable to formal control theory analysis.

Future work will apply this approach to bipedal robot walking where it might
be possible to implemented controllers for different, potentially non-linear, gait
modes by using fast-weight networks.



Evolving Modular Fast-Weight Networks for Control 389

Acknowledgments

This research was partially funded by CSEM Alpnach and the EU MindRaces
project: FP6 511931. We would like to thank Frank Pasemann and Keyan Mah-
moud Ghazi-Zahedi of Fraunhofer AIS for the Robertino ODE code.

References

1. Rugh, W., Shamma, J.: A survey of research on gain-scheduling. Automatica (2000)
1401–1425

2. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87 (1999)
1423–1447

3. Kretchmar, R.M.: A Synthesis of Reinforcement Learning and Robust Control The-
ory. PhD thesis, Department of Computer Science, Colorado State University, Fort
Collins, Colorado (2000)

4. Hinton, G.E., Plaut, D.C.: Using fast weights to deblur old memories. In: Pro-
ceedings of the Ninth Annual Cognitive Science Society Conference, Hillsdale, NJ,
Lawrence Erlbaum Associates (1987) 177–186

5. Schmidhuber, J.: Learning to control fast-weight memories: An alternative to dy-
namic recurrent networks. Neural Computation 4 (1992) 131–139

6. Gomez, F.J., Schmidhuber, J.: Co-evolving recurrent neurons learn deep memory
pomdps. Technical Report 17–04, IDSIA, Lugano, Switzerland (2004)

7. Gomez, F., Miikkulainen, R.: 2-D pole-balancing with recurrent evolutionary net-
works. In: Proceedings of the International Conference on Artificial Neural Net-
works, Berlin; New York, Springer-Verlag (1998) 425–430


	Introduction
	Modular Fast-Weight Networks
	Hierarchical Enforced Subpopulations
	Experiments
	Results

	Discussion and Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




