
A Comparison Between Spiking and Differentiable

Recurrent Neural Networks on Spoken Digit Recognition

Alex Graves, Nicole Beringer, Jürgen Schmidhuber
IDSIA Istituto Dalle Molle di Studi sull’Intelligenza Artificiale

Galleria 2, 6928 Manno, Switzerland

ABSTRACT
In this paper we demonstrate that Long Short-Term
Memory (LSTM) is a differentiable recurrent neu-
ral net (RNN) capable of robustly categorizing time-
warped speech data. We measure its performance on
a spoken digit identification task, where the data was
spike-encoded in such a way that classifying the utter-
ances became a difficult challenge in non-linear time-
warping. We find that LSTM gives greatly superior
results to an SNN found in the literature, and conclude
that the architecture has a place in domains that re-
quire the learning of large timewarped datasets, such
as automatic speech recognition.

KEY WORDS
Speech Recognition, LSTM, RNN, SNN, Timewarping

1 Introduction

Non-linear timewarping is a major difficulty in speech
recognition. To identify words under realistic condi-
tions, a recogniser must be able to handle large varia-
tions in speaker rate, both over whole words and over
sub-word units, such as syllables and phones. So far,
this goal has been most successfully achieved by Hid-
den Markov Models [1], especially when augmented by
neural nets [2, 3]. However, we feel that a model able
to build a low-complexity representation of sequential
input would provide a powerful alternative.

In the following, we will compare two neural net
candidates for such a model: spiking recurrent neu-
ral networks (SNNs) and long short term memory
(LSTM)[4]. We show that LSTM can identify spo-
ken digits from the mus silicium competition with far
greater accuracy than Liquid State Machines [5], an
SNN that has been recently applied to speech recog-
nition. Furthermore LSTM performs quickly and re-
liably, and requires fewer adjustable parameters than
do SNNs. We conclude that LSTM combines desir-
able dynamical characteristics of SNNs with the RNN
advantage of powerful gradient descent learning, and
that it has the potential to play an important role in
automatic speech recognition systems.

The structure of the paper is as follows: In Sec-
tion 2.1, we examine the problems historically expe-
rienced by neural nets in automatic speech recogni-

tion (ASR) and other sequence learning tasks. In Sec-
tion 2.2, we review SNNs and their application to ASR.
In Section 2.3 we introduce and describe LSTM, and in
Section 2.4 we discuss its suitability for ASR. In Sec-
tion 3, we provide experimental comparisons between
LSTM and SNN’s on a digit recognition task, while
concluding remarks are presented in Section 4.

2 Background

2.1 Differentiable Neural Networks

For differentiable neural nets, dealing with time depen-
dent inputs means one of two things: either collecting
the inputs into time windows and treating the task as
spatial; or using recurrent connections and an internal
state to model time directly. We now summarize the
application of these methods to speech recognition.

Time windowed networks have been successful in
recognising isolated syllables or small words — see [6]
or Section 3.0.2. However, on more challenging tasks,
like continuous speech, they run into two fundamen-
tal problems. Firstly, the window size is fixed by the
topology of the network (and usually limited by speed
and memory considerations). This means that either
the net has a huge number of inputs (and thus a huge
number of parameters and a very long training time),
or else that important long time dependencies, such
as the position of the window in a word, are simply
ignored. Secondly, such nets are inflexible with regard
to temporal displacements or changes in the rate of
input (non-linear timewarping). This leaves them eas-
ily confused by ubiquitous features of speech, such as
delays or variations in talking speed.

With RNNs, on the other hand, it is not neces-
sary to transform temporal patterns into spatial ones.
Instead, a time series can be presented one frame at a
time, with the flow of activations around the connec-
tions creating a memory of previous inputs. Recurrent
training algorithms such as RTRL [7] and BPTT [8]
can perform weight updates based on the entire his-
tory of the network’s states. Therefore it seems feasi-
ble that they could process any length of time series.
In practice though, these algorithms share a common
weakness: their backpropagated errors either explode

1



or decay in time, preventing them from learning de-
pendencies of more than a few timesteps in length [9].

2.2 Spiking Neural Networks

Biological neurons communicate using trains of pulse-
like voltage spikes, with active neurons producing more
spikes on average than inactive ones. This behaviour is
captured in traditional differentiable networks through
the use of an “activation” term that encodes mean
firing rate.

Some suggest that mean firing rate is not enough.
Rather, it is believed that a computational model that
simulates the spike-like nature of biological neural sys-
tems will benefit from a richer set of dynamical be-
haviours than traditional neural networks. In partic-
ular, firing synchrony is only available to models that
simulate (rather than average) spike onsets. For an
overview of SNNs see [10].

One major advantage of these models is an ability
to find temporal structure in a signal using synchro-
nization. Synchrony-based binding mechanisms as are
found in SNNs tend to be robust to significant time-
warping and temporal noise. (See [11] for one author’s
application of SNNs to the discovery of metrical struc-
ture in music, a problem that shares some similarities
with speech recognition.)

SNNs have shown great promise as pattern recog-
nisers [12]. Unfortunately, SNNs do not benefit from
powerful learning mechanisms, making it difficult to
apply them to complex sequence learning tasks such as
continuous word or phone prediction. (Some progress
has been made in this area. See for example [13].)
What is desired is a model that benefits from the
powerful gradient descent learning found in traditional
neural networks but that captures some of the rich dy-
namical properties of SNNs. Such a model would be
able to learn to categorize timewarped datasets as well
as SNNs but would also have potential for harder se-
quence learning tasks.

2.3 LSTM

It is out of the scope of this paper to describe LSTM in
depth, and the interested reader should consult [14, 4]
for details. However, we can provide a brief outline of
the network’s structure, as illustrated in figure 1.

LSTM was designed to obtain constant error flow
through time and to protect this error flow from un-
desired perturbations. It uses linear memory cells
called Constant Error Carousels (CECs) to overcome
error decay problems plaguing previous RNNs. Each
CEC has a fixed self-connection and is surrounded by
a cloud of nonlinear units responsible for controlling
the flow of information in and out of the CEC. Typ-
ically, a multiplicative input gate unit learns to pro-
tect the flow from perturbation by irrelevant inputs.

Likewise, a multiplicative output gate unit learns to
protect other units from perturbation by currently ir-
relevant memory contents. A forget gate learns to reset
a memory cell when its content is obsolete. Learning
is carried out by a gradient descent method based on
a slightly modified, truncated form of BPTT and a
customized version of RTRL. (Unlike RTRL however,
this requires only O(1) computations per time step
and weight.) Output units use backpropagation; out-
put gates use the truncated version of BPTT; while
weights to cells, input gates and forget gates use trun-
cated RTRL. LSTM performance is improved in online
learning situations by using a Kalman filter to control
weight updates [15].

2.4 Why Use LSTM for Speech Recog-
nition?

As mentioned in Section 2.1, it is essential for an RNN
used in speech recognition to be able to bridge long
time lags, and adapt to time warped data. These
are two areas in which LSTM has outperformed other
RNN’s. That LSTM can deal with long time lags has
been demonstrated in [4, 16], while its utility with
time-warping is clear from its success in learning con-
text free languages [16], and in generating music [17].
In both cases, its advantage comes from the fact that
because its central timing mechanism is not (as for
most RNNs) a decaying flow of recurrent activation.
Instead, its memory cells act as a set of independent
counters. These cells (along with the gates used to
open, close and reset them) allow LSTM to extract and
store information at a very wide range of timescales.

However, HMMs, rather than RNNs, are the stan-
dard tool for speech recognition, so the question be-
comes: why use LSTM instead of HMMs? One answer
is that LSTM is more biologically plausible. Another,
perhaps more important, is that statistical models like
HMMs tend to be less robust than RNNs. For exam-
ple, HMMs are very sensitive to channel errors, and
coding algorithms are needed to clean up the data be-
fore they see it. Also, the parameters and language
models used in HMMs are tuned towards particular
datasets, and the choice of acoustic model they use
is dependent on the size of the corpus. LSTM on the
other hand, is a general purpose algorithm for extract-
ing statistical regularities from noisy time series. Un-
like HMMs, it doesn’t rely on the manual introduction
of linguistic and acoustic models, but can learn its own
internal models directly from the data. And although
(like all neural nets) it does have free parameters, such
as learning rate and layer size, we demonstrate below
that these do not need to be adjusted for particular
corpora.



Figure 1. LSTM memory block with one cell. The in-
ternal state of the CEC (Constant Error Carousel) is
maintained with a recurrent connection of weight 1.0.
The three gates collect activations from both inside
and outside the block, and control the cell via multi-
plicative units (small circles). The input and output
gates effectively scale the input and output of the CEC
while the forget gate scales the internal state — for ex-
ample by resetting it to 0 (making it forget).

3 Experiments

The data used in this paper were downloaded from the
website [18] of the mus silicium neural computation
competition. As described in Nature (see [19]), they
were a set of pre-processed speech files, each obtained
from a single recording of a spoken digit. There were
10 speakers, each uttering the words “zero” to “nine”
five times, making a total of 500 files. The data con-
sisted of 40 spike trains with either one or zero spikes
per train (representing onsets, peaks or offsets at 40
different frequencies, ranging from 100 Hz to 5 kHz).

Following Maass [5], we subdivided the 500 data
files into a training set of size 300 and a test set of
size 200. We trained the network and then used it
to identify which of the ten digits, 0 to 9, each test
pattern represented. We measured the identification
score for the digit “one,” according to the following
formula: Nfo

Nco
+ Nfn

Ncn
, where Nfo (Nco) = number of

falsely (correctly) identified“one” files, Nfn (Nfo) =
number of falsely (correctly) identified “not one” files.
We also measured the fraction of correctly identified
digits across the whole test set. The data was sam-
pled at 100 timesteps per second. By way of compari-
son, we repeated the experiment with a mel-frequency
cepstrum coefficient (MFCC) front end instead of the
spike trains (using the HTK toolkit [20]).

An important note is that most of the difficulty
of this data was due to the discrete, spike encoded,
pre-processing, and not to the inherent difficulty of
identifying spoken digits (LSTM can do this almost
perfectly with a more conventional front end — see ta-
ble 1.) Having no input other than the spikes, the net
was forced to bridge the time lags between them, and
to cope with non-linear distortions in these time lags,
without the mass of spectral information that would
normally be available.

3.0.1 Network Topology and Parame-
ters

For the LSTM experiments, we used a neural net with
a mix of extended LSTM (see section 2.3 for details)
and sigmoidal layers. A cross-entropy objective func-
tion was used, and the output layer had a gain of 3.
The network had two hidden layers. The LSTM layer
contained 30 memory blocks, each with two cells: its
squashing function was logistic with range [−2, 2], and
the activation functions of the gates were logistic in
range [0, 1]. The second hidden layer consisted of 10
sigmoidal units. During training, errors were fed back
on every timestep, encouraging the net to make cor-
rect decisions as early as possible (a useful property
for real time applications). Gaussian noise (about the
spike times) was injected into the training data to pre-
vent overfitting.

Online learning was used with a learning rate of



Table 1. Digit recognition scores

Network Avg Best % Correct
LSTM (MFCC input) 0.015 0 99.4

LSTM (spike encoded input) 0.041 0 88.4
Liquid State Machine 0.140 0.013 -

5 × 10−7 and momentum of 0.9. The network activa-
tions were reset to zero after each pattern presentation.
Errors were fed back on every timestep and the input
was sampled at a rate of 100 timesteps per second.

3.0.2 Results

In Table 1, averages for LSTM and feedforward were
taken over 10 runs. Liquid State Machine results were
from [5]. MFCC input means input features were mel-
frequency cepstrum coefficients. “Avg” and “Best”
were the average and best scores, as calculated with
the formula from Section 3 (note that a lower score
is better). “% Correct” is the average percentage of
correctly identified digits.

3.0.3 Analysis

LSTMs high performance on the spike encoded version
of this task illustrates its robustness to time warped
data, and its superiority as a generic sequence pro-
cessing tool to Liquid State Machines. Moreover, its
near perfect performance on the MFCC encoded data
shows that it is capable of rivalling state-of-the-art
speech recognition systems. Also, it is worth noting
that LSTM was able to make correct predictions early,
typically after less than thirty percent of the input
pattern. This would be a useful ability for an online
recognition task, where immediate identifications are
required.

4 Conclusions

We applied LSTM to the speech recognition task of
identifying isolated spoken digits. We found that it
greatly outperformed a well-known SNN found in the
literature, and was able to identify any digit with more
than 88% probability (99.4% probability when com-
bined with more conventional preprocessing). Addi-
tionally, it was usually able to make identifications af-
ter having seen only a small part of each pattern.

We believe that the success of LSTM in these ex-
periments was due to two factors: firstly it has, like
SNNs, the ability to bridge long time delays and to
accurately categorise timewarped data; secondly, like
RNNs, it uses gradient descent to move rapidly to-
wards error minima.

In the future, we would like to use LSTM as the
basis for a continuous speech recognition system. We
feel that its power in sequence processing, and its abil-
ity to handle multiple timescales simultaneously, make
it an ideal candidate for the task. In particular, we
hope that it will provide a real alternative to Hidden
Markov Models that will not suffer from their limited
and ad hoc approach to time dependencies.

References

[1] Lawrence R. Rabiner. A tutorial on hidden markov
models and selected applications in speech recogni-
tion. In Proc. IEEE, volume 77, pages 257–286. IEEE,
1989.

[2] H.A. Bourlard and N. Morgan. Connnectionist Speech
Recognition: A Hybrid Approach. Kluwer Academic
Publishers, 1994.

[3] Anthony J. Robinson. An application of recurrent nets
to phone probability estimation. IEEE Transactions
on Neural Networks, 5(2):298–305, March 1994.

[4] Sepp Hochreiter and Juergen Schmidhuber. Long
Short-Term Memory. Neural Computation, 9(8):1735–
1780, 1997.

[5] W. Maass, T. Natschläger, and H. Markram. A model
for real-time computation in generic neural microcir-
cuits. Proc. of NIPS 2002, Advances in Neural Infor-
mation Processing Systems, 15, 2002. In Press.

[6] D. J. Burr. Speech recognition experiments with per-
ceptrons. In NIPS, volume 0, pages 144–153. Ameri-
can Institute of Physics, 1987.

[7] A. J. Robinson and F. Fallside. The utility driven dy-
namic error propagation network. Technical Report
CUED/F-INFENG/TR.1, Cambridge University En-
gineering Department, 1987.

[8] R. J. Williams and D. Zipser. Gradient-based learn-
ing algorithms for recurrent connectionist networks.
In Y. Chauvin and D. E. Rumelhart, editors, Back-
propagation: Theory, Architectures, and Applications.
Erlbaum, Hillsdale, NJ, 1990.

[9] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmid-
huber. Gradient flow in recurrent nets: the difficulty
of learning long-term dependencies. In S. C. Kremer
and J. F. Kolen, editors, A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press, 2001.

[10] Wolfgang Maass and Christopher M. Bishop. Pulsed
Neural Networks. The MIT Press, 1998.

[11] Douglas Eck. Finding downbeats with a relaxation
oscillator. Psychological Research, 66(1):18–25, 2002.

[12] J. J Hopfield. Pattern recognition computation us-
ing action potential timing for stimulus representa-
tion. Nature, 376:3–36, 1995.



[13] S.M. Bohte, H. La Poutré, and J.N. Kok. Spike-prop:
error-backprogation for networks of spiking neurons.
Neurocomputing, 48(1-4):17–37, 2002.

[14] Felix Gers, Nicol Schraudolph, and Juergen Schmid-
huber. Learning precise timing with LSTM recur-
rent networks. Journal of Machine Learning Research,
3:115–143, 2002.

[15] Juan Antonio Pérez-Ortiz, Felix A. Gers, Douglas
Eck, and Juergen Schmidhuber. Kalman filters im-
prove LSTM network performance in problems un-
solvable by traditional recurrent nets. Neural Net-
works, 2002. In press.

[16] F. A. Gers and J. Schmidhuber. LSTM recurrent net-
works learn simple context free and context sensitive
languages. IEEE Transactions on Neural Networks,
12(6):1333–1340, 2001.

[17] Douglas Eck and Juergen Schmidhuber. Finding tem-
poral structure in music: Blues improvisation with
LSTM recurrent networks. In H. Bourlard, editor,
Neural Networks for Signal Processing XII, Proceed-
ings of the 2002 IEEE Workshop, pages 747–756, New
York, 2002. IEEE.

[18] J. Hopfield and C. Brody. The mus sili-
cium (sonoran desert sand mouse) web
page. http://neuron.princeton.edu/ mo-
ment/organism/index.html.

[19] Steve Nadis. All together now. Nature, 421(6925):780–
782, February 2003.

[20] S. Young. The HTK Book. Cambridge University,
1995/1996.


