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Abstract Bio-inspired robots still rely on classic ro-
bot control although advances in neurophysiology al-
low adaptation to control as well. However, the connec-
tion of a robot to spiking neuronal networks needs ad-
justments for each purpose and requires frequent adap-
tation during an iterative development. Existing ap-
proaches cannot bridge the gap between robotics and
neuroscience or do not account for frequent adapta-
tions. The contribution of this paper is an architec-
ture and domain-specific language (DSL) for connecting
robots to spiking neuronal networks for iterative testing
in simulations, allowing neuroscientists to abstract from
implementation details. The framework is implemented
in a web-based platform. We validate the applicabil-
ity of our approach with a case study based on image
processing for controlling a four-wheeled robot in an
experiment setting inspired by Braitenberg vehicles.
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1 Introduction

Bio-inspired robots such as the walking machine LAU-
RON V [28] often use classic robot control software
whereas the robots parameters such as the kinemat-
ics are adapted from nature. This can be problematic
as classical controllers require to express for instance
the kinematics of the robot explicitly. For example, the
kinematics of LAURON V is inspired by the stick insect
Carausius morosus with four joints per leg, depicted in
Fig. 1. This amounts to 24 degrees of freedom to control
the legs, which is fairly difficult to express explicitly.

However, advances in neurophysiology often offer in-
spiration not only for parameters such as kinematics
but also for robot control algorithms. Spiking neuronal
networks mimic nature’s behavior in detail and can be
used to replace parts of or the entire robot control soft-
ware, utilizing the ability of neural networks to learn
and adapt.

Figure 1 The kinematics of LAURON V compared to the stick
insect Carausius morosus [28]
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Contrary, the integration especially of spiking neu-
ronal networks in robot control also yields a possibility
to validate our understanding of how biological neural
networks are connected to actuators in nature. This is
especially interesting for neurophysiologist research.

From a researchers point of view, such an integra-
tion requires frequent adaptations of the wiring between
a robot’s sensors, the network and the robot’s actua-
tors. However, the multitude of technical problems in-
volved in running a robot and, last but not least, also
the price for more complex biologically inspired robots
with many joints pose a large obstacle for experiments
integrating neuronal network models into the robot con-
trollers. Therefore, an integrated simulation platform
that allows users to concentrate on the connection be-
tween the robot and the network, leaving aside techni-
cal implementation details, is beneficial both for neuro-
physiology and robotics.

To the best of our knowledge, existing approaches
do not sufficiently bridge this gap between robotics and
neuroscience. The simulation of experiments is often
hand-crafted, resulting in duplicated code to couple the
simulations. Furthermore, such simulation scripts must
be adapted if the simulator underneath changes.

In this paper, we present a framework to support
coupled simulations of robots and spiking neural net-
works through the metapher of Transfer Functions. To
focus on the specification of the wiring between the neu-
ronal network and the physics simulation, we created an
architecture independent of both the experiment sim-
ulated as well as the used simulators. Further, we de-
signed PyTF, a Domain-Specific Language (DSL) on
top of it. This DSL concisely captures the connection
between a robot and the network in Transfer Functions
while the architecture underneath allows adjusting pa-
rameters of the connection or the network during a run-
ning simulation.

The paper extends prior work on PyTF that dis-
cussed the applicability of model-driven engineering for
the coupled simulation of robots and spiking neural net-
works [15]. Here, we explain the concepts of PyTF and
the software architecture underneath from which the
language abstracts.

Our approach is implemented in the Neurorobotics
Platform (NRP) [15,31]. This simulation platform fos-
ters the research of neuroscientists, especially neuro-
physiologists, by providing an integrated simulation plat-
form for the simulation of robots and their physical
environment coupled to biologically plausible spiking
neuronal networks. It is based on existing open-source
implementations of simulators for the neuronal network
(Nest [11]) and the robot and its physical environment
(Gazebo [18] and ROS [26]). Aside the coupling of simu-

lations, the NRP also consists of a library of robots such
as the above mentioned LAURON V, the humanoid
iCub robot, a four-wheeled Husky1 robot and a con-
trollable model of a mouse. We also provide editors for
all artifacts of a coupled simulation such as robots, envi-
ronments, neuronal networks and their connection. As
the NRP is a web-based application, neuroscientists can
use the simulation platform as well as most editors for
the simulation models conveniently without any local
installation. However, these artifacts are out of scope
of this paper and are thus not described further here.

We applied our approach in a case study where we
migrated a classical robot controller for a Husky robot
with a mounted camera to a neural implementation in
two steps, demonstrating the applicability of our ap-
proach. We selected this case study because of its sim-
plicity, though the NRP has been used for more sophis-
ticated experiments such as visual tracking [31].

The remainder of the paper is structured as follows:
Section 2 discusses related work. Section 3 presents
and discusses the language PyTF to specify coupled
simulations of spiking neuronal networks with robots
in Python. Section 4 introduces the framework archi-
tecture underneath PyTF to implement these coupled
simulations. Section 5 presents a case study evolving a
classical controller for a simple four-wheeled robot with
a mounted camera to a neural implementation. Finally,
section 6 concludes the paper and provides an outlook
on future research.

2 Related Work

Approaches of simulating neuronal networks to con-
trol robots can be traced back at least until the early
1990ies [25]. Nevertheless, to the best of our knowledge,
all approaches required hand-crafted solutions to cou-
ple robot sensorimotor functions and brain simulation.
There exists no dedicated approach to facilitate this in-
terplay. While there are DSLs targeting either the neu-
ronal network simulation or robotics, our language is
the first to describe their interplay on a high abstrac-
tion level.

In the remainder of this section, we present the re-
lated work in several areas in more detail.

2.1 Evolution of classical robot controllers

The transition from using classic robot controllers to
spiking neuronal networks can be found in various works.
For instance, Hagras et al. [13] implemented a spiking

1 http://www.clearpathrobotics.com/husky/
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neural network based robot controller and described
an experiment involving a wheeled robot which fol-
lows along the edge of a wall using ultrasound sen-
sors. Nichols et al. describe a similar experiment [22]
involving a more complex scenario including behavioral
learning. The Braitenberg vehicle inspired experiment
we are using in the case study is much simpler, but we
see this only as a case study to validate our framework
for coupled simulations.

2.2 Semi-automated Evaluation of Robot Controllers

Multiple approaches target the iterative evaluation of
robotic controllers through simulation approaches [2,
19]. However, these approaches do not consider the robot
controller but treat it rather as a black box. Therefore,
no coupling is in place.

2.3 DSLs for Neuroscience

In the field of neuroscience, DSLs can be found in the
NEURON simulator [14,7], whose network models are
based on Hoc [16]. Strey [30] presents a language to
describe neuronal networks to enable code generation
for efficient simulations. More recent, current research
projects focus on describing the structure of spiking
neuronal networks [6,12,27] and allow for a detailed de-
scription of neuron models [24,27]. The languages can
be regarded as complementary to our approach as they
do not describe data transfer to entities outside the sim-
ulated brain, while our approach relies on a formal rep-
resentation of the brain model.

2.4 DSLs for Robotics

Despite software playing a basic role in implementing
the functionality of robotics systems, most robotics soft-
ware systems are still hand-crafted based on frame-
works. However, in recent years a migration from code-
driven approaches towards more flexible model-based
ones started to emerge [29,1].

Several works [10,4,8] have been proposed for DSLs
in robotics, covering some specific aspects of robotic
software systems. Nordmann et al. have published a list
of DSLs in robotics2 and created a survey [23]. Most
of these languages utilize the knowledge of a particular
sub-domain of robotics to create an abstract syntax and
a DSL for it. These DSLs target the generation of entire
robot controllers or at least large parts of them. This
is different to our approach where we assume the robot

2 http://cor-lab.org/robotics-dsl-zoo

controller exists as a neuronal network that needs to be
integrated with the robot.

Rather focused on the implementation, the DSL by
Moghadam et al. for the ATRON self-reconfigurable
robot system also contains an internal DSL embedded
in Python [21]. However, their usage of Python is dif-
ferent to our approach. As they do not reuse semantic
of the Python language, there seems to be no reason
in favor of using their Python DSL over their external
DSL.

3 A Python DSL for Transfer Functions

In this section, we present the language and its abstrac-
tions that we use to specify the connection of robots and
spiking neural networks.

Neuronal
Network

Simula�on

Neuron2Robot
Transfer Func�on

Robot2Neuron
Transfer Func�on

Robo�cs
Simula�on

Spike Sink

Spike Source

Robot Publisher

Robot Subscriber

Figure 2 A closed loop between spiking neural networks and
robots (sketched)

Our main metapher for connecting spiking neuronal
networks with robots are Transfer Functions such as
sketched in Fig. 2. Transfer Functions consist of con-
nections into the simulators and an executable spec-
ification of how the data of one simulator should be
transmitted to the other. Ideally, the executable part
is trivial as the purpose of most Transfer Functions is
limited to transmission, simple arithmetic adjustments
and multiplexing the data from different parts of the
simulators.

The role of the simulators is to some extend in-
terchangeable in the sense that both take information
from one simulator and put it into the other, but the
ways how this is implemented differs for spiking neu-
ronal networks and robots. As a consequence, we have
sticked to the terminology common in the disciplines
of the simulators to give users a better intuition. On
the other hand, we made the implementation flexible
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to allow alternatives as well. For example, the termi-
nology of Robot Publishers and Robot Subscribers in
Fig. 2 is adapted from ROS as these would typically be
implemented by asynchronous ROS topics, but the ar-
chitecture is flexible enough to cope with synchronous
communication to the robot as well.

The DSL to specify Transfer Functions is introduced
in the following sections. First, we present the abstract
syntax of PyTF in Section 3.1, describe supported neu-
ron access patterns in Section 3.2 before we describe the
mapping to Python in Section 3.3.

3.1 Main Concepts

The basic idea behind PyTF is that the functional
specification of a Transfer Function, that is how the
input from a Transfer Function is converted to a robot
control signal, can be specified in a regular Python func-
tion. Thus, the effect of PyTF is to wrap Python func-
tions into Transfer Functions, map their parameters to
parts of either neural network or robot simulation and
manage the execution of this function.

The abstract syntax of PyTF to achieve this func-
tionality is depicted in Figure 3. A Transfer Function
consists of an underlying Python Function and param-
eter mapping specifications. Multiple types of parame-
ter mappings exist in order to connect to either neural
simulation or robotics simulation. We differentiate be-
tween mappings to the neural network (SpikeMapping),
to the robotics simulation (RobotMapping) and to inter-
nal variables. These mapping specifications each have
subclasses to specify whether the parameter is an input
or output to the simulation.

As the parameter mapping specifications are con-
tained in the Transfer Functions, a Transfer Function
does not have external references. In particular, the de-
ployment of Transfer Functions could be distributed to
multiple nodes in case the Transfer Functions contain
computational expensive transmission logic such as pro-
cessing of large matrices for image processing.

All parameter mappings share an attribute specify-
ing which parameter they belong to and a method to
create an adapter component instance. This can be a
mapping to a simulation or just a reference to a local
or global variable. A reference to the surrounding TF
Manager is passed into the mapping specification that
contains references to the communication adapters for
both neural and robotics simulation, so that the map-
ping specification itself can be independent of the used
simulators.

PyTF has two subtypes of Transfer Functions, Ro-
bot2Neuron and Neuron2Robot, represented by the upper

and lower Transfer Function in Fig. 4. The rationale
behind this decision is simply to order Transfer Func-
tions in the unlikely case that a control topic is both
read from and written to. Thus, Robot2Neuron Trans-
fer Functions are executed first. On the other hand,
Neuron2Robot Transfer Functions often result in send-
ing a message to a particular robot control topic. For
this rather common case, the class contains a reference
to a publisher so that the Transfer Function may simply
use the return value of the function to publish on this
topic. Other than that, the type of Transfer Functions
has no implications to the allowed parameter mappings.
In particular, a Robot2Neuron Transfer Function may for
example also contain a publisher or a spike sink.

3.2 Neuron Access Patterns

Whereas robot control signals or sensory inputs from
the robot can be bundled in arbitrary data structures
sent over ROS, the interface of a neuron is determined
through its underlying neuron model. In many cases,
this interface is limited to a few parameters such as the
membrane potential or a history of spikes. As a conse-
quence, a single control signal for a robot is often multi-
plexed to a multitude of neurons and vice versa sensory
inputs such as a camera image are fed into a multitude
of neurons. Therefore, Transfer Functions often require
to connect multiple neurons at once.

On the other hand, spikes as the usual interface
of a neuron in a spiking neural network are discrete
events in time whereas control commands for robots
usually consist of continuous data sent to the robot in
short intervals. Likewise, sensory inputs from the robot
that shall be transmitted to the neural network need to
be discretized to spikes. To perform these conversions,
there are multiple approaches. This includes integration
of spikes to obtain continuous data, generating a cur-
rent or generating spikes either constantly or according
to some probability distribution, most notably Poisson
distributions.

In PyTF, users can choose between a set of access
patterns predefined in the language. Each connection
to a particular set of neurons and according to a given
access pattern is realized by an object we call device
(as this terminology is also partially used in the neural
simulators) where the access pattern is called the device
type. Depending on whether the device is an input into
the network (spike source) or an output (spike sink),
different device types apply. Each device can be con-
nected to arbitrary many neurons that can be selected
by navigating through the populations of the neural
network model.
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+ Name : String
+ Func : PythonFunc�on

TransferFunc�on

+ CreateDevice() : Device

+ ParameterName : String

ParameterMapping

+ DeviceType
 : SpikeSinkType

MapSpikeSink

+ DeviceType
 : SpikeSourceType

MapSpikeSource

+ QueueSize : Integer = 10

MapRobotPublisher

MapRobotSubscriber

SpikeMapping

+ TopicName : String
+ TopicType : String

RobotMapping

+ VariableName : String
+ Scope : VariableScope

MapVariable

Robot2Neuron Neuron2Robot

Parameters

ReturnValue

[0..*]

[0..1]

NeuronSelector

Neurons

[0..*]

Figure 3 The abstract syntax of PyTF

So far, we support the following spike source device
types:

1. Current Generators: The current generators for
direct current, alternating current or noisy current
do not generate spikes but inject currents of the
specified type into all of the connected neurons. These
devices receive the amplitude of the generated cur-
rent as inputs. The noisy current generator can also
be used to test whether the neural network currently
simulated is robust with regard to noise.

2. Poisson Generator: A Poisson generator issues
spikes according to a Poisson distribution. Here, the
inverse of the λ parameter can be set in accordance
to sensory inputs. This inverse reflects the rate in
which spikes are generated by this device.

3. Fixed Frequency Generator: A fixed frequency
generator deterministically generates spikes at a given
frequency. Here, the frequency is set as a parame-
ter and can be adjusted to sensory inputs. Unlike
the other spike generators, this device type is not
directly implemented in neural simulators but can
be implemented by connecting a current generator
with an integrate-and-fire neuron.

This selection is based on the observation that neu-
ral simulators, in particular Nest, let simulated neurons
communicate through the delivery of spikes and cur-
rents. Based on the experiments we performed in the
NRP so far, we believe that this list suffices for most
applications. However, new device types can be added
upon request.

On the contrary, the following spike sinks are sup-
ported:

1. Non-spiking Leaky Integrators: The concept of
leaky integrators is to simply integrate spikes com-

ing from a neuron under observation and add a
leak term to it. The rationale behind this is that,
in spiking neuronal networks, the membrane poten-
tial is highly fragile. Shortly after a spike has been
issued, the membrane potential is reset and there-
fore, it has a high importance whether any mea-
surement is taken before or after a neuron spikes.
Therefore, we augment the neural network with an
additional leaky integrate-and-fire neuron with an
infinite threshold potential (so that it never spikes)
and measure the membrane potential of this neu-
ron. The result is much less fragile and therefore
appropriate for robot control signals.

2. Population Rate: Also a very common pattern
is to simply take the average incoming spike rate of
a neuron or a set range of neurons (such as a set
population). This is, again, stable and can be used
for translation into robot control signals.

3. Spike Recorder: The simplest thing a spike sink
can do is to simply record all spikes issued to a neu-
ron under observation. However, this has two major
drawbacks. At first, the communication overhead is
increased since all spikes are transmitted between
the neural simulation and the Transfer Function but
more importantly, the Transfer Function has to in-
terpret this spike train. This allows great flexibil-
ity as this approach is very extensible, but it is not
suited for the common case.

With the spike sink devices, we tried to reflect the
common information encoding of spiking neuronal net-
works. Again, this list only contains the device types we
deem practical for a range of applications and we do not
claim that this list to be sufficient for all experiments.
This list is subject to change meaning that poorly used
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device types may no longer be supported whereas device
types frequently asked for may be added. For example,
so far we did not include a device capturing the time
until the first spike in a simulation loop. As a reason,
this value is also highly fragile and thus considered less
meaningful at the moment.

The implementation how exactly a given device type
is realized is here up to the communication adapter that
will ultimately create the appropriate communication
objects. For example, the leaky integrator device can
be implemented in the Nest simulator by simply insert-
ing a new integrate-and-fire neuron with adequately set
parameters and an infinite spiking threshold so that the
result is directly available as the membrane potential of
the additionally inserted neuron. This is possible since
the Nest simulator runs in main memory and therefore
allows an arbitrary communication. Other simulators
such as SpiNNaker may be based on spike-based com-
munication, only. Here, the implementation of the leaky
integrator would rather be to record the spikes and do
the integration manually.

Each of these device types has their own additional
configuration such as weights and delays in which the
spikes are issued to spike generators or from existing
neurons into leaky integrators. On the other hand, all
devices share the connection specification towards the
neural simulator, that we call NeuronSelector (cf. Fig.
3). This is a function that, given a model of the neural
network, selects the neurons a device should be con-
nected to.

While a single device merely suffices to transmit
simple sensory data to the network or to issue com-
mand control signals to the robot, the transmission of
complex sensory inputs such as camera images requires
multiple devices connected to different neurons each.
This is the reason that a device mapping can specify
not only a single but multiple neuron selectors. In case
multiple neuron selectors are present, the framework
will create not a single device but one for each neuron
selector.

The advantage of these device groups is that they
aggregate the values from individual devices to arrays,
making this a suitable choice when the according data
in the robotics simulator is also available as arrays. This
is the case e.g. for camera inputs that can then be for
example transmitted to an array of Poisson generators.
Furthermore, device groups can be configured comfort-
ably as in such a scenario all devices usually share large
proportions of their configuration.

3.3 Mapping to Python

Applying a typical query-and-command programming
interface for managing Transfer Functions would pre-
sumably result in verbose schematic code (cf. [9]). Thus,
we use techniques from the area of Domain-Specific
Languages to raise the abstraction level of the target
platform by means of an internal DSL, PyTF. With
PyTF, we obtain a more concise representation of Trans-
fer Functions. Users can specify Transfer Functions as
regular Python functions decorated3 with their connec-
tions to neural and world simulator. The coordination
regarding data synchronization and simulation orches-
tration is hidden in the platform abstractions.

We chose an internal DSL and Python as a host lan-
guage mainly because Python is popular both among
robotics and neuroscience users. Given the research re-
sults fromMeyerovich et al. [20] that suggest that devel-
opers refrain from changing their primary language, we
wanted to make the barrier for neuroscientists as low as
possible and therefore created a Python API4. Further-
more, there is an API for both for the neural simulations
and the robotics side. As a consequence, large parts of
the framework are implemented in Python and this al-
lows an easy implementation of the DSL as a Python
API.

To implement Transfer Functions in PyTF, we have
decided for a decorator syntax. A first set of decorators
turns a regular Python function into a Transfer Func-
tion and a second set of decorators specifies parame-
ter mappings. Everything else, especially including the
neuron access patterns and device types is specified as
parameters for these decorators.

A consequence of this design is the name of the
classes in the abstract syntax. They are adjusted to
yield an understandable syntax when used as decora-
tors.

1 import hbp_nrp_cle.tf_framework as nrp

2
3 @nrp.Neuron2Robot()

4 def my_transfer_function(t):

5 pass

Listing 1 A minimalistic Transfer Function in PyTF

In particular, the classes Neuron2Robot and Robot-

2Neuron create a new Transfer Function object with
no reference yet to a regular Python function such as
sketched in Listing 1. When used as a decorator and
applied to a Python function, the underlying Python
function of the Transfer Function is set and placehold-

3 Decorators in Python are syntacically similar to annotations
in Java, augmenting methods or classes with additional informa-
tion.

4 Application Programming Interface
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ers for the parameter mappings are created (Python al-
lows to retrieve the parameter names of a method using
the inspect module). The function will then be called
for each simulation loop, passing the current simulation
time as a parameter.

The mapping specification classes MapSpikeSource,
MapSpikeSink, MapVariable, MapRobotPublisher and Map-

RobotSubscriber then create a parameter mapping spec-
ification object that, when called with a Transfer Func-
tion, replace the according placeholder with themselves
and return the Transfer Function to allow other pa-
rameters to be mapped. If no appropriate placeholder
exists, an error message is thrown.

1 @nrp.MapVariable("var", initial_value=0)

2 @nrp.Neuron2Robot()

3 def my_transfer_function(t, var):

4 pass

Listing 2 A minimalist parameter mapping in PyTF

The configuration for mapping specifications is pass-
ed as arguments to the decorator representing the pa-
rameter mapping. As an example, Listing 2 shows the
definition of a parameter mapping to a local variable.
Here, the additional configuration of the parameter map-
ping consists of the initial value for that variable (that
is also applied after a reset) and optionally the variables
scope, omitted in Listing 2.

The device mappings are most interesting since they
allow the most detailed configuration. In particular,
they contain a specification to which neurons a device
should be connected as a function selecting the neurons
for a given model of the neural network. However, as
we do not want our users to bother with the details of
lambda functions where this is not strictly required, we
created a small API to allow them to write such func-
tions as if they were operating on an assumed neural
network model directly.

To specify multiple neuron selectors, a list of neu-
ron selectors must be passed into the neural network
constructor. In PyTF, we support a mapping opera-
tor that construct such lists of neuron selectors based
on a lambda function and a concatenation operator to
express more complex patterns. These operators make
use of the knowledge that neuron selectors must not be
nested deeper than in one list (i.e. it is not permitted
to specify a list of a list of neuron selectors for a device)
and flatten these lists when required.

4 The Neuro-Robotics Platform (NRP)

A round-trip experimentation and validation of neu-
ronal network algorithms controlling a robot in a virtual
or real environment requires a solid evaluation platform

covering all disciplines. In the scope of the Human Brain
Project (HBP)5, we therefore developed such a plat-
form, the NRP. In the following, we introduce the key
components of the NRP simulation backend, describe
its architecture and explain the data synchronization
between the simulations.

4.1 Overview

The NRP consists of the following key components:

4.1.1 Neural Network Simulator:

To simulate the neural networks, the neuronal simula-
tor NEST [11] is used. This simulator was designed to
run on distributed systems utilizing parallel resources.
This is especially important given the size of biologi-
cal spiking neuronal networks such as the human brain
with approximately 1011 neurons and 1015 synapses.
However, we are also working on an integration of the
neuronal network simulator SpiNNaker [17] which runs
on specialized neuromorphic hardware. For users, the
choice of the neuronal network is transparent as neu-
ronal networks can be simulated in PyNN [6], an ab-
straction layer that supports both simulators.

4.1.2 World Simulator:

To simulate the physics of the robots and their environ-
ment, the Gazebo simulator [18] is used. For communi-
cation with the simulated robot, we use the Robot Op-
erating System (ROS)[26] as a middleware. The plat-
form uses the asynchronous event-based communication
through ROS topics. This allows identifying parts of the
robot by its topic address and type. Using ROS as mid-
dleware also yields the possibility to easily exchange the
simulated robot by its physical counterpart.

4.1.3 Closed Loop Engine:

The component connecting both simulators is the Closed
Loop Engine (CLE) developed in the scope of the HBP.
The CLE orchestrates the brain simulation, world sim-
ulation and the data transfer. The data transfer is han-
dled through Transfer Functions (cf. Section 3). As Trans-
fer Functions can take information from a simulation or
insert stimuli, a closed loop between the simulations is
established.

5 http://www.humanbrainproject.eu
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4.2 Architecture of a Simulation

During simulation, the code to run the simulation can
be described through components as sketched in the
UML Component Diagram of Figure 4.

Closed
Loop

ROSTopicPublisher WheelTransmit

PyNNLeaky-
Integrator

PyNNLeaky-
Integrator

IRobotTopicPublisher
ILeakyIntegrator

ILeakyIntegrator

ROSTopicSubscriber EyeSensorTransmit

PyNNPoisson-
Generator

PyNNPoisson-
GeneratorIRobotTopicSubscriber

IPoissonGenerator

IPoissonGenerator

TransferFunc�on

Transfer Func�on

Figure 4 Transfer Function components and their communica-
tion adapters in a running simulation of the standard image pro-
cessing experiment

In the diagram of Figure 4, we assume Transfer
Functions for a standard image processing experiment,
represented by the components WheelTransmit to trans-
mit the voltage from actor neurons to the robot and
EyeSensorTransmit to transmit camera images to the
neural network. They provide an interface to the sim-
ulation kernel as a Transfer Function and are thus re-
ferred to in the remainder as Transfer Function com-
ponents. These components are in the middle of the
diagram and require interfaces according to their com-
munication needs. For example, the ILeakyIntegrator

interface specifies a voltmeter to be injected into some
neurons so that the Transfer Function component Wheel-
Transmit can access their current voltages.

Since these communication needs are hidden behind
an interface, the Transfer Function components are in-
dependent of simulator implementations on either side.
We refer to the components realizing the communi-
cation of a Transfer Function component with either
simulator as connector components. All these connec-
tor components have a configuration such as the robot
topics or the neurons that they should be connected
to and how. A Transfer Function component may be
connected to multiple connector component instances.
Each connector component instance is responsible for
the connection of a certain group of neurons according
to the components configuration.

The connector components on the left side real-
ize the communication with the world simulator. The
messages are either directed towards the robot control
via ROSTopicPublisher or towards the neuronal simula-
tor via ROSTopicSubscriber. Internally, these connectors
forward the request via ROS to Gazebo.

On the right side of Figure 4, the Transfer Functions
access multiple component instances to connect to the
neuronal simulator. In Figure 4, this is realized in the
connector component instances of PyNNLeakyIntegrator
and PyNNPoissonGenerator. The different kinds of con-
nector components to the neural network have different
interfaces since there are multiple access patterns dif-
ferent to just sending or receiving messages. Whereas
a leaky integrator collects information from the neural
network, the Poisson generator inserts stimuli.

The Transfer Functions contained in Figure 4 es-
tablished a closed loop between the neural network and
the robot. Whereas the WheelTransmit collects informa-
tion from the neural network and publishes information
to the physics simulation through the connector com-
ponents, EyeSensorTransmit establishes a connection in
the opposite direction.

The entire architecture of a simulation instance such
as presented in Figure 4 is specific to the experiment
setup. The component types of the connector compo-
nents such as ROSTopicPublisher or PyNNPoissonGene-

rator are fixed as they reflect the methods to access a
running simulation. The Transfer Function components
WheelTransmit and EyeSensorTransmit on the other hand
are specific to the physiology between the neural net-
work and the robot. In particular, the physiology is
subject to change across multiple experiments and to
be specified by the user.

4.3 Architecture at design time

To support the dynamic instantiation of such architec-
tures for a particular simulation, we have implemented
a framework. The architecture of this framework is pre-
sented in this section.

Despite supporting arbitrary simulations, an impor-
tant design goal is to make the architecture as indepen-
dent as possible from the simulator implementations.
To achieve this, both of the simulators are encapsulated
by two different components, one to manage the com-
munication with the simulator (-Adapter) and another
component to control the simulation (-Controller). We
establish this separation 1) to separate the concerns
of controlling a simulation and accessing its data and
2) because the control of the simulator could be de-
ployed on another machine then the actual data trans-
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fer, furthermore, 3) there may be multiple instances re-
alizing the data transfer as opposed to a single instance
controlling the simulation.

On the other hand, the choice of an adapter com-
ponent is of course dependent on the choice of the con-
troller component as both have to refer to the same
simulation.

An overview of the architecture is depicted as a
UML Component Diagram in Figure 5.

ROSAdapter TransferFunc�on-
Manager

PyNNAdapter

Gazebo Nest

GazeboController PyNNController
ClosedLoop-
Controller

IRobotAdapter IBrainAdapter

PyNNROS

ROS

IRobotController IBrainController

PyNN

ITransferFunc�onManager

IClosedLoopControl

Instan�ates 
ROSTopicPublisher, 
ROSTopicSubscriber

Instan�ates 
PyNNLeakyIntegrator,
PyNNPoissonGenerator, ...

Organizes data transfer, i.e. 
manages WheelTransmit, 
EyeSensorTransmit

Controls the
physics simulator

Controls the
neuronal simulator

Orchestrates
neuronal and physics
simulators

Figure 5 The components of the simulation backend in the NRP

While Figure 4 shows the components in a running
simulation instance, Figure 5 depicts the framework ar-
chitecture at design-time. When initializing a simula-
tion, the components in Figure 5 instantiate the com-
ponents of Figure 4 according to the experiment setup.

The component accessed from the frontend is the
ClosedLoopController (CLC). It provides services on
a high abstraction level such as initializing, starting,
pausing or resetting the simulation and therefore is the
control cockpit of the simulation.

The components NEST and Gazebo represent the neu-
ral and world simulators presented in Section 4.1 that
are connected to the CLC through the Python interface
PyNN or through ROS topics, via respective controller
components PyNNController and GazeboController. De-
picting the simulators as components in Figure 5 is
not entirely accurate as they are no units of deploy-
ment. In particular, both the neuronal simulator Nest

and also the physics simulator Gazebo are complex dis-

tributed systems themselves and internally consist of
many components. However, we stick to the represen-
tation as components for simplicity.

PyNNAdapter
TransferFunc�on

Manager
ROSAdapter

EyeSensorTransmitRegister

loop

alt
Create Subscriber

Create Spike Source

Register device

Figure 6 Transfer Function Initialization

The initialization itself is done in the TransferFunc-

tionManager (TFM) component as depicted exemplary
for the EyeSensorTransmit Transfer Function in Figure
6. When initializing the simulation, this component gets
the Transfer Function components in the simulation,
yet unconnected to connector components. In the sim-
ulation sketched in Figure 4, these are WheelTransmit

and EyeSensorTransmit. It then requests connector com-
ponents from the adapter components ROSAdapter and
PyNNAdapter such that each required interface of each
Transfer Function component is connected to an ap-
propriate connector component. After the initialization,
the TFM offers services to the CLC to execute the
Transfer Functions and retrieve status information about
them.

The adapter components ROSAdapter and PyNNAdap-

ter serve as dependency injectors for the communica-
tion demands of a Transfer Function. That is, when the
TFM requests a leaky integrator for a given neuron such
as in Figure 4, the PyNNAdapter will create an instance of
a connector component type realizing this interface, in
this example the PyNNLeakyIntegrator, and connect it
to the requested neurons. Likewise, the ROSAdapter will
create a ROSTopicPublisher instance when a publisher
to the control topic of the robot is required. The TFM
will then connect the returned connector component to
the Transfer Function component.
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4.4 Data Synchronization

When the simulation is run, the CLC orchestrates the
simulation in cycles of a fixed length, currently set to
20ms simulation time.

CLC TFM
EyeSensor-
  Transmit

  Neural
Simula�on

 Robo�cs
Simula�on

Simulate NN(dt)
Simulate World(dt)

Run Transfer Func�ons

Run
Set Poisson rates

Refresh buffers

Refresh Buffers

Figure 7 Synchronization of simulations

This cycle is depicted in Figure 7. To save space,
we have omitted any controller, adapter or communica-
tion components but show the simulations as directly
accessed. The CLC first runs both of the simulations in
parallel, then it calls the TFM to run the actual data
exchange. The TFM holds a list of registered Trans-
fer Functions and thus knows the Transfer Function
EyeSensorTransmit. But before any Transfer Function
is called, the buffers of the adapters are refreshed. This
is is necessary for some devices such as leaky integrators
to prevent that the devices are updated only once per
cycle. Inside the Transfer Function, the access to the
device data is very fast as the data is already buffered.
The Transfer Function creates its outputs by assigning
values to some properties of the used device. This re-
sults in a call to the respective simulation, in case of
Figure 7, the rates of the Poisson generators are trans-
mitted to the neural network.

As a consequence, it is not possible to access data
yielded in the current timestep from the respective other
simulation. The only data exchange is done through
Transfer Functions, but as they do not run in parallel
to the simulations, such data can only be processed in
future timesteps. The reason for the sequential execu-
tion of Transfer Functions is to avoid race conditions
(asynchronously changing parameters of the simulated
models causes some simulators to crash), but also to
support reproduceability of the experiment results.

5 Case Study: A Braitenberg Vehicle
Experiment

In this section, we demonstrate and validate our ap-
proach by applying it to a small experiment inspired by

the Braitenberg vehicles [5]. We chose this experiment
as it is small enough to explain the neural networks in-
volved and to show the code necessary to couple this
neural network to a robot. We present the experiment
in two versions where the proportions of the neural con-
troller are different. This resembles a typical workflow
when transitioning an existing classical robot controller
to a neural implementation.

As robot, we use a four-wheeled Husky6 robot equip-
ped with a camera. This robot is in a virtual room
equipped with two screens. The screens are either blue
or red and the user can change their color. Eventually,
one of the screens is turned red. The robot counter-
clockwisely turns around until he recognizes the red
color and moves towards it.

The implementation can be done relatively easy by
using classical image processing methods, for example
by iterating through the pixels of the camera image
and counting red pixels based on a HSV color model.
However, given the results on pattern recognition with
neural networks [3], one may want to exchange these
classic image processing steps by a neural network in
order for a fine granular perception of red colors or to
take advantage of neural networks ability to adapt to
new situations, i.e. to learn. Conversely, neuroscientists
may want to validate their neuro-physiological models
in order to check whether they produce valid results.

We therefore take this example as a case study to
demonstrate the applicability of our approach. In par-
ticular, we migrate the controller for the Husky robot
in two steps. In a first step, the identification of red col-
ors is implemented using a standard image processing
library, OpenCV. The neural network thus only navi-
gates the robot based on the input stimuli. In a second
step, we shift the image processing part into the neural
network so that the neural network takes full control
over how to detect red pixels.

The neural networks for both steps of this experi-
ment are entirely static. In particular, we did not im-
plement any learning algorithm.

5.1 A Braitenberg Vehicle Controller using Standard
Image Processing

As a first step towards a fully neural implementation of
a controller for our Husky robot acting as a Braitenberg
vehicle, we migrate the implementation of the velocity
control into the neural network but use as stimuli the
camera images preprocessed using standard image pro-
cessing. In particular, we use a simplistic spiking neu-
ron network consisting of just 8 neurons getting stimuli

6 http://www.clearpathrobotics.com/husky/



A Framework for Coupled Simulations of Robots and Spiking Neuronal Networks 11

from preprocessed images and letting the robot move
towards the red screen. The neural network is adapted
from the original network presented by Braitenberg [5].
In the remainder, we refer to this step of the case study
experiment simply as standard image processing exper-
iment.

We first present the neural network in Section 5.1.1,
present the Transfer Functions to transform spikes from
the neural network into robot control signals in Section
5.1.2 and in the opposite direction from the robot cam-
era to stimuli for the neural network in Section 5.1.3.

5.1.1 A Neural Network for Braitenberg Vehicles

Figure 8 The neural network for the Braitenberg Vehicle exper-
iment with standard image processing

In the neural network for the standard image pro-
cessing step, depicted in Figure 8, the five neurons in
orange (numbers 0 to 4) are bundled in a population
that represent the sensors of the network. As an ex-
emplary connection to the Husky robot, these neurons
receive the input signal through Poisson generators gen-
erating spikes according to a Poisson distribution. The
rate of this Poisson distribution depends on how many
red pixels have been detected in the camera image. We
use Poisson generators since alternative spike sources
generating spikes in a fixed frequency are more affected
by time resolution. The classification whether a given
pixel is red is done through an image processing library
function categorizing the pixels according to the HSV
color model. This information is propagated through
the network so that the membrane potential of the ac-
tor neurons 6 and 7 (in green) can be used to control
the left and right wheel motors of the robot.

5.1.2 Transmitting Membrane Potentials to Motor
Commands

This section describes the information flow from the
neural network to the robot. In the Braitenberg exper-
iment, the membrane potential (i.e. the voltage) of the

actor neurons encodes the movement of the robot. But
as the underlying Husky controller requires to specify
movement of the robot in terms of angular and lin-
ear progression, the voltages of the actor neurons must
be converted by means of arithmetic transformation.
In particular, the minimum of both voltages forms the
linear progression while their difference results in the
angular progression. Furthermore, the resulting move-
ment commands must be scaled to achieve good results.

1 import hbp_nrp_cle.tf_framework as nrp

2 from geometry_msgs.msg import Vector3, Twist

3
4 @nrp.MapSpikeSink("left_wheel_neuron",

5 nrp.brain.actors[0], nrp.leaky_integrator_alpha)

6 @nrp.MapSpikeSink("right_wheel_neuron",

7 nrp.brain.actors[1], nrp.leaky_integrator_alpha)

8 @nrp.Neuron2Robot(Topic(’/husky/cmd_vel’, Twist))

9 def wheel_transmit(t, left_wheel_neuron, right_wheel_neuron):

10 linear = Vector3(20 * min(left_wheel_neuron.voltage,

right_wheel_neuron.voltage), 0, 0)

11 angular = Vector3(0, 0, 100 * (right_wheel_neuron.voltage -

left_wheel_neuron.voltage))

12 return Twist(linear=linear, angular=angular)

Listing 3 Transfer Function from neurons to the robot in the
Python DSL

An implementation of this Transfer Function in our
Python DSL is shown in Listing 3. Line 1 simply im-
ports the Transfer Functions framework into the current
script. Line 2 imports the ROS Topic types needed for
the communication with the robot. Lines 4-12 form the
Transfer Function translating the voltage of actor neu-
rons into robot commands.

The function wheel_transmit is turned into a Trans-
fer Function from the neural simulator towards the robot
simulator by the decorator @nrp.Neuron2Robot in line
8. The decorator automatically registers this function
at the TFM which will ensure that it is connected to
the necessary connector components. Furthermore, the
decorator specifies the connector component that will
receive the functions return value. In the example, the
return value is sent to the robot using the ROS topic
/husky/cmd_vel. The decorators in lines 4 to 7 specify
how the input parameters of the function should be
mapped to the neural network. In this case, the pa-
rameters are connected to two single neurons of the ac-
tors population through a leaky integration algorithm.
The first parameter t of a Transfer Function is always
the current simulation time and cannot be remapped,
whereas all other parameters must be mapped to either
robot topics or neurons.

The body of the original Python function in lines 10-
12 is not affected by the Python DSL and is allowed to
contain arbitrary Python code. In this Transfer Func-
tion, we manually construct the Control messages to
control the Husky’s velocity.

Additional details of the device connection to the
neural network such as the specification of weights or
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delays are not required in this case as the default values
suffice.

5.1.3 Transmitting Processed Images to the Neural
Network

We now describe the opposite direction, i.e. the process-
ing of camera images to stimuli for the neural network.
A camera image is taken from the world simulator, red
colors are detected by a call to OpenCV and the results
are used as stimuli for the neural network (cf. Section
5.1).

1 import cv2

2
3 @nrp.MapRobotSubscriber("camera", Topic(’/husky/camera’, sensor_msgs.

msg.Image))

4 @nrp.MapSpikeSource("red_left_eye",

5 nrp.brain.sensors[0, 2], nrp.poisson)

6 @nrp.MapSpikeSource("red_right_eye",

7 nrp.brain.sensors[1, 3], nrp.poisson)

8 @nrp.MapSpikeSource("green_blue_eye",

9 nrp.brain.sensors[4], nrp.poisson)

10 @nrp.Robot2Neuron()

11 def eye_sensor_transmit(t, camera, red_left_eye, red_right_eye,

green_blue_eye):

12 cv_image = bridge.imgmsg_to_cv2(camera.value, "rgb8")

13 image_results = process(cv_image)

14
15 red_left_eye.rate = 1000.0 * image_results.leftred

16 red_right_eye.rate = 1000.0 * image_results.rightred

17 green_blue_eye.rate = 1000.0 * image_results.greenblue

Listing 4 Transfer Function from a camera image to neuron
spikes

The implementation of this Transfer Function is de-
picted in Listing 4 where we omitted the import state-
ments. Line 3 is responsible to map the camera param-
eter to a subscriber to the camera topic of the robot. In
lines 4-9, the parameters red_left_eye, red_right_eye
and green_blue_eye are mapped to Poisson generators
for the respective neurons. The decorator @nrp.Robot2-
Neuron in line 10 marks the function as a Transfer Func-
tion from the world simulation to the neural network.

The body of the original Python function simply
then processes the camera image using standard image
processing libraries such as in particular OpenCV in
line 11. The results from this process are then used as
inputs for the Poisson generators in lines 13-15.

5.2 A Braitenberg Vehicle Controller using Neural
Image Processing

Striving to perform as many tasks as possible through
neural networks, the standard image processing version
of the experiment can be extended by shifting the detec-
tion of red colors to the neural network. In the standard
image processing setup, the neural network can only re-
act on the processed images which limits the applica-
bility of any learning based on new incoming images to

the preprocessing results. However, one would rather
want that the neural network can learn based on the
entire image, e.g. to enhance pattern recognition.

While in the standard image processing version of
the experiment, only the result of the image process-
ing is transmitted to the neural network, in the ex-
tended step we transmit the entire camera image from
the robot to the neural network. Only the rescaling of
the image to a resolution appropriate for the neural
network is left to the transfer function.

As a consequence, subsequent steps to improve the
capabilities of the neural network in terms of pattern
matching can be implemented without having to change
the Transfer Function as the Transfer Function only
describes the interface from the classical controller (i.e.
the camera in the robot) to the neural network.

5.2.1 A Neural Network Extension for Image
Processing

Thus, compared to the standard image processing ver-
sion of the experiment, the neural image processing ver-
sion yields the requirement to extract stimuli from an
array such as a camera image. These stimuli are then
to be transmitted to a whole range of neurons.

Figure 9 Sketch of the neural network for a Braitenberg Vehicle
experiment with neural image processing

The example neural network for recognizing red col-
ors is sketched in Figure 9. For a 40x30 pixel image,
it contains approximately 5, 000 neurons. Each pixel is
processed by a neuron P . The pixels of a half image
are all connected to the neuron populations Ri or Le
that represent how much red color can be seen on the
right or left half image, respectively. Each pixel neuron
P is connected to three Poisson generators that spike
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according to the red, green and blue color channels of
the corresponding pixel.

While the neural network in this extended case is
much larger than in the standard image processing ver-
sion, it is still to be considered a very small neural net-
work. This is particularly because the Husky robot that
the experiment is using only contains two degrees of
freedom.

5.2.2 Transmitting Raw Images to the Neural Network

The connect this neural network to the robot controller,
we need to insert stimuli for the entire image that needs
to be transmitted. We do this by transmitting each
RGB color value separately to the neural network as
this network contains a node for each color channel
of each pixel through a Poisson generator (cf. Fig. 9).
However, for an image resolution of just 30× 40 pixels,
this amounts to a connection of 30×40×3 = 3600 Pois-
son generators. As Python has a limitation to 256 posi-
tional parameters, it is not possible to create a Trans-
fer Function with 3600 parameters and it would not be
convenient, either. Thus, we use device groups.

1 @nrp.MapRobotSubscriber("camera", Topic(’/husky/camera’, sensor_msgs.

msg.Image))

2 @nrp.MapSpikeSource("red_generators",

3 nrp.map_neurons(1200, lambda i: nrp.brain.sensors[i]),

4 nrp.poisson, weights=0.0075, target=’excitatory’)

5 @nrp.MapSpikeSource("green_generators",

6 nrp.map_neurons(1200, lambda i: nrp.brain.sensors[i]),

7 nrp.poisson, weights=0.00375, target=’inhibitory’)

8 @nrp.MapSpikeSource("blue_generators",

9 nrp.map_neurons(1200, lambda i: nrp.brain.sensors[i]),

10 nrp.poisson, weights=0.00375, target=’inhibitory’)

11 @nrp.Robot2Neuron()

12 def eye_sensor_transmit(t, camera, red_generators, green_generators,

blue_generators):

13 image_results = tf_lib.get_color_values(image=camera.value, width

=40, height=30)

14
15 red_generators.rate = 250.0 * image_results.red

16 green_generators.rate = 250.0 * image_results.green

17 blue_generators.rate = 250.0 * image_results.blue

Listing 5 Transfer Function from a camera image to Poisson
rates for each pixel

The code for the Transfer Function to transmit the
images from the camera to the neural network using
device groups is shown in Listing 5. Similar to Listing 4
from the standard image processing experiment, it con-
tains a Python function in lines 12-17 that is marked as
a Transfer Function using the @nrp.Robot2Neuron deco-
rator in line 11.

The device group specification is contained in lines
2-10. The map_neurons function is used to specify that
the parameters should be used to multiple neurons us-
ing a device group. This function takes an index set as
parameter and a lambda function how an index is tied
to a neuron. Lines 3, 6 and 9 specify that three groups

of 1200 Poisson generators should be created, each Pois-
son generator connected to exactly one neuron that has
the same index inside the sensors population. Whereas
this connection is excitatory for the red values of a pixel,
the synapses for the Poisson generators responsible for
green and blue values are inhibitory.

In the function body of Listing 5, the library call
in line 13 splits the image into three arrays with the
pixel values according to the given channels. The ar-
rays are implemented as NumPy7 arrays that support
arithmetic operations like the scaling of the resulting
vectors in lines 15-17. The rescaled vectors are then as-
signed as rates to the Poisson generators. The device
group internally reconfigures the rate of each Poisson
generator device in this group.

5.3 Simulation of the Braitenberg Vehicle Experiment
in the NRP

To validate that our neural controller produces the cor-
rect outputs, we run the Husky robot in a simulated
environment, i.e. a realistic virtual room equipped with
two screens that may be turned red by the user dur-
ing the simulation. The simulation uses the Transfer
Functions introduced in Sections 5.1 and 5.2. In both
versions, the Husky successfully finds the red color and
moves towards it. Figure 10 shows a screenshot of the
simulation of the standard image processing version of
the experiment and a video is publicly available online8.

The NRP offers some tools for experimenters to val-
idate their experiment. In Figure 10, one can see two
tool windows showing a plot of the spike train for the
neurons and the plot of the joint velocities. The purpose
of these tools is to enable experimenters to retrace what
is currently happening during a simulation. In the mo-
ment the screenshot was taken, the robot has already
had turned towards the red screen and moved towards
it until the screen got out of sight. It then turned again
until it found the other screen.

With the spike train, we can see that the four neu-
rons with indices 0-3 connected to the Poisson genera-
tors to encode the image spike exactly when a red screen
is in the robots area of sight. Neuron 4 spikes all the
time since there is a considerably large proportion of the
image that is not red. When no red color is detected,
neuron 5 creates a sparse spike train. This combination
is then added to neurons 6 and 7 that forward their
information to the respective transfer function which
translates these spike trains in motor commands, thus
allowing the robot to move.

7 http://www.numpy.org/
8 https://www.youtube.com/watch?v=osmkKQb5pTc
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Figure 10 The Braitenberg vehicle experiment using standard image processing simulated in the NRP platform

In the joint plot, this is reflected by graphs plot-
ted for the velocity of the front wheel joints where
the plots shows positive velocities for both front wheel
joints when the robot moves towards the screen and
opposite velocities of different signs when the robots
turns.

If a Transfer Functions turned out to produce sub-
optimal results, the platform also allows to exchange
the Transfer Functions during a running simulation. For
this, we provide a simple editor with syntax-highlighting,
shown in Figure 11. The editor on the left half of this
screenshot lists all Transfer Functions currently loaded
in the simulation with their specification in PyTF. When
a Transfer Function is updated, the old Transfer Func-
tion is discarded, releasing the devices where possible
and adding the new Transfer Function on the fly.

6 Conclusion and Future Work

In this paper, we have presented an approach to bridge
the semantic gap between spiking neural networks and
simulated robots. Coupled simulations can be supported
with a experiment-agnostic framework architecture that
eases the specification of the experiments. This archi-
tecture is implemented in a web-based integrated sim-
ulation platform that makes it easy for neuroscientists
to run experiments validating models of a connection

between neural networks and actuators, but also gives
roboticists a tool to develop robotics controllers tightly
coupled to a spiking neural network. We have presented
a textual DSL in Python targeted for neuroscience users
with a good knowledge of Python to specify the con-
nection between spiking neural networks and robots for
a particular experiment.

However, not all users may have the necassary pro-
gramming skills and know Python as good. Thus, a for-
mal language equipped with a graphical editor is under
development. With such an editor, we hope to make
the coupled simulation of spiking neural networks and
robots accessible for a wider audience. Furthermore, we
want to develop analyses and constraint checks to en-
sure that Transfer Functions reference valid input and
output of the Brain and Body. As a benefit, we hope
to detect design flaws in simulations before we need to
allocate sparse resources such as neuromorphic comput-
ing platforms.
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Figure 11 Editing Transfer Functions during a simulation
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