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Abstract

This paper details and discusses work performed at the woodworking SME Mivelaz Techniques Bois SA within the SME-
robotics FP7 project. The aim is to improve non-expert handling of the cell by introduction of cognitive abilities in the
robot system. Three areas are considered; intuitive programming, process adaptation and system integration. Proposed
cognitive components are described together with experiments performed.

1 Introduction
Today’s robot systems have limits in their ability to deal
with frequent changes in the manufacturing process. While
robots are able to carry out repetitive tasks to a high
standard, they do not meet the demands of small- and
medium-sized enterprises (SMEs); small lot sizes, high
number of product variants, frequent re-configuration and
re-programming, and little or no in-house robot exper-
tise. Also, for the setup and operation of robot systems
in an SME environment, which is typically less structured
and involves more uncertainties than large-scale or mass-
production industries, the currently available solutions re-
sult in overly complex system integration.
The SMErobotics1 project vision is to significantly lower
the threshold for introducing and meeting productivity de-
mands with robot automation on the SME shop floor. Cog-
nitive abilities need to be included per default in the robot
system to aid the operator in setup and during process with
little or no robot expertise needed. To this end, robot sys-
tem components and techniques are defined to target sev-
eral aspects of SME robot automation, such as human-
robot interaction, system integration and process adapta-
tion. Together the components present cognitive ”add-ons”
to an industrial robot system.
In this paper a SME robot cell set in the woodworking do-
main is targeted by a selection of SMErobotics techniques.
The production cell is located at Mivelaz Techniques Bois
SA, an SME located in Switzerland that manufactures pre-

1http://www.smerobotics.org

Figure 1 Woodworking gantry-robot cell at SMErobotics
partner Mivelaz Techniques Bois SA, performing wall
panel assembly for pre-fabrication houses and free-form
milling.

fabrication houses, and performs wooden wall panel as-
sembly as well as free-form milling. A picture of the cell is
shown in Figure 1. Several issues for the specific SME are
targeted, including intuitive adaptation of machining oper-
ations for execution, automatic assistance in selection of
process parameters, and robust system-level integration of
equipment and software components.
The paper is outlined as follows; A description of the pro-
duction cell is followed by a description of cognitive com-
ponents added or suggested for the cell. This is followed
by descriptions of experiments performed and finally con-
clusions.



(a) Wall struts are manufactured by CNC.

(b) Struts are manually assembled into wall structures.

(c) Panels are assembled and fitted to wall structures using the gantry
robot cell.

Figure 2 The basic shop floor production flow at the
SME.

2 Robot Woodworking in an SME
This section describes the woodworking robot cell located
at Mivelaz Techniques Bois SA. The SME produces one-
off pre-fabrication houses based on in-house CAD/CAM2

expertise. The on-site shop floor manufactures the required
house parts (walls and other details) that are then shipped
for assembly at the customer site.
The gantry robot3 cell is part of a production flow that
starts with CAD/CAM resulting in machining description
formats and blueprints for the shop floor, followed by ma-
chining and assembly operations on the shop floor. The
major production steps are depicted in Figure 2. CNC4 ma-
chines manufacture struts that are manually assembled into
wall structures. These are then moved onto the gantry robot
work table where panel assembly is taking place. Addi-
tional operations, such as quality inspection, adding insu-
lation material, or turning the wall structure for panel as-
sembly on the opposite side, is performed manually.
An assembly consists of picking panels and placing them
a side of the wall structure. This is usually followed by

2Computer Aided Design/Manufacturing
3The gantry has 6 degrees of freedom. Panel assembly utilizes five

while free-form milling uses all six DoFs.
4Computerized Numerical Control

(a) Pick and place of panels.

(b) Nailing of panels to wall structure.

(c) Sawing of panels to fit wall structure.

Figure 3 Gantry wood panel operations utilized for the
panel assembly in Figure 2(c).

nailing of panels to the structure and concluded by saw-
ing and milling the panels to fit the structure. Since wood
is a live material, fitting is usually performed by material
removal according to nominal CAD dimensions (with an
added fault-tolerance offset) followed by manual adjust-
ment of the sawing and milling operation and re-execution
for exact fit. The gantry robot has two work zones to allow
several walls to be assembled at the same time for higher
throughput.

2.1 Issues
Aiming for non-expert handling, interviews revealed de-
pendencies on in-house robot and robot-related expertise:

• General robot expertise is needed from time to time
(estimated once per two weeks) to solve issues that
are beyond the knowledge of an ordinary robot oper-
ator. Typically this amounts to resolving issues with
CAMed machining operations on the shop floor.

• Process adaptation due to tool wear is currently done
manually, requiring operator process experience.

• Introduction of new sensors and other hardware equip-
ment requires PLC expertise and experience in the
current cell setup.



3 System Architecture
As a step towards addressing the issues listed in Sec-
tion 2.1, cognitive software components and techniques
from three SMErobotics areas were adopted for the cell;
intuitive programming, sensor adaptation and system-level
integration. The added software was physically hosted on
a PC during experiments, but in preparation for permanent
installation of part of the software an industrial PC was also
integrated in the cell setup.
Figure 4 shows an architectural overview for the introduc-
tion of cognitive components in the robot system; Intu-
itive programming is represented by several of the com-
ponents. Process adaptation is listed as a component, but at
the moment of writing actual packaging of the adaptation
software as a component has not been performed. Finally,
system-level integration is concerned with interoperability
of equipment and software components and is represented
in (some) of the arrows in the figure. Robot operations are
stored in a woodworking shop floor format called BTL and
are imported to a database. The operations then need to be
selected, possibly changed and annotated with further pro-
cess data. This is done using the interaction manager with
associated GUI. The task execution engine allows visual-
ization of operations through a generic simulation environ-
ment, as well as generation and deployment of robot pro-
grams, and monitoring of a running task. Two deployment
targets are available in the system, a robot-specific simu-
lation environment (ABB RobotStudio5) capable of exe-
cuting the generated robot program and the physical con-
troller. During execution sensor data is collected for pro-
cess adaptation. Task execution is a matter of interacting
with both the cell PLC and the robot controller. This is
done by communicating with the PLC through the robot
program.
The implemented architecture is more complicated than
the architecture described so far. Since components were
adapted from different project partners from existing solu-
tions it resulted in incompatibilities that needed to be re-
solved for components to interoperate. Incompatibilities
such as differing data structures and execution environ-
ments motivated an investigation into and application of
(some) SMErobotics system-level integration techniques.

3.1 BTL parser
BTL6 is an open data format mainly maintained by Ligno-
cam7. It was created by two CAD companies, SEMA8 and
CADWORK9. It is a data transfer format for wood con-
structions containing both part geometries and machining
operations which is understood by woodworking CNC ma-
chines. As an example, the geometry in Figure 2 is part of
a house described in one BTL file. The dark areas in Fig-
ure 2(a) represent material removal operations, the red box

5http://www.robotstudio.com
6http://www.design2machine.com
7http://lignocam.com
8http://www.sema-soft.de
9http://www.cadwork.com
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Figure 4 Proposed architecture for the introduction of
cognitive components in the woodworking robot system.

in 2(b) indicate a selected strut, and the red line in 2(c)
represents a sawing operation. Since solutions for BTL
interpretation for industrial robots were scarce during the
project, it was necessary to develop a BTL industrial robot
component specifically for the SME need10. The compo-
nent is used to make BTL data accessible to the other com-
ponents in the system.

3.2 Intuitive Adaptation of BTL processes
As part of SMErobotics several components were devel-
oped to make robot automation accessible to non-expert
robot operators. Operators are experts in their respective
domains and should be able to communicate their inten-
tions to the system, without being experts in robotics. In
the interaction manager, this is done by explicitly model-
ing the required knowledge in a way, such that the robot
system is able to understand the language of the domain ex-
pert. A semantic description language has been developed
to specify processes, interaction objects, and the workcells
in which the processes shall be executed [3, 4]. For in-
teraction, an intuitive touch interface serves as the primary
modality for inspecting and parameterizing manufacturing
processes. This interface serves as a frontend to the seman-
tic process description. For the woodworking application
the interaction manager was adopted to read the BTL de-
scription through a semantic transformation to the process
description language. It then manages the dialogue with
the robot operator, assisting in decision making and fault
diagnosis of BTL execution. It assists in task-level pro-
gramming and configuration of the BTL process and works
in close co-operation with the task execution engine. To-
gether the two components aim at providing an intuitive
approach to programming and execution in the SME robot
system.

3.3 Task Execution and Monitoring
The output of the BTL parser (Section 3.1) and the intu-
itive instruction GUI (Section 3.2, [6]) is an object-centric
task description which can not be executed directly by the
robot. E.g., a BTL command defines a sawing line on an

10BTL for industrial robots will kindly be supported and available
through Cognibotics, http://www.cognibotics.com/



object, but not the corresponding coordinates in the base
frame of the robot. The description has to be mapped ac-
cordingly and a robot program has to be generated using
the task execution engine to execute the desired steps.
The task execution engine checks all preconditions for each
task and maps an abstract task description to one or more
specific commands, called skills. For this mapping differ-
ent sensor values and additional data is required, e.g., the
relative position of the workpiece to the robot has to be
measured and the task parameters adapted to match the off-
set pose. After all the mappings are calculated and the pro-
cess is ready to be executed, the generated program can be
deployed to, and simulated within the ABB Robot Studio
simulation environment. After successful simulation, the
program can be sent directly to the robot for execution.
The task execution engine also performs monitoring. In
order to make robots more viable in SMEs, not only their
instruction and normal operation need to be more intuitive
but also their operation when errors occur, because it can-
not be expected that there is always an expert on site to
resolve them. Errors are detected by equipping the robot
system with additional sensors and detecting when an exe-
cution no longer produces the expected sensor values. By
performing the error detection and handling on the task
level, the robot system knows the expected sensor values
and how to handle potential errors. This error handling
can be automatic or it can include the shop floor worker.
In the latter case, a semantically meaningful and human-
understandable error message is shown to the worker in the
user interface. The worker is given a description of the
error and the initial, automatic actions taken by the robot
(such as pausing of all movements), a recommendation on
how to resolve the error and several options for command-
ing the robot system on how to proceed afterwards. Tasks
can not only include a semantic description of the normal
execution of the task, but also descriptions of how to re-
cover from certain types of errors, e.g., by simply repeating
a task.

3.4 Process Adaptation
Automatic or semi-automatic process adaptation may im-
prove quality and lower the cognitive burden on the opera-
tor by providing assistance in optimal selection of process
parameters. The example found in the SME was adaption
of path speed during sawing which in this case was done
manually based on listening on the sound of the cuts and
adjusting speed according to the experience of the opera-
tor. Tool wear such as bluntness of the sawing blade are
an example of important process parameters that are usu-
ally not part of task programming unless automatic means
for estimation are available. For comparison, classifiers
for several sensors were developed, including audio, ac-
celerometer and robot joint torques. From a cost perspec-
tive torque data is already available in the system. Audio
provides cheap but potentially noisy sensing. Accelerom-
eter data is accurate but is also the most expensive input
modality.

3.5 Interoperability
For simple setup, a robot system must be robust and flex-
ible in integration of new equipment and software. The
SMErobotics project therefore offers a number of tools of-
fering support for integration at the system level. At the
core, the basic communication channel between devices
and software components is proposed to be enhanced with
in-band syntactic and semantic descriptions for the channel
to become self-describing.
Self-describing data channels may give a human operator
early and precise information about incompatibilities dur-
ing set-up. Thus, they provide robustness against uninten-
tional changes to interfaces and assist the human in identi-
fying and fixing mistakes. It also allows to detect and han-
dle mismatches in communication between equipment and
software from different vendors, which is often important
in an SME setting. It enables (semi-)automatic generation
of communication bridges that connect incompatible de-
vices. This is exemplified in [2], which generates bridges
for the case of semantically compatible but structurally dif-
ferent message formats, such as between ROS and Lab-
Comm. The message translation can be either manually
specified, or automatically deduced from semantic descrip-
tions, or a combination of the two. In the SME semi-
automatic bridge building is used for transforming mes-
sages between the BTL parser and the process description
language used by the interaction manager. Other potential
uses include assistance in PLC and sensor integration.
A prototype protocol called LabComm11 is being devel-
oped [1]. LabComm is an example of an in-band, self-
describing protocol12 and is used to illustrate features of
low-level data channels, and how they can be used to bridge
and mitigate differences. LabComm ensures stable identi-
ties/signatures of different message types on communica-
tion channels. This can, for instance, be utilized for se-
mantic grounding of messages towards external resources.
In turn it allows the receiver of messages to verify that the
set of messages the other party may send is precisely the
ones expected. In other words, any change to a message
format, or addition of a new message type, is detected be-
fore operation commences. Several tests were performed
to evaluate LabComm in the SME context. Since compo-
nents existed in two different execution contexts, ROS13

and OSGi14, LabComm was used to create communication
bridges between these. Also, since the communication be-
tween the task execution engine and the robot controller
was untyped, LabComm was used to create a typed and se-
mantically grounded controller communication channel.
Self-describing data has seen much use in web-service sys-
tems, with protocols like Apache Avro15 and Google Proto-

11http://www.control.lth.se/Research/tools.html
12Each time a communication channel is established between two de-

vices, a signature, describing all messages that can be transmitted on the
channel, is transmitted before the transmission of data begins.

13http://www.ros.org/
14https://www.osgi.org/
15http://avro.apache.org



col Buffers16. Systems for automation and motion control,
on the other hand, tend to rely on standards (e.g., CANopen
device profiles). In line with the open-world assumption,
we use self-describing data to make it possible to bridge
incompatibilities in order to enable agile setup and recon-
figuration. An important difference between the LabComm
self-describing data channels and systems like Avro is that
LabComm focuses on stability, requiring exactly matching
signatures, whereas Avro supports schema evolution with
mechanisms for automatic handling of added, removed, or
modified fields.In business and web-service applications,
supporting such evolution is valueable, but in robot con-
trol, stability and safety is paramount.

4 Experiments
A number of experiments were performed on the industrial
workcell from Figure 1 which are described below.

4.1 Assembly of wooden house walls
The main experiment consisted of evaluating the full soft-
ware stack of our Cognitive System Architecture and hard-
ware functionalities. For this task a simple wooden house
wall was constructed (see Figure 5) using CADWORK and
then exported as a BTL file. The operations within the BTL
include placing two panels, nailing and fixating them on a
woooden frame, and cutting off overlapping parts of bigger
panels using a circular saw attached to the robot.

Figure 5 A simple wooden house wall with two panels
which need to be placed, nailed, and sawed.

As depicted in Figure 4 different components are integrated
into the system and play different roles. This experiment
was carried out to prove that all the components work as
expected. The BTL interpreter (Section 3.1) is used to in-
terpret the file generated by CADWORK, and to store it
within the semantic storage (Section 3.2). After the file
is successfully parsed, it can be visualized in the intuitive
GUI (Figure 6).
This intuitive GUI supports different input modalities for
different parameter types [5]. If necessary, task parame-
ters can be modified (e.g., place-positions of the panels or
length and speed for a sawing line). When the process is
ready to be executed, it is passed to the interaction manager
and task execution engine (Section 3.3). After all task pa-
rameters are mapped to the corresponding robot skills, the

16https://developers.google.com/protocol-buffers

Figure 6 Woodworking process parsed from BTL and
visualized in the intuitive instruction GUI. Parameters for
each task can be modified before execution.

process can be simulated in ABB Robot Studio. For com-
munication between different subsystems we use the inter-
operability approach as described in Section 3.5. As soon
as the simulation completed, the shopfloor-worker can de-
cide to execute the process on the real robot (Figure 3).
During execution, the interaction manager is monitoring
different system parameters to detect anomalies and to no-
tify the worker if necessary (Section 3.3).

4.2 Automatic assessment of tool wear
To gather data for the audio-based classifier, cuts were
made under different conditions while the sound was
recorded using a microphone. In three cases, the cuts were
made with a blunt blade at max feed rate. These form pos-
itive examples, and it is desired that the classifier detects
such events, so that a decreased feed rate or change of blade
can be recommended. Subsequently, a set of negative ex-
amples was formed, where the type of blades as well as the
feed rate were varied. Blunt blades occurred in the nega-
tive set as well, but at lower feed rates than for the positive
examples. The data was then divided into training data and
test data. The corresponding normalized frequency spectra
were estimated, Figure 7 shows one positive and one neg-
ative example. Inspection of the training data revealed that
the positive samples contained more energy in the high-
frequency range. Further, these samples covered a wider
range of the spectrum, compared to the positive ones. For
this reason, the mean µ f and the standard deviation σ f
of the frequency were chosen as features for the machine
learning algorithm using Support Vector Machines (SVM).
These are given by

µ f =
∫

∞

0
f R( f )d f (1)

σ
2
f =

∫
∞

0
( f −µ f )

2R( f )d f (2)

where R( f ) is the normalized power spectral density for
the frequency f . The resulting classifier is visualized in
Figure 8.
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Figure 7 The normalized frequency spectra of the sound
from cutting with a blunt and a new blade, respectively, at
full path speed.
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Figure 8 Training data and decision boundary (black
line), as well as test data of the SVM. Half of the sam-
ples were used for training the SVM, and the other half
was used as test data. After training, the SVM classified
the test data correctly.

4.3 Additional sensors
In addition to audio data, measurements from an ac-
celerometer and the robot joint torques were considered.
The accelerometer was attached to the robot end-effector
and was used to gather acceleration data during the experi-
ments. The motor torque of the translational joint that was
used to carry out the cut was also considered. Four different
blades were used; a sharp, semi-sharp, blunt, and resharp-
ened blade. In the top plot of Figure 9, the mean square
error of the euclidean norm of the acceleration is displayed
as a function of the feed rate, for each of the four blades. In
the bottom plot of Figure 9, the mean of the motor torque
in the sawing direction is shown. It is to be noted from both
plots that, as expected, sawing with the sharp blade exhibits
less vibrations and resistance for the robot. Also, a linear
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Figure 9 Acceleration and torque measurements shown
as function of the feed rate, for four different sawing
blades.

relationship between the torque/acceleration and the feed
rate can be assumed.
From the gathered data, a model can be formed and used to
identify the status of an unknown sawing blade, and in turn
optimize the feed rate in order to avoid poor sawing results.
However, looking at the acceleration and motor torque for
the resharpened blade, the results differ a bit - the accelera-
tion suggests that the blade is not fully sharp, while the mo-
tor torque does. This is explained by the fact that the blade
has been resharpened - it is sharp, but most likely slightly
warped as a result of extensive previous use. Therefore, the
use of acceleration data is more advantageous than torque
data, as it can detect warped blades.

4.4 Task-level error handling
Two experiments were performed with the woodworking
robot in order to exemplify the task-level error handling.
For both experiments a laser sensor on the panel gripper is
used. This sensor is used to measure the distance from the
gripper to the panels on a palette to determine how far the
robot should move down. In both experiments, the process
consisted of picking up two wooden-based panels from a
palette and placing them on a wooden frame, nailing both
panels to the frame and then sawing off the parts of the
panels extending beyond the frame.

Figure 10 Missing panel experiment: left: missing panel,
right: semantic error message.



In the first experiment a human-based error was intro-
duced: The shop floor worker forgot to place new wooden-
based panels on the palette until there were none left (see
Figure 10 left). Without any error detection, the palette
or the concrete floor could be detected as the top-most
wooden-based panel resulting in robot movements that
could potentially damage the robot or its tools. Using er-
ror detection the robot system would detect whether there
were any panels left on the palette and alert the shop floor
worker with a semantic error message in the user interface
if the palette was empty (see Figure 10 right). After the
suggested solution (refill panels) was performed and con-
firmed by the worker, the system automatically checked
again if the palette was filled, and if so continued with nor-
mal execution by picking up the panel.

Figure 11 Gripper error experiment: left: semantic error
message, right: repairing the gripper.

In the second experiment a hardware-based error was intro-
duced: The robot detected and tried to pick up a wooden-
based panel from the palette, which failed. Without any er-
ror detection, the robot system would not notice this error
state and the process would ultimately fail. Fitted with er-
ror detection, the robot system detected this error by using
the laser distance sensor and notified the worker (see Fig-
ure 11 left). The worker diagnosed and fixed the hardware
problem on the panel gripper (see Figure 11 right) and se-
lected the respective response option to retry and continue
process execution.

5 Conclusion
We present an integrated system for robot woodworking
based on cognitive technologies, that make it suitable for
use in SMEs. For this purpose, we use an existing robotic
hardware setup (with the addition of a few sensors for pro-
cess monitoring/adaptation) in a real SME scenario. Our
software supports the commonly used BTL format. This
makes it compatible for use with standardized CAD/CAM
tools for design and technical specification of woodwork-
ing tasks. The augmentation of this system with cognitive
add-ons is a major contribution of this work. Our intuitive
GUI enables untrained users to handle parsed BTL process
plans. We use machine learning techniques to assess the
tool wear using data from audio sensors and accelerome-
ters. The system also detects some human errors or hard-
ware failures at the task level, and presents the operator
with semantically grounded error messages. Through sev-

eral experiments involving typical woodworking tasks such
as sawing, nailing and assembly, we demonstrate the fea-
sibility of using this cognitive approach in SME scenarios,
and also evaluate its specific advantages in terms of intu-
itiveness of use, online/offline process adaptation possibil-
ities and error handling strategies.
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