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Abstract— Over the last years a number of different vehicle
controllers has been proposed for tracking planned paths
or trajectories. Most of previously published works do not
compare their results with other approaches or limit the
comparison to a few scenarios. Unfortunately, comparisons with
existing controller concepts are very rare and a ranking is hard
to establish from the literature. In this work, we rigorously
compare inversion-based trajectory tracking controllers by
systematically exploring the set of possible solutions when
disturbances vary over time and initial states and parameters
are uncertain. By using Monte-Carlo simulation, we determine
the average performance and by using rapidly exploring ran-
dom trees, we determine the worst-case performance, which
is especially important in emergency situations when avoiding
a crash is essential. The tested scenarios and the applied
methodologies are documented in detail so that they serve as
benchmark problems for other control concepts. The results
show that the controller with smaller relative degree performs
better with respect to the worst-case deviation computed by
rapidly exploring random trees, while conventional simulations
of random scenarios would not reveal any difference.

I. INTRODUCTION

Recent advancements of safety systems in road vehicles
have shown that collision avoidance will be the dominant
future technology for safer vehicles. A major advantage of
collision avoidance systems is that they require only a few
lightweight parts, such as environment sensors and com-
puter hardware, whereas passive safety systems significantly
increase the vehicle mass while still causing injuries or
fatalities.

We consider collision avoidance systems which fully take
over the vehicle control in emergency situations. This is
typically realized by a two-stage approach, consisting of a
path/trajectory planning phase and a path/trajectory tracking
phase. An alternative are reactive approaches, which do not
plan ahead [13]. Due to their simplicity, reactive approaches
are popular with indoor robots, but are not suitable for road
vehicles since it is hard to ensure all constraints on the
motion when the plan has no look-ahead horizon.

In this work, we focus on trajectory tracking and assume
that an evasive trajectory is already planned as described in
e.g. [10]. There exist good solutions for trajectory tracking
when the vehicle is not operated at its physical limits as
demonstrated by fully automated vehicles at the DARPA
Urban Challenge [5]. However, designing a controller that
operates the vehicle at its physical limits is an open problem.
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Extreme maneuvers are typically applied when a collision is
almost inevitable so that the requirements on the tracking
performance in those situations are especially high since a
crash is possibly no longer avoided when the deviation is too
large.

Many trajectory tracking approaches apply input/output
(I/O) linearization [9]. Early results [12] used linear tire
models, but approaches with more realistic, nonlinear tire
models are known [24]. The tracking error can be expressed
in earth-fixed coordinates [21] or trajectory-fixed coordinates
[24] and may be compensated by an inversion-based non-
linear mapping of a linear feedback-controller. A subset of
the input/output linearizable systems is full-state linearizable,
which are known asflat systems [6], possessing the beneficial
property of a possible static mapping from the desired trajec-
tory to the full vehicle state and input vector [8]. Whether this
property may be achieved depends on the vehicle modeling
assumptions and the available control inputs. For example,
individual wheel steering [14], differential breaking of left-
and right wheels [1] as well as differential breaking of front
and rear wheels [17] may lead to flat systems. Alternatively,
the system description may be simplified, e.g., neglecting the
longitudinal dynamics [2], [23] or focusing only on velocities
and neglecting the vehicle position [7]. It is also known
that the zero side-slip assumption of a kinematic vehicle
model facilitates flatness [20]. Alternative approaches for
path/trajectory tracking are Lyapunov-based control designs
[3], [19] and sliding mode controllers [18].

All previously mentioned works in the literature have
in common that they have never been evaluated using a
set of standardized tests. To the best knowledge of the
authors no such benchmark tests have been published for
tracking controllers of vehicles. Benchmark problems have
accelerated research in many areas, such as artificial intelli-
gence (RoboCup Federation), SAT-Solvers (SATLIB library),
computer-vison (e.g. KITTI Vision Benchmark Suite), and
powers systems (IEEE benchmark problems), to name only
a few.

The contribution of this work is twofold. First, we propose
a benchmark for path/trajectory tracking controllers of road
vehicles. Besides the benchmark itself, we propose several
performance measures that quickly highlight the strengths
and weaknesses of the controller. Among them is a worst-
case deviation obtained by rapidly exploring random trees
(RRTs), a mean deviation obtained by Monte-Carlo sim-
ulation, and a parameter sensitivity analysis. The second
contribution is a comparison of inversion-based controllers
based on the work in [24] and [7] using the proposed



benchmarks. All details of the benchmark problems are
fully available for download1. Based on future feedback,
we plan to continuously improve and include new proposed
benchmarks. Besides the description of the benchmarks, we
also provide the MATLAB code which makes it possible
to simulate all the benchmark problems for any type of
controller, enabling other researchers to compare their results
with the ones published in this work.

The paper is organized as follows. In Sec. II, we present
the vehicle model used for the comparison. Based on this
model, we derive the controllers from [24] and [7] for the
comparison. This is done in a two-stage process: First, the
controllers for tracking a desired velocity vector are derived
in Sec. III, which are used in Sec. IV to derive the controllers
for position tracking. In Sec. V, the framework for comparing
both controllers is introduced, which is suitable for compar-
ing other controllers, too. The results of the comparison are
discussed in Sec. VI, followed by the conclusion in Sec. VII.

II. VEHICLE MODEL

We investigate the vehicle trajectory tracking behavior
without differential breaking, therefore a bicycle model (see
Fig. 1) is sufficient to describe the dynamics. The task is
to achieve that the look-ahead pointP tracks a trajectory
τ(t) = [XD(t),YD(t)]T of desired x- and y-positionsXD,YD

(see Fig. 1). The tangential velocity ofτ(t) is v(t), the
orientation of the velocity vector isθ(t).

The bicycle model combines wheels of the front and rear
axle, wherel f and lr are the distances to the the center of
gravity CG. We denote the front wheel steering angle byδ ,
the rotational velocity byω, and the angle of the vehicle-
fixed coordinate system relative to the earth-fixed coordinate
system[eX,eY] by ψ. The velocity vectors at the center of
gravity and the look-ahead point P are given in vehicle-fixed
coordinates. Using the rotation matrixR(·) =

(

cos(·) −sin(·)
sin(·) cos(·)

)

the velocity of the point P in earth-fixed coordinates is
[ẊP,ẎP]T = R(ψ)vP

xy, vP
xy = [vP

x ,v
P
y ]

T .
Basically there are two common formulations to de-

scribe the planar motion of the vehicle. One can either
use the absolute velocity of the center of gravity,vCG, and
the slip-angleβ , or the vehicle-fixed velocity components
[vCG

x ,vCG
y ] used herein, wherevCG = ‖[vCG

x ,vCG
y ]‖ and β =

arctan(vCG
y /vCG

x ). We further introduce the partial state vector
xd = [vCG

x ,vCG
y ,ω]T of velocity variables. Using the tire force

1http://vehiclecontrol.it.cx/ttb
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Fig. 1. Bicycle model

vectors of the front and rear axle,Fxy, f and Fxy,r measured
in the vehicle-fixed coordinate system, a moment balance
yields the following functionfd, and the velocity vector of
the pointP is selected as the outputhd:

fd :











v̇CG
x = (Fx, f +Fx,r)/m+vCG

y ω
v̇CG

y = (Fy, f +Fy,r)/m−vCG
x ω

ω̇ = (l f Fy, f − lrFy,r)/J

hd(xd) =

(

vP
x

vP
y

)

=

(

vCG
x

vCG
y +λω

)

(1)

Since we aim at controlling the vehicle at its physical
limits, a nonlinear tire model that reflects the saturation of
forces at higher slip values is indispensable. Furthermore,
for combined breaking and evasion, the interdependence
of longitudinal, lateral and normal tire forces has to be
considered. For that reason, we use a tire model proposed by
Orend [14], which is explicitly invertible. Exemplary for the
combined front wheel, the following quantities influence the
resulting tire force: The slip vectorsWF

xy is given in vehicle-
fixed coordinates as the normalized difference between the
velocity of the vehicle body at the center of the front wheel
vWF

xy = [vCG
x ,vCG

y + l f ω]T and the velocity of the tire patch
relative to the vehicle bodyR(δ )[rω f ,0]T , whereω f is the
rotational velocity of the wheel andr the wheel radius (see
(2)). We limit the analysis to the case of breaking, implying
that ‖vWF

xy ‖ > |rω f |. The scalar tire force model is similar
to Pacejka’s [15] approach with the constantsB andC. The
vectorµxy is unit-less and describes the fraction of the normal
force utilized as tire force inx andy direction. The equations
of the tire model are:

sxy, f =



vWF
xy −R(δ )

(

rω f

0

)



/
∥

∥

∥
vWF

xy

∥

∥

∥

µxy(sxy) =−
sxy

‖sxy‖
·sin

(

Carctan(B/µ0 · ‖sxy‖)
)

Fxy, f = µxy(sxy, f ) ·µ0 ·Fz, f

(2)

The tire forces for the rear axle are calculated accordingly
with δ = 0. As in [22], the tire normal force can be modeled
under the assumption of an equilibrium of moments for zero
pitch angle and the heighth of the CG:

Fz, f = mg·
lr −hµx,r

l f + lr +h(µx, f −µx,r)
(3)

A second part of the model concerning the positions is
required to describe the trajectory tracking dynamics. The
partial state vectorxp = [XP,YP,ψ]T of position variables is
defined with respect to the earth-fixed coordinates ofP and
the vehicle orientationψ. The outputhp of the position level
system is defined as the tracking errorεtn in trajectory-fixed
coordinates with vector components in path tangentialt and
path normaln directions. The corresponding state equation



fp uses the output of the velocity level systemhd = vP
xy:

fp :















(

ẊP

ẎP

)

= R(ψ)vP
xy

ψ̇ = ω

hp(xp, t) = εtn = R(−θ(t))





(

XP

YP

)

−

(

XD(t)
YD(t)

)





(4)

It is well-known from the literature that (1) and (4) are
input/output linearizable, i.e., one can transform the system
such that the input-output behavior from input vector[δ ,ω f ]
to output vectorhp is linear. Depending on the choice of the
look-ahead distanceλ , one obtains input/output lineariza-
tions of different relative degree2 with respect to the output
hd. In order to describe the input/output linearization in two
steps, we first obtain such a linearization for (1) in Sec. III
and then for (4) in Sec. IV.

III. VELOCITY CONTROL

In this section, the input/output linearization is performed
for (1), which is later used for the position control of the
vehicle. As the tire model (2) is invertible up to the maximum
tire force, the front axle tire forces can be defined as a virtual
input for (1):

ud = [Fx, f ,Fy, f ]
T (5)

If the tire force exceeds the maximum force, the absolute
value ofud is limited to its maximum.

Independently from the choice of the look-ahead distance
λ (Fig. 1), the outputhd,1 has a relative degree of one. This
can be shown by inserting the right-hand side of (1) into
h(1)d,1 :=

dhd,1
dt = v̇CG

x , which yields after reordering:

ud,1 = Fx, f = m
(

h(1)d,1−vCG
y ω

)

−Fx,r (6)

A. Front decoupling point

Choosingλ = J/(lrm), which we refer to as thefront
decoupling point, the outputhd,2 also has a relative degree
of one. Analogously to obtaining (6), we have

h(1)d,2 =
l f + lr
lrm

Fy, f −vCG
x ω (7)

⇒ ud,2 = Fy, f =
lrm

l f + lr

(

h(1)d,2+vCG
x ω

)

(8)

For the front decoupling point, the change of lateral velocity
is not influenced by the rear tire force, which could be useful
when the rear tire forces are uncertain.

In many aspects similar to the front decoupling point are
all choices ofλ >−J/(l f m):

h(1)d,2 =
J+λ l f m

mJ
Fy, f −

J−λ lrm
mJ

Fy,r −vCG
x ω (9)

Here, an influence of the rear tire forces remains inh(1)d,2,
but if known, it can be easily compensated. The following

2The relative degree corresponds to the number of output derivatives
necessary until the corresponding input variable appears.

control input can be used to acquire a desired change in
lateral velocity of the reference positionh(1)d,2, which is a
generalized version of (8):

ud,2 = Fy, f =
mJ

J+λ l f m

(

h(1)d,2+
J−λ lrm

mJ
Fy,r +vCG

x ω
)

(10)

Similar control concepts are applied in [16], [24].

B. Rear decoupling point

Similar to the independence of the front decoupling-
point acceleration from the rear wheel forces, a position on
the vehicle x-axis must exist, where the change in lateral
velocity is independent from the front wheel force. In [7]
this knowledge is applied to show the flatness of a nonlinear
bicycle system equivalent to (1). Choosingλ = −J/(l f m),
the outputh2 has a relative degree of two, if one assumes
the rear lateral tire force to be independent from all inputs.
For the applied tire model though, this assumption stands
in conflict with the following two properties: a) the rear
tire lateral forceFy,r depends on the rear normal forceFz,r

which is in turn influenced byud,1 = Fx, f and b) the tire
force Fy,r decreases for large longitudinal slip values. We
therefore have to increase the relative degree ofhd,1 by one
integration step, liftingh(1)d,1 into the state vector and now

directly controlling the output-function derivativesh(2)d,1 and

h(2)d,2. The corresponding equations for the lateral velocity
output are:

h(1)d,2 =
l f + lr
l f m

Fy,r

(

vCG
x ,vCG

y ,ω,h(1)d,1

)

−vCG
x ω (11)

h(2)d,2 =
l f + lr
l f m

∂Fy,r

∂ [xd,h
(1)
d,1]

T

[

fd
(

xd,ud,1,ud,2
)

,h(2)d,1

]T

−h(1)d,1ω −vCG
x ω̇ (12)

The front lateral tire forceud,2 is determined by solving (12).

IV. POSITION CONTROL

The ultimate goal for applications such as collision avoid-
ance is to control the position of the vehicle. From the posi-
tion control derived in this section, one obtains the required
changes in lateral and longitudinal velocity (h(1)d,1,h

(1)
d,2) for the

front decoupling point, or (h(1)d,1,h
(2)
d,2) for the rear decoupling

point. These desired values are then used to obtain the
tire forces at the front wheel according to the input/output
linearization of the previous section.

The deviation of the reference position from the desired
trajectory can be described with the help of the output-
vectorhd of the velocity layer. By replacing the earth fixed
velocity representations in the derivative of the positionerror
with path- and vehicle-fixed representations,[ẊD,ẎD]T =
R(θ)[v,0]T , [ẊP,ẎP]T = R(ψ)hd, we obtain:

h(1)p =− θ̇

(

−hp,2

hp,1

)

−

(

v
0

)

+R(ψ −θ)hd (13)



According to (13),hp could be I/O-linearized with a hypo-
thetical inputup = hd and a relative degree of one. We can
therefore continue the derivation untilh(r+1)

p , wherer is the
relative degree ofhd, to achieve an I/O-linearization ofhp

with the inputup := ud (front tire forces).
For the front decoupling point or allλ > −J/(l f m)

described in Sec. III-A,hd has a relative degree of one. By
solving the second derivative of the position errorh(2)p for
the derivativeh(1)d of the velocity of the reference position,
one receives:

h(1)d = R(θ −ψ)






h(2)p + θ̈

(

−hp,2

hp,1

)

+ θ̇





−h(1)p,2

h(1)p,1



+

(

v̇
0

)







−
(

ω − θ̇
)

(

−hd,2

hd,1

)

(14)

In case of the rear decoupling pointλ = −J/(l f m) in Sec.
III-B the relative degree of two requires solvingh(3)p (third
derivative of the position error) forh(2)d :

h(2)d =R(θ −ψ)






h(3)p +

...
θ

(

−hp,2

hp,1

)

+2θ̈





−h(1)p,2

h(1)p,1





+θ̇





−h(2)p,2

h(2)p,1



+

(

v̈
0

)






−
(

ω̇ − θ̈
)

(

−hd,2

hd,1

)

−2
(

ω − θ̇
)





−h(1)d,2

h(1)d,1



+
(

ω − θ̇
)2

hd (15)

Both cases constitute an input/output linearization. Accord-
ingly a linear feedback for regulation of outputhp can be
applied. The linear feedback gains listed in Tab. II are chosen
in such a way that the second- and third-order linear systems
have a similar initial condition response.

A. Setup of Controller A

Both controllers assume the variablesXCG, YCG, ψ, vCG
x ,

vCG
y andω to be measured. Controller A proceeds to calculate

the physical inputsδ andω f as:

1) Calculate tracking errorshp andh(1)p

2) Linear feedbackh(2)p :=−KA1h(1)p −KA0hp

3) Compute the required velocity changeh(1)d according
to (14)

4) Compute the required forces according to (6) and (8)
5) Computeδ andω f by solving (2)

B. Setup of Controller B

Controller B uses the internal stateh(1)d,1:

1) Calculate tracking errorshp, h(1)p andh(2)p

2) Linear feedbackh(3)p :=−KB2h(2)p −KB1h(1)p −KB0hp

3) Compute the required changeh(2)d according to (15)

4) Integrateh(1)d,1 =
∫

h(2)d,1dt

5) Compute the required forces according to (6) and (12)
6) Computeδ andω f by solving (2)

V. FRAMEWORK FOR COMPARISON

In this section, we provide detailed information for two
typical emergency maneuvers, which can serve as benchmark
problems for other trajectory tracking control concepts. The
first scenario is a lane change under braking and the second
one is a double lane change under braking. We plan to add
new scenarios to our website as soon as we discover that
other scenarios reveal weaknesses that are not observed by
the current scenarios.

A. Trajectories

The parameters for the nominal trajectories for both
scenarios are provided in Tab. I, where all values are
with respect to the center of gravity. The road-fixed Carte-
sian coordinatesY and X are chosen as polynomials of
an auxiliary variabler and the functionS as a polyno-
mial which maps the time to a distance along the path
[X(r),Y(r)]. The degree of the polynomialsX, Y and S
are chosen to fulfill the given boundary conditions, so
that the functions are uniquely defined by them. The arc
lengthL(r) =

∫ r
0

√

[X′]2(ρ)+ [Y′]2(ρ)dρ of the path is com-
puted numerically to define the trajectory as[X(t),Y(t)] :=
[X(r(t)),Y(r(t))] with r(t) = L−1(S(t))

TABLE I

SCENARIO PARAMETERS

SCENARIO I - L ANE CHANGE

Y(0m) Y′(0m) Y′′(0m) / Y(40m) Y′(40m) Y′′(40m)
0 m 0 m/s 0 m/s2 / 3 m 0 m/s 0 m/s2

S(0s) S′(0s) S′′(0s) / S(2s) / S′′(2s)
0 m 22 m/s 0 m/s2 / 40.2 m / 0 m/s2

SCENARIO II - D OUBLE LANE CHANGE

Y(0m) Y′(0m) Y′′(0m) Y(35 m) Y(70m) Y′(70m) Y′′(70m)
0 m 0 m/s 0 m/s2 3 m -1 m 0 m/s 0 m/s2

S(0s) S′(0s) S′′(0s) / S(4s) / S′′(4s)
0 m 22 m/s 0 m/s2 / 70.5 m / 0 m/s2

In order to track the given trajectories[X(t),Y(t)] with
respect to the center of gravity for both controllers, we de-
rive the corresponding trajectories for the reference position
[XD(t),YD(t)] such that the center of gravity is moved along
[X(t),Y(t)] in case of error free tracking (see [24]). As a first
step, the initial value problem for the zero dynamic states is
numerically solved withλ = 0 and for the path[X(t),Y(t)]
to acquireψz(t) andωz(t). By applying the inputud,2 from
(10) for the open-loop control, one obtains:

Jω̇ =l f m ay− (l f + lr)Fy,r (16)

with ay =(θ̇ −2ω)vcos(θ −ψ)+ v̇sin(θ −ψ)

Then the trajectory positions can be translated byλ to the
instantaneous yaw direction of the vehicle:

(

XD(t)
YD(t)

)

=R(ψz(t))

(

λ
0

)

+

(

X(t)
Y(t)

)

. (17)



TABLE II

MODEL PARAMETERS

VEHICLE (from [14])

m (kg) J (kg m2) l f (m) lr (m) h (m)
1750 2500 1.43 1.27 0.5

r (m) Bf Cf Br Cr
0.32 10.4 1.3 21.4 1.1

CONTROLLER

KA1 KA0 KB2 KB1 KB0
3.35 5 5.87 17.3 22.4

MEASUREMENTERRORS

ε̂XCG (m) ε̂YCG (m) ε̂ψ (◦) ε̂vCG
x

(m/s) ε̂vCG
y

(m/s) ε̂ω (◦/s)
0.05 0.05 1 0.05 0.05 1

B. Test Methodology

In the nominal case, when there is no initial deviation from
the trajectory, no measurement noise, known parameters and
unsaturated wheel forces, the controllers exactly track the
desired trajectory in open-loop mode due to the inversion-
based approach. In reality none of the above assumptions
are precisely met, resulting in different trajectories and
control inputs for the two controllers. We use the following
measures to compare the tracking performance according to
the deviationεCG(t)=R(−θ)[XCG(t)−X(t),YCG(t)−Y(t)]T

of the CG:

maximum deviation: max
t∈[0,T]

|εCG
{t,n}(t)|

average deviation:
1
T

∫ T

0
|εCG
{t,n}(t)|dt

final deviation: εCG
{t,n}(T)

average tire saturation:
1
T

∫ T

0
‖µxy{ f ,r}(t)‖dt

With {t,n} referring to either the tangential (t) or the normal
components (n) and { f , r} to the front (f ) and rear (r)
components. The following analysis methods are applied to
the benchmark problems:

1) Selected Test Cases:In order to test certain properties
by a few selected scenarios, we define test cases for (i)
initial deviations, (ii) varying degrees of tire force saturation,
and (iii) vehicle parameter variations. In test (i), the initial
condition response is tested for a heading error ofθ(0)−
ψ(0) = 3◦ and a lateral offset ofY(0)−YCG(0) = 0.2 m. Tire
force saturation is tested in (ii) for both trajectories using
a low friction value ofµ0 = 0.6 instead ofµ0 = 1, which
is known to the controller in a first test and unknown in a
second one for which the controller assumesµ0 = 1. Besides
the road friction parameters, vehicle parameters affected
by the loading are investigated in test (iii). The changed
parameters areme = 1.3 ·m, Je = 1.3 · J and l f ,e = 1.3 · l f

while the controllers are operated with the original values.
2) Monte-Carlo Simulation for Measurement Noise:The

average performance under measurement errors is modeled
by white Gaussian noise added to the state vector supplied
to the controller. The vector[XCG,YCG,ψ,xd]

T is ‘measured’
and the variance of each dimension of the error process is

selected asσi = ε̂i with the values for̂εi given in table II. A
total number of 500 simulations is evaluated.

3) Worst-Case-Disturbance using RRTs:RRTs have been
developed for planning problems in robotics [11], but are
used more and more for general state space exploration [4].
We consider the problem of estimating the trajectory tracking
worst case performance under noisy vehicle state measure-
ments. The RRT algorithm is used to explore the vehicle
state space in order to determine a sequence of measurement
errors that maximizes the distance to the reference trajectory.
Although we use the same basic technique as in [4], we make
a modification to the algorithm to generate a constant number
of samples for each time interval, see Fig. 2. For a point of
time tk+1 the following steps are performed:

1) Initialize the discrete set of reachable states as
X (tk+1) = /0.

2) Generate a randomxsample from a multidimensional
rectangle centered atτ(tk+1).

3) Find the nearest statexnearaccording to a distance mea-
sure ρ so thatxnear= argmin(ρ(xsample,x(i))), where
x(i) ∈ X (tk).

4) Obtain the measurement errorξ ∗
M which drivesxnear to

the new statexnew closest toxsample:

x( j)(ξM) = xnear+
∫ tk+1

tk
f
(

x(t),c(x(t)+ξM)
)

dt

ξ ∗
M = arg min

(

ρ
(

xsample,x
( j)(ξM)

)

)

xnew= x( j)(ξ ∗
M)

whereu= c(x) is the controller andf = [ fp, fd]T .
5) Add xnew to the set of states for the next time interval

X (tk+1).
6) Repeat steps 2-5 for a predefined number of samples.

When initializing X (tk+1) = X (tk), one obtains an ap-
proach similar to [4]. The distance measure is chosen as

xnear
xnew

xsample

results of
different
inputs

x(i)

tk−2 tk−1 tk tk+1

x

t

Fig. 2. RRT concept for trajectory tracking.

ρ(xsample,x(i)) = ‖N(xsample−x(i))‖2 with a diagonal normal-
ization matrix with valuesNi,i =

1
ε̂i

. The measurement error
ξ ∗

M that minimizes the distance betweenxnew andxsample, i.e.,
minimizesρ(xadd,xs), is chosen by testing all vertices of the
set of possible measurement errorsXM. The set is defined as
a multidimensional rectangle with the edge lengthsε̂i given
in Tab. II. Thus, we obtain a manageable set of 64 different
measurement inputs.



VI. RESULTS

In this section we apply the selected test cases, Monte
Carlo simulations, and RRT computations from Sec. V-B
to controller A and B. First, the results of the selected test
cases (i-iii) summarized in Tab. III are discussed. Test (i)for
investigating the effects of initial deviation shows that both
controllers are quickly converging to the reference trajectory
and precisely track it once the deviation is small, as shown
in Fig. 3 and Fig. 4 for each scenario. The only differences
are the slip angleβ and that controller B exhibits front tire
force saturation in scenario II and undesirable oscillations
for both scenarios. Results of test (ii) for a known, but
low friction coefficient (µ0 = 0.6) show that both controllers
behave similarly in scenario I and are able to closely track the
reference trajectory, but controller B is significantly worse
compared to controller A in scenario II. This is because
controller B requires larger tire forces and thus operates
longer at its physical limit. When the friction coefficient
is unknown (see Sec. V-B), the average tire saturation is
slightly lower and the errors are slightly higher because both
controllers exceed the optimal slip value and cannot make
use of the maximum tire force. Varied parameter valuesme,
Je and l f ,e in test (iii) lead to a static tangential offset in
path tangential direction. In the comparison of path normal
errors, controller A performs slightly better than controller
B.

Since selected test cases only provide a snapshot of the
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Fig. 3. Test 1 - Initial Disturbance - Scenario I

controller performance, we obtained the average control
performance due to sensor noise using Monte Carlo sim-
ulation as described in Sec. V-B. The sampled simulation
results of the Monte-Carlo simulation are presented in Fig.
5. The average performance for both controllers is similar
as presented by the standard deviation plots of the position
error in Fig. 6.

Unlike the average performance, the difference in the
worst-case performance of both controllers with respect to
measurement noise is significant. Controller A has much
lower worst-case position deviation compared to controller
B as shown in Fig. 7. The simulation traces of the RRT
computation are plotted in Fig. 8, which find larger devia-
tions with an equal number of simulations, compared to the
Monte-Carlo approach in Fig. 5. For both tests, 500 samples
per time step have been used.

In summary, controller A performs slightly better or
almost equal in all tests compared to controller B and is
significantly better with respect to the maximum position de-
viation, which is especially important for evasive maneuvers,
which require small deviation errors to guarantee collision
avoidance. Across all tests, controller A is not so hard on the
tires, i.e. tire saturation is avoided more often. The better use
of tire forces is especially obvious in test (ii) for scenario II
as shown in Tab. III. Tests (i-iii) showed that both controllers
are insensitive to initial deviations and uncertain vehicle
parameters. Using a set of test methodologies also showed
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(a) Controller A

(b) Controller B

Fig. 5. Monte-Carlo Analysis
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Fig. 7. Worst Case Disturbance Estimate using RRTs

that the superior performance of controller A with respect
to maximum deviation errors would have been undetected
without the use of RRTs.

(a) Controller A

(b) Controller B

Fig. 8. RRT Analysis

VII. CONCLUSION

The comparison of the two inversion-based controllers
according to [24] and [7] showed that a set of test method-
ologies is required for a thorough evaluation: selected test
cases for the most significant deviations in initial states and
vehicle parameters, Monte-Carlo simulation for the average
control performance, and rapidly exploring random trees for
the worst-case performance.

The specific comparison of the inversion-based controllers
only revealed significant differences with respect to the
worst-case deviation, where the control concept proposed in
[24] produced better results.

The test cases and test methodologies described in this
work are fully specified, so that other researchers can use
them as benchmark problems, or directly download the
implementation from our website. We plan to add further
test results of other control concepts on the website and
encourage other researchers to send us their results. We also
plan to test the most promising controllers on a real vehicle
and compare the results with the simulations.



TABLE III

RESULTS

max. deviation (m) avrg. deviation (m) final deviation (m) avrg. tire saturation

t n t n t n f r

(i) Initial Deviation, Scenario I
A 4.51·10−3 4.42·10−1 1.99·10−3 2.21·10−1 −9.44·10−5 −1.56·10−3 0.58 0.43
B 1.60·10−2 4.40·10−1 7.19·10−3 2.21·10−1 −1.34·10−3 1.21·10−2 0.58 0.43

(i) Initial Deviation, Scenario II
A 5.23·10−3 4.51·10−1 1.20·10−3 1.16·10−1 −7.61·10−5 −4.47·10−4 0.6 0.42
B 1.47·10−2 4.68·10−1 4.12·10−3 1.30·10−1 4.80·10−5 5.20·10−3 0.63 0.4

(ii) Tire Force Saturation,µ0 = 0.6 known, Scenario I
A 9.56·10−3 1.21·10−2 3.33·10−3 4.01·10−3 8.34·10−3 1.16·10−2 0.82 0.55
B 1.22·10−2 1.49·10−2 3.59·10−3 8.15·10−3 1.10·10−2 −6.89·10−3 0.82 0.55

(ii) Tire Force Saturation,µ0 = 0.6 known, Scenario II
A 1.56·100 1.01·100 5.33·10−1 3.41·10−1 1.45·100 −3.29·10−1 0.96 0.54
B 1.26·101 8.14·100 3.61·100 3.01·100 1.26·101 8.14·100 0.99 0.74

(ii) Tire Force Saturation,µ0 = 0.6 unknown, Scenario I
A 1.97·10−1 1.33·10−1 8.88·10−2 7.08·10−2 1.84·10−1 1.28·10−1 0.83 0.5
B 2.22·10−1 8.96·10−2 9.69·10−2 4.32·10−2 2.11·10−1 6.72·10−2 0.84 0.54

(ii) Tire Force Saturation,µ0 = 0.6 unknown, Scenario II
A 1.89·100 1.41·100 6.69·10−1 5.30·10−1 1.81·100 −1.61·10−1 0.93 0.49
B 5.07·100 9.33·100 1.69·100 1.30·100 5.07·100 −9.33·100 0.93 0.83

(iii) Mismatched Parameters, Scenario I
A 2.46·10−1 6.73·10−2 1.22·10−1 3.95·10−2 2.37·10−1 6.59·10−2 0.66 0.32
B 2.47·10−1 3.85·10−2 1.22·10−1 8.97·10−3 2.38·10−1 −3.85·10−2 0.66 0.32

(iii) Mismatched Parameters, Scenario II
A 1.82·10−1 7.94·10−2 1.10·10−1 3.74·10−2 1.07·10−1 −7.94·10−2 0.65 0.34
B 1.83·10−1 1.89·10−1 1.10·10−1 2.49·10−2 1.04·10−1 1.89·10−1 0.66 0.35
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