
Robust Control of Continuum Robots using
Interval Arithmetic

Florian Hisch, Andrea Giusti and Matthias Althoff

The authors are with the Department of Informatics,
Technical University of Munich (TUM), 85748 Garching, Germany

E-mail: florian.hisch@tum.de, {giusti, althoff}@in.tum.de

Abstract: We consider the problem of controlling pneumatically actuated continuum robots
with uncertain system dynamics and input disturbance. While such systems are intrinsically
structurally safe due to soft and light-weight components, their structural flexibility challenges
the control stability and performance. We present a robust tracking control approach using
interval arithmetic. With this approach a user defined tracking performance can be ultimately
met without the need for empirical estimation of bounds of perturbations from model uncertainty
and input disturbances. We show the validity of our approach by simulating scenarios with
different parametric uncertainty and by comparing the performance with an existing inverse-
dynamics controller.
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1. INTRODUCTION

Hyper-redundant, soft or continuum robots inspired by
nature e.g. octopus arms (see Sfakiotakis et al. (2013)),
snakes or elephant trunks (see Eder et al. (2014)) have
been an active research area since the late 60’s when
Anderson and Horn (1967) first introduced such robotic
design. Flexible robots can be used in environments where
rigid robots are either not suitable in size or impose a
danger to humans working nearby due to their inflexibility.

The intrinsic structural complexity of continuum robots
makes their kinematics and dynamics hard to model. In
the last decades, the first useful models, based on the
constant curvature approach e.g. in Jones and Walker
(2006) or static mechanical models e.g. in Camarillo et al.
(2008) and Jung et al. (2011), were introduced. A review
of methods focused on the constant curvature approach
can be found in Webster and Jones (2010). Rolf and Steil
(2012) presented an efficient simulation implementation,
and Escande et al. (2015) showed model calibration tech-
niques. Even if most work on modelling continuum robots
mainly focused on kinematics, Godage et al. (2011) pro-
posed a dynamic representation using modal analysis, and
Falkenhahn et al. (2015a) recently introduced a dynamic
model which is based on the constant curvature approach
and the Euler-Lagrange formalism. Obviously, the model
has to be calibrated for obtaining acceptable model-based
control performance. This is a hard task considering the
high number of dynamical parameters involved in a flexible
robot (see e.g. Escande et al. (2015)). In practice, those
parameters can only be measured up to a certain accuracy.

Early developments of controllers for such systems have
been based on Proportional-Integral-Derivative (PID) con-
trol schemes, whose performance suffers due to the highly
coupled nonlinear dynamics of continuum robots. Nord-
mann et al. (2012) acknowledge these limitations and

suggest the consideration of machine learning techniques.
Among recent developments, Ansari et al. (2016) proposed
a machine learning approach for inverse kinematics consid-
ering the precision positioning problem. However, machine
learning techniques typically rely on extensive training
phases to reach acceptable precision.

As an alternative, model-based control approaches can
guarantee high performance, provable closed-loop stabil-
ity and can handle the more general control problem of
precision tracking of trajectories where dynamical effects
are non-negligible. To guarantee stability and performance
with imperfect knowledge of the dynamic parameters of
the robot arm, several approaches can be found in fun-
damental textbooks like Chung et al. (2008). Considering
continuum robots, however, no robust control strategy has
been applied so far, to the best of our knowledge. Recently,
Giusti and Althoff (2016) introduced the use of interval
arithmetic for robust control of rigid robots. This approach
allows one to guarantee in principle that any user-defined
tracking performance is ultimately met. In this paper,
we combine the idea of Giusti and Althoff (2016) with
the dynamic modelling approach of Falkenhahn et al.
(2015a) to provide for the first time a robust controller for
continuum robots considering uncertain system dynamics
and input disturbance. We show the superior performance
of our proposed controller with respect to the previously
proposed inverse-dynamics controller in Falkenhahn et al.
(2014) by simulating different scenarios of uncertainty of
the dynamic model parameters.

The remainder of this paper is structured as follows: In Sec.
2 we recall the preliminaries of the modelling approach we
consider. The control problem we address is described in
detail in Sec. 3, followed by our proposed approach in Sec.
4. Simulation results are shown and discussed in Sec. 5.
Finally, we draw the conclusion in Sec. 6.



top plate

bottom plate

PAM

compression
spring

segment
controller
board

pressure
controller
board

valve

q1

q2

Fig. 1. Single section of a pneumatically-actuated contin-
uum robot. Applying different pressures to the pneu-
matic artificial muscles (PAMs) allows the section to
bend continuously. 1

2. PRELIMINARIES: CONTINUUM ROBOT MODEL

We focus on a class of modular, pneumatic-actuated,
worm-like robots, for which a representative example is
Festo’s Bionic Handling Assistant 2 . A similar robot to
Festo’s Bionic Handling Assistant has been developed by
Eder et al. (2014) with the exception that instead of
bellows, the robot consists of pneumatic artificial muscles
(Festo’s DMSP-10-160N). It is separated into n sections,
each consisting of three pairs of a muscle and a spring.
The latter is used to stabilize the section’s movement. The
sections can contract and bend according to the applied
pressures. Figure 1 shows a single section of the robot.
In the following we briefly recall the considered kinematic
and dynamic modelling and introduce the notation.

A common approach for modelling the kinematics of such
robots is the constant curvature approach (see Jones and
Walker (2006)). Hereby, the section bending is described
as a single arc of a certain radius, i.e. a certain curvature,
which depends on the generalized positions q ∈ R3n. As
presented in Falkenhahn et al. (2015a), the kinematics can
finally be described as

wHih = wH1h

i∏
x=1

xbHxh(qx1, qx2, qx3), (1)

where xbHxh represents the homogeneous, non-linear
transformation from the base-frame xb of section x to its
head-frame xh, wH1h is the constant world-origin trans-
formation and qx1 is the length of the first of the three
muscles of section x. qx2 and qx3 are the lengths of the
second and third muscle, respectively.

Falkenhahn et al. (2015a) use the above kinematics and the
Euler-Lagrange formalism to derive the dynamic model.
The system dynamics can thus be modelled as:

M(q)q̈ + C(q, q̇)q̇ + N(q, q̇) = τ (q,p), (2)

with a positive-definite mass matrix M(q), the Coriolis
matrix C(q, q̇), the homogeneous force vector N(q) and
the actuator force vector τ (q,p), which depends on the
applied pressure p along the generalised coordinates. It
should be noted that the actuator force vector also depends

1 Thanks to Martin Eder for providing the image.
2 https://www.festo.com/group/en/cms/10241.htm, last visited:
03.04.2017

on the muscle lengths q. The inversion of τ is shown by
Falkenhahn et al. (2015b).

We consider the reduced model of Falkenhahn et al.
(2015a), which is justified since rotational forces are rather
small due to the limited velocity of the robot. Assuming
that the mass is concentrated in the center of the section’s
head (i.e. at position t = [0 0 0 1]

T
), the mass matrix and

Coriolis matrix entries are obtained as

Mik,αβ =

n∑
x=max(i,α)

mx

(
∂wHxh

∂qαβ
t

)T
∂wHxh

∂qik
t, (3)

Cik,αβ =

n∑
x=max(i,α)

mx

(
∂wḢxh

∂qαβ
t

)T
∂wHxh

∂qik
t, (4)

where the matrix column and row indexing is separated
into section index (i, α) and muscle index (k, β), with
3(i−1)+k as the row index and 3(α−1)+β as the column
index. For example, the matrix element M12,23 describes
the entry with row 2 and column 6. The M and C matrix
defined as in (3) and (4) allows the matrix (Ṁ − 2C) to
be skew-symmetric. We show a detailed proof in App. A.

The passive forces of gravity Fg, the spring forces Fspr

and damping forces Fdmp are included in N(q). In addi-
tion, Falkenhahn et al. (2015a) also consider a bending
momentum and external forces. The bending momentum
describes how a system would resurrect itself if no pressure
is applied, i.e. how strong the section tries to get into
its resting position. A strong coupling between contin-
uous actuators would increase the effect of the bending
momentum. Since the muscles are only connected at the
base and the head frame, we assume the influence of the
bending momentum to be negligible and also no further
external forces. We use a linear model for the springs with
spring constants Kik, resting positions Lspr and current
spring / muscle lengths qik. In addition, we consider a
linear damping model with coefficients Dik:

Fspr,ik =Kik (qik − Lspr) , (5)

Fdmp,ik =Dikq̇ik. (6)

The actuator forces Fact are combined in vector τ (q,p).
The actuator force function is typically nonlinear and
depends on the pressure and on the current contraction
Lact − qik, where Lact is the resting length of the muscles.
We redirect the reader to Falkenhahn et al. (2015a) for a
detailed description of N(q) and τ (q,p).

3. PROBLEM DESCRIPTION

Dynamic models match the real robot dynamics only up
to a certain degree. Obviously, model reductions and non-
measurable properties reduce the accuracy. We consider
uncertainty in the dynamic parameters of the robot model
in (2), which we collect in a vector ∆:

∆ = [∆1,∆2, . . . ,∆n]T ,

∆i = [mi,Ki1,Ki2,Ki3, Di1, Di2, Di3]T , 1 ≤ i ≤ n,
where ∆i denotes the parameters of the i-th section.
Additionally, we assume that a nominal vector ∆0 is



available and that all uncertain parameters are bounded
with a known lower ∆ and upper bound ∆. We further
consider the input disturbance d, which is bounded by βd.

For the above-mentioned model and assumptions, we ad-
dress the problem of designing a controller that guarantees
to ultimately (for a finite t1 ≥ 0) track a trajectory qd,
which is at least twice differentiable, with a user defined
precision ε:

‖qd − q‖ < ε, ∀t ≥ t1. (7)

4. PROPOSED METHOD

By considering the control approach presented by Giusti
and Althoff (2016), we obtain the following control com-
mand:

p = τ−1(q,M(q,∆0)q̈a + C(q, q̇,∆0)q̇a (8)

+ D(q, q̇,∆0)− v),

where τ−1 is the inverse function of the homogeneous force
vector, v is a function which ensures robustness and the
error control terms are

q̇a = q̇d + Krq̃, q̃ = qd − q, r = ˙̃q + Krq̃, (9)

with Kr being a diagonal positive-definite tuning matrix.

It is not difficult to show that by applying the control law
(8), a closed-loop perturbation arises from the difference
between the nominal and real robot model, which can be
expressed as

w(q, q̇, q̇a, q̈a,d,∆,∆0) = (M(q,∆)−M(q,∆0))︸ ︷︷ ︸
M̃

q̈a

+ (C(q, q̇,∆)−C(q, q̇,∆0))︸ ︷︷ ︸
C̃

q̇a

+ N(q, q̇,∆)−N(q, q̇,∆0)︸ ︷︷ ︸
Ñ

− d. (10)

We consider hereafter multidimensional intervals. A mul-
tidimensional interval [x] can be defined as

[x] = [x,x] , x ∈ Rn,x ∈ Rn,∀i ∈ {1, . . . , n} : xi ≤ xi,
where x and x denote the infimum and supremum of the
interval [x], respectively. We consider the following basic
operations on intervals [x] = [x, x], [y] =

[
y, y
]
, [z] = [z, z]

and a scalar c ∈ R:

[z] = [x] + [y] ⇒ [z, z] = [x, x] +
[
y, y
]
, (11)

[z] = [x]− [y] ⇒ [z, z] = [x, x]−
[
y, y
]
, (12)

[z] = [x] · c ⇒ [z, z] =

{
[x, x] · c, c ≥ 0
[x, x] · c, c < 0

. (13)

Any specific disturbance w(q, q̇, q̇a, q̈a,d,∆,∆0) is from
a multidimensional interval [Φ], which is originating from
the uncertain dynamic parameters ∆ ∈ [∆] =

[
∆,∆

]
and

d ∈ [βd] = [−βd,βd]:

[Φ] = w(q, q̇, q̇a, q̈a, [βd], [∆],∆0). (14)

The absolute maximal (worst-case) disturbance can be
simply derived from the element-wise absolute maximum
of the lower and upper bounds of [Φ]:

ρ([Φ]) = max
(
|Φ|, |Φ|

)
. (15)

The on-line evaluation of (14) and (15) can be done with
an interval arithmetic toolbox, e.g. commercial Intlab by
Rump (1999) or freely available CORA by Althoff (2015).
Directly using (14) with those toolboxes would result in
the following expression:

[Φ] =
[
M̃
]

q̈a +
[
C̃
]

q̇a +
[
Ñ
]
− [βd] , (16)

where each matrix and vector element of M̃, C̃ and Ñ is
an independent interval term itself. Thereby, the matrices
and vectors lose their underlying dynamic context, e.g.
that each 3×3 submatrix of M and C is influenced by the
same uncertain mass. This dependency problem results in
generous lower and upper bounds of [Φ].

We reduce the reoccurrence of interval variables (and
thus conservativeness) by including the knowledge of the
physical system in our interval arithmetic calculation of
[Φ]. At first, we observe that for (15) only the element-
wise absolute maximum is necessary, i.e. we can select our
upper and lower bounds independently for every row of [Φ]

and thus also for M̃, C̃ and Ñ. Instead of using (16), we
directly include the accelerations q̈a and the velocities q̇a
in the interval calculation of the mass and Coriolis matrix.
The row elements of [Φ] can thus be calculated using

[Φik] =
[
M̃ikq̈a

]
︸ ︷︷ ︸

1©

+
[
C̃ikq̇a

]
+
[
Ñik

]
︸ ︷︷ ︸

2©

−
[
βdik

]
. (17)

Now, we show the exemplary derivation of the first interval
term on the right-hand side of (17) consisting of mass and
acceleration ( 1©). The other interval expressions ( 2©) are
omitted in this paper for brevity since the same approach
of the first interval term can be used and their derivation
is therefore straightforward. At first, we describe the
deviation M̃ between the elements of the real mass matrix
and their nominal counterparts as

M̃ik,αβ = Mik,αβ(q,∆)−Mik,αβ(∆0) (18)

=

n∑
x=max(i,α)

(mx −m0)

(
∂wHxh

∂qαβ
t

)T
∂wHxh

∂qik
t

Further, we reshape the matrix vector product M̃ikq̈a so
that first we sum inside each section and finally all sections[

M̃ikq̈a

]
=

3n∑
c=1

[
M̃ik,cq̈ac

]
=

n∑
α=1

3∑
β=1

[
M̃ik,3(α−1)+β q̈a3(α−1)+β

]
=

n∑
α=1

n∑
x=max(i,α)

[(mx −mx0)]︸ ︷︷ ︸
[m̃x]

K (19)

with

K =

 3∑
β=1

(
∂wHxh

∂qαβ
t

)T
∂wHxh

∂qik
t · q̈aαβ

 . (20)

Finally, we can calculate the lower M̃ikq̈a and upper

M̃ikq̈a limits with interval arithmetic. Alg. 1 implements
(19), using in particular (13), as can be seen from lines 5
to 9 of the algorithm.



Algorithm 1. Calculation of
[
M̃ikq̈a

]
1:

[
M̃ikq̈a

]
← [0, 0]

2: for α = 1→ n do
3: for x = max(i, α)→ n do

4: K ←
∑3
β=1

(
∂wHxh

∂qαβ
t
)T

∂wHxh

∂qik
t q̈aαβ

5: if K < 0 then

6:

[
M̃ikq̈a

]
←
[
M̃ikq̈a

]
+
[
m̃x, m̃x

]
· K

7: else

8:

[
M̃ikq̈a

]
←
[
M̃ikq̈a

]
+
[
m̃x, m̃x

]
· K

9: end if
10: end for
11: end for

With the above mentioned approach we obtain the maxi-
mal disturbance (15) and use it to compute the feedback
control term v in (8), that enhances robustness:

v = − (κ(t)‖ρ([Φ])‖+ φ(t)) r, (21)

where κ(t) and φ(t) are positive increasing functions.
Further detail on the selection of these functions can be
found in Giusti and Althoff (2016).

5. SIMULATION RESULTS

In this section, we describe our simulation testbed, present
the results for the proposed control technique and fi-
nally compare them to a previously proposed model-
based, inverse-dynamics control method by Falkenhahn
et al. (2014). The simulations have been performed using
MATLAB and Simulink R2015b with a real-time target
machine 3 . We consider a robot composed of two sections,
sampling rate 4 of 1ms and the following (nominal) dy-
namic parameters: m1 = 1.5 kg, m2 = 0.5kg, Kik = 1900,
Dik = 1000, ∀i ∈ {1, 2},∀k ∈ {1, 2, 3}. Following the as-
sumptions stated in Sec. 3, we consider that the mass, the
three spring constants and the three damping constants
for each section are uncertain. For all these parameters we
assume a variability of up to ±10%.

We consider first an ideal scenario (scenario 1) where no
uncertainty, disturbance and correct initial conditions are
assumed. Subsequently, we consider multiple cases where
we deal with varying uncertainty and unmatched initial
conditions. All scenarios share the same desired trajectory
(shown in Fig. 2):

qdik(t) = −ai · sin(fik · t)4 +Li, 1 ≤ i ≤ 2, 1 ≤ k ≤ 3 (22)

with amplitudes a = [0.01, 0.015] in meter, frequencies
b = π·[0.2, 0.21,−0.22, 0.25, 0.3,−0.3] and a constant offset
Li = [0.15, 0.145]. The initial condition of its derivatives is
q̇dik(0) = q̈dik(0) = 0. The target accuracy is ε = 0.001 m.
The functions κ(t) and φ(t) and the tuning parameter have
been selected as:

Kr = 100 I3n×3n, (23)

φ(t) = 1 + 500

∫ t

0

f(τ)dτ,

κ(t) = 2 + 1

∫ t

0

f(τ)dτ,

3 Intel Core i7-3770K (3.5 GHz), 4096 MB RAM
4 max. calculation time of the proposed controller: 0.56ms

where Kr is the positive definite tuning matrix and

f(τ) =

{
0, for ‖q(τ)− qd(τ)‖ < ε
‖q(τ)− qd(τ)‖, otherwise.

(24)

For the first scenario (see Fig. 3) we consider exact knowl-
edge of the dynamic parameters and no input disturbance.
After tuning our interval-based controller (black) and the
model-based controller (grey) by Falkenhahn et al. (2014)
show similar behaviour. However, it should be noted that
both controllers cannot reach exact tracking since we pre-
vent the system from becoming singular by always adding
a small offset to the reading of one of the muscle lengths to
avoid singularity problems. The singularity is a side effect
of a special case of the kinematics: if the curvature of at
least one section i is zero, i.e. all lengths qi1 = qi2 = qi3
are equal and the kinematics are replaced by a constant
homogeneous transformation. This would imply that in
this special case and at all following time steps, the section
is only able to contract but not bend. Calculating the mass
matrix (3) using the replacement for the homogeneous
transformation reveals another problem: The matrix would
not have full rank and is thus not positive-definite, not
invertible and not usable for the dynamic simulations. The
same problem holds for the Coriolis matrix, even though
it is more acceptable since it does not need to be inverted.
A practical solution to this problem is to always ensure
that the robot cannot enter this state. Considering mea-
surement accuracies and numeric issues, the singularity is
unlikely to occur in a real system. For simulation, we check
for the singular case and add a value in the range of the
expected measurement accuracy if necessary.

In the second scenario we consider uncertainty, con-
stant disturbance on the input force (along the gen-
eral coordinates q) and wrong initial conditions. Fig.
4 shows four cases with rising uncertainty, i.e. we pick
each dynamical parameter randomly from an interval
of ±2 %,±4 %,±8 %,±10 % around the real parameter
value. The additive constant disturbance on the pressure
p is selected randomly as well as from an interval of
±1bar,±2bar,±4bar,±5bar . Like in the first scenario, we
compare our interval-arithmetic-based robust controller
(black) with the inverse-dynamics controller (grey) from
Falkenhahn et al. (2014). Fig. 4 (a) shows the error norm
‖q(t) − qd(t)‖ of both controllers and the norm of the
pressure ‖p‖. The simulation results show that the inverse-
dynamics controller by Falkenhahn et al. (2014) is already
not meeting the desired tracking performance bound of
1 mm (dashed line) for a 2 % of dynamical parameters
mismatch. For this reason, we have not included the results
of this controller in the plots with larger uncertainty. On
the other hand, our proposed controller allows the user-
defined tracking performance to be met for all considered
cases without manually retuning it, despite the wrong
initial conditions and input disturbance. Additionally, as
it is a nontrivial task for robust controllers in general, the
upper plots in Fig. 4 (a) - (d) show a smooth development
over time for the pressure commands.
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Fig. 2. Test trajectory. The three trajectories of the first
section are shown in black and those of the second
section in light grey.
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Fig. 3. First scenario without any uncertainty. The error
norm ‖q(t)− qd(t)‖ of both, interval-based (black)
and model-based (gray), controllers are below the
desired accuracy of 1 mm (dashed line).
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Fig. 4. Second scenario with varying uncertainty. The upper plots show the norm of pressure inputs ‖p‖. The lower
plots contain the error norm ‖q(t)− qd(t)‖ of the interval-based controller. In plots (b) - (d), the plot is enlarged
for the first 0.1 seconds in the upper right corners. For comparison, the error norm of the model-based controller
(gray) is included in (a).

6. CONCLUSION

We presented for the first time the implementation of an
interval-arithmetic-based robust controller for continuum
robots to handle imperfect knowledge of the dynamic
parameters, e.g. masses or spring constants. Thus, an exact
recalibration after small changes, such as changing the
payload, is not required.

The comparison between our proposed interval-arithmetic-
based robust controller and a model-based controller with
varying amount of uncertainty shows that parametric un-
certainty has a strong effect on the performance. The
simple model-based controller has shown to be very sen-
sitive even to small deviations from the exact dynamical
parameters. On the other hand, our proposed robust con-
troller shows a promising behaviour in our simulations.
This encourages us to implement our proposed approach
on a real continuum robot in the future.
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Appendix A. PROOF OF SKEW-SYMMETRY

Given that the matrix M is defined as in (3) and the

matrix C is defined as in (4), the matrix (Ṁ − 2C) is
skew-symmetric.

Proof. We show that Ṁ − 2C is skew-symmetric by
showing that (Ṁ− 2C)T = −(Ṁ− 2C). For this purpose,
we consider the following abbreviations:

∂wHxh

∂qik
= Hik,

∂wḢxh

∂qik
= Ḣik,

n∑
x=max(i,α)

≡
∑

.

First, we have to determine the time derivative of the mass
matrix:

Ṁik,αβ =
d

dt
Mik,αβ

=
∑

mx
d

dt

(
(Hαβ t)

T Hik t
)

=
∑

mx
d

dt

(
tTHTαβHik t

)
=
∑

mxt
T

((
d

dt
HTαβHik

)
+HTαβ

(
d

dt
Hik

))
t

=
∑

mxt
T
(
ḢTαβHik +HTαβḢik

)
t.

The elements of the matrix (Ṁ −2C) can be expressed as:

(Ṁ− 2C)ik,αβ =
∑

mxt
T
(
ḢTαβHik +HTαβḢik

)
t

− 2
∑

mx

((
Ḣαβ t

)T
Hik t

)
=
∑

mxt
T
(
ḢTαβHik +HTαβḢik

)
t

− 2
∑

mxt
T
(
ḢTαβHik

)
t

=
∑

mxt
T
(
−ḢTαβHik +HTαβḢik

)
t.

Finally, we conclude the proof as follows:

−(Ṁ− 2C)ik,αβ =
∑

mxt
T
(
ḢTαβHik −HTαβḢik

)
t

=
∑

mx tT
(
−HTαβḢik + ḢTαβHik

)
t︸ ︷︷ ︸

∈R

=
∑

mx

(
tT
(
−HTαβḢik + ḢTαβHik

)
t
)T

=
∑

mxt
T
(
−HTαβḢik + ḢTαβHik

)T
t

=
∑

mxt
T
(
−ḢTikHαβ +HTikḢαβ

)
t

= (Ṁ− 2C)αβ,ik.


