
RUNTIME ADAPTIVE ALLOCATION OF DYNAMICALLY MIXED TASKS ON A
HETEROGENEOUS MPSOC PLATFORM

Jia Huang, Andreas Raabe, Christian Buckl

fortiss GmbH
Guerickestr. 25, 80805 Munich, Germany
{huang,raabe,buckl}@fortiss.org

Alois Knoll

Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany

knoll@in.tum.de

ABSTRACT
Multiprocessor System-on-Chip platforms are typically used
for co-hosting multiple tasks, which may start and stop exe-
cution independently at time instants unknown at design time.
In such systems, the runtime resource manager is responsi-
ble for allocating adequate and appropriate resources to each
task. We identify a key issue in existing work that the re-
source management algorithms consider the problem only at
task-level, i.e. the optimization is performed for each individ-
ual task upon activation. However, it can be shown that such
strategies are suboptimal from the system point of view. In
contrast, we propose in this paper a new task allocation flow
that considers the system-level resource management. Com-
paring with traditional techniques, significant performance
improvement (up to 29.5%) is observed during evaluation
using a standard benchmark set. In addition, the proposed
task allocator features runtime self-adaptability with respect
to changes in hardware and/or applications.

Index Terms— Processor scheduling, Resource manage-
ment

1. INTRODUCTION

As the complexity of today’s embedded applications in-
creases continuously, there is trend toward adopting Multi-
processor System-on-Chip (MPSoC) platforms in embedded
system design. Such platforms are typically integrated with
multiple heterogeneous processing elements (PEs), memory
blocks and a communication infrastructure. MPSoCs provide
adequate computation power and flexibility for centralized
execution of a wide range of applications.

In many application domains, multiple tasks can be ex-
ecuted concurrently on a shared MPSoC. For example, a
Software Defined Radio (SDR) platform can co-host several
independent communication standards. Another example
would be a car infotainment system, in which different ser-
vices like MP3 and DVD decoding need to be provided. A
key characteristic of the aforementioned use cases is that
the tasks can start and stop execution independently at time
instants unknown at design time. This is usually due to the

switch of the use scenarios, e.g. the user just turn off the
MP3 player and start the DVD. Hence, dynamically vary-
ing combinations of tasks (called task-sets) are expected in
MPSoC platforms. When a task gets activated, a resource
manager is needed to allocate appropriate hardware resources
(e.g. processor, memory and communication channel) to ex-
ecute the task. On one hand, the resources allocated should
be adequate to meet the application requirements, e.g. worst
case response time and throughput. On the other hand, un-
necessary over-allocation and overload of resources should
be avoided to save space for future tasks. This step is known
as task allocation (or resource allocation from the platform
point of view), which is of prominent importance in the MP-
SoC design flow, since it can influence the hardware and
energy efficiency dramatically. Especially for heterogeneous
MPSoCs, in which the execution efficiency of the same task
may differ significantly on different PEs, task allocation must
be considered with utmost care.

The task allocation problem consists of two aspects,
namely the spatial task mapping, i.e. where to execute the
task, and temporal task scheduling, i.e. when to execute the
task. Extensive studies tackling entire or parts of this problem
can be found in literature. The proposed solutions basically
split in two directions, namely the static and dynamic ap-
proaches. Examples of static approaches include [1, 2, 3],
in which task allocation is formulated as static optimization
problems and solved using standard techniques such as In-
teger Linear Programming (ILP) and Genetic Algorithms.
However, due to the high complexity and huge execution
time of these algorithms, optimization can only be performed
offline at design time. This in turn requires that the set of pos-
sible tasks must be fixed and known, which is in many cases
impractical. For example, the software components may get
updated and new add-on modules may be downloaded. An-
other limitation of these studies is that only the optimization
of a single task is considered.

In the dynamic approaches [4, 5, 6], the allocation scheme
is calculated at runtime upon activation of the task, typically
using efficient heuristics due to the timing constraints. In [5],
a hierarchical search with iterative refinement algorithm is

presented, which targets on discovering the energy-optimal
mapping with real-time guarantee. It is not clear in litera-
ture how this approach can optimize the resource allocation
for multiple tasks. In [4], Moreira et al introduced a run-
time resource allocator that is able to handle multiple real-
time tasks. The task mapping is computed using vector bin-
packing heuristics aiming at minimum resource usage. There-
after, local scheduling analysis is applied on each PE to en-
force real-time requirements. The method proposed in [6] is
half way in between static and dynamic, in sense the task
mapping is determined at design time and the temporal set-
tings are computed at runtime.

In the existing work mentioned above, the task allocation
is only considered at task-level, that is, the optimization is
performed on each task according to the activation sequence.
A key issue that is neglected is that the allocation of current
task has substantial impact on the allocation of future tasks
due to the limited availability of shared resources. Actually,
those strategies might lead to adverse system configurations,
as illustrated in the following example.

Motivating Example. Consider the example scenario de-
picted in figure 1, where we have 4 tasks (t1 to t4) to be
mapped onto two processors (a RISC and a DSP) with the
goal of minimizing resource utilization. The left side of figure
1 shows the processor and memory consumption of each task;
the right side of figure 1 shows resource allocation according
to two different mapping strategies. The activation sequence
is assumed to be t1, t2, t3, t4. Scheme1 is the results from
traditional algorithms that focus on minimizing the resource
consumption of each individual task. When t1 is firstly ac-
tivated, the resource consumption of t1 on RISC and that on
DSP are compared. Obviously, the DSP is a better choice
since the processor usage is smaller. The same is done for
t2. However, a direct consequence of such a mapping scheme
is that t3 cannot be mapped to DSP any more due to lack of
resources. Hence, t3 must be mapped to RISC although it
is very inefficient. A further consequence is that t4 cannot
be mapped at all since not enough resources are available on
both DSP and RISC. If we examine the tasks t1, t2 and t3, it
can be seen that, although all of them prefer the DSP, the gain
of mapping them to DSP instead of RISC is different. For t1,
there is only a small gap in the resource consumption on DSP
and RISC, whereas the difference is much larger for t2 and
t3. Hence, when the DSP cannot accommodate all of them,
mapping t1 to RISC and saving the space for future tasks t2
and t3 is more favorable from the system point of view. This
leads to a better mapping Scheme2, in which all 4 tasks can
be allocated.

The above example clearly shows how the mapping of one
task influences the mapping of other tasks. It is also shown
that the task-level allocation algorithms can lead to subopti-
mal decisions for certain activation sequences. It is the ob-
jective of this study to develop a technique that optimizes the
system-level task allocation for any activation sequences. We

Fig. 1. Motivating Example

achieve this goal by introducing the concept virtual resource
consumption (see section 3). The major contributions of this
paper are:

• We make the key observation that the task-level opti-
mal mapping and system-level optimal mapping can be
different. An efficient heuristic is proposed, which can
be used at runtime to improve the system-level resource
management.

• We present a complete runtime task allocation flow tar-
geting a realistic MPSoC Architecture GENESYS1. The
allocation flow is self-adaptive to changes in hardware
architecture and/or applications.

In the following section, we first describe the architecture
and application models used in this work (section 2). The
details of proposed task allocation flow are introduced after-
wards in section 3. Experimental results are presented in sec-
tion 4. A comparison of this study with most relevant work is
presented in section 5. Section 6 concludes this paper.

2. SYSTEM MODELS

In this work, applications are described using the Task Graph
model. A Task Graph TG = (V,E) represents an indepen-
dent task, whose vertices v ∈ V represent actors (sub-tasks)
of that task. For each actor ali of task l, the Worst Case Exe-
cution Time (WCET) and memory consumption can be mea-
sured using simulation or external tools and can be annotated
in the model. For simplicity, the WCET (eli,x) in the entire
paper refers to the stand-alone WCET for ali on processor px
without considering resource sharing. The Worst-Case Re-
sponse Time (WCRT) (wl

i,x) refers to maximum response
time taking the waiting time caused by resource contention

1http://www.genesys-platform.eu/

Fig. 2. Hardware Architecture

into account. Naturally, wl
i,x is in any case no less than eli,x.

The edges in E represent the dependencies between actors.
For an edge (i, j), the target actor aj can only start execu-
tion after receiving the required data (called token) from the
source actor ai. If the source and target actors are mapped to
different PEs in the MPSoC, a communication channel needs
to be established. Alternatively, if the two communicating ac-
tors reside in the same PE, token transfer can be done via lo-
cal memory and no communication channel is necessary. The
applications we considered are real-time tasks, which typi-
cally have global end-to-end deadlines from the source actors,
where the task is activated, to sink nodes, where the response
is made. The source-to-sink latency must be smaller than the
deadline.

The target hardware platform in this work is the GENESYS
MPSoC [7] as shown in figure 2. The center of the MPSoC is
a time-trigger Network-on-Chip (NoC) for reliable commu-
nication, the time slots of which are shared by all tiles. The
Trusted Resource Manager (TRM) is responsible for config-
uration of the NoC, e.g. time slot distribution, and it is the
only entity allowed to do so. Each tile in GENESYS con-
sists of a PE associated with memory and a Trusted Interface
Sub-System (TISS). TISS is the bus guardian that guarantees
no tile uses the bus out of its own time slot. Assume the
NoC has a time wheel T and a time interval t is assigned to
a communication channel c. The time needed to transfer the
associated token in the worst case can be found as:

W =

⌈
Sc

tB

⌉
(T − t) +

Sc

B
(1)

where Sc denotes the token size of channel c andB is the data
rate of the NoC.

3. TASK ALLOCATION FLOW

This section describes the proposed task allocation flow. As
shown in figure 3, based on the architecture and application
models, application profile analysis is firstly performed to ob-
tain important information for later steps, such as which types

of resources are the most inadequate, etc. The analysis is done
before activation of any tasks and has little impact on the run-
time complexity. When a task needs to be allocated at run-
time, the mapping of each of its actor is first computed. After
that, local scheduling analysis is done on each PE to compute
a safe WCRT of each actor. In the last step, we perform data
flow analysis to check if the end-to-end deadlines can be met.
If not, a feedback is generated to previous steps and other
possible mappings are examined. If all deadlines are fulfilled,
data flow analysis provides the slack time that can be used for
token transfer. Adequate NoC bandwidth is allocated to each
communication channel such that no deadline is violated.

3.1. Application Profile Analysis

The application profile analysis step aims at estimating the
optimality of each mapping in the system scope. This is done
as follows. Consider an actor ai (from an arbitrary task) that
can be mapped to a set of PEs denoted by Pi. For each feasi-
ble mapping, the processor utilization and normalized mem-
ory consumption of ai on the PE pj ∈ Pi are denoted by ui,j
and mi,j , respectively. The utilization is defined as the ratio
between the WCET of ai on pj and period of parent task. The
normalization of memory consumption is done with respect
to average available memory on each PE. To evaluate the effi-
ciency of a certain mapping, we introduce the quantity desir-
ability, which is defined as the relative difference between the
resource consumption of a specific mapping and the average
resource consumption over all possible mappings:

ūi =

∑
pj∈Pi

ui,j

|Pi|
, m̄i =

∑
pj∈Pi

mi,j

|Pi|

di,j =
(ūi + m̄i)− (ui,j +mi,j)

(ūi + m̄i)
(2)

As can be seen, the lower the resource consumption of ai on
pj is, the higher the desirability of mapping ali to pj is. The
type of PE that achieves highest desirability di,max is called
the most preferred type. The corresponding minimum uti-
lization and memory consumption are denoted by ui,min and
mi,min.

An important use case of desirability is to decide the pri-
ority of actors that prefer the same PE. Particularly, if the pre-
ferred PE cannot accommodate all of those actors, tradeoffs
must be made. Naturally, actors with low desirability should
first be considered to move to other PEs. This is a typical sit-
uation that the runtime task allocator is facing. It must decide
whether the actor should be mapped to its preferred PE or it
should not since space needs to be saved for future actors.
It becomes evident that the correct decision must be based on
the desirability of other actors on the same PE and the amount
of resources the PE can offer. To quantitatively evaluate this
issue, we introduce another two quantities. Let Aj denote the

Fig. 3. Task Allocation Flow

set of actors that can be mapped to pj . The virtual resource
demand of an actor ai ∈ Aj on pj is estimated as:

ˆui,j = ui,min(1 + di,j)

m̂i,j = mi,min(1 + di,j) (3)

The idea behind the virtual resource demand is that, with
lower (or higher) desirability, the probability of mapping ac-
tor ai on pj is lower (or higher) according to the optimization
criterion of task allocator. In other words, when the desirabil-
ity is low, ai will not use its full strength to request resources
from pj , and vice verse. Hence, the resource demand of ai
is estimated by scaling ui,min and mi,min based on the de-
sirability di,j . With ˆui,j and m̂i,j for all ai ∈ Aj , we can
compute the overall demand factors of pj by summarizing
the virtual demands from all possible actors and then dividing
the sum by total resources available on pj :

αj =
∑

ai∈Aj

ˆui,j , βj =

∑
ai∈Aj

m̂i,j

Mi
(4)

Where Mi is the normalized memory available on pj . The
demand factors αj and βj represent the relative scarcity of
certain types of resources. Naturally, PEs with relatively large
demand factors are demanded by many actors and are likely
to be heavy-loaded. To estimate the optimality of a mapping
in the system scope, we compute the virtual resource con-
sumption of ai on pj by weighting the original resource con-
sumption by the demand factors of pj :

vi,j = vui,j + vmi,j = αjui,j + βjmi,j (5)

In the later task mapping step, instead of comparing the real
resource consumption, the PE with smallest virtual resource
consumption will be selected (see section 3.2). By computing
the virtual resource consumption, we introduce a penalty on
the usage of scarce resources such that allocation of scarce re-
source to actors with low desirability will be prevented, since

the penalty overcomes the gain of such a mapping. This strat-
egy actually allows the task allocator to look into the future
and make better mapping decisions for the overall system.
Concerning the motivating example, the mapping Scheme2
will be chosen when allocating t1, since future tasks t2 and t3
use the limited resources of DSP more efficiently.

3.2. Runtime Task Mapping

In the task mapping step, each actor is assigned to exactly
one PE that has enough resources. As mentioned before, our
goal is to optimize the system-level resource consumption. It
is worth mentioning that besides minimizing the resource us-
age, another important aspect for optimization is to balance
the resource consumption over PEs. The balancing consists of
two aspects. First, on each tile, the usage of PE and memory
should be balanced to avoid resource bottleneck [8]. Second,
the workload should be balanced amongst available tiles to
achieve a better energy and thermal profile [9]. This problem
can be viewed as a multi-dimensional bin-packing problem.
We developed a modified first-fit decreasing heuristic, the de-
tails of which are presented in the following.

When a new task is activated, its actors are visited in de-
creasing order according to averaged virtual resource con-
sumption on all possible PEs. Sorting of actors needs to be
performed only once in the application profile analysis step.
From the biggest actor, the task allocator tries to map the actor
onto the PE that minimizes the virtual resource consumption.
If not enough resources are available on the most favorite PE,
the task allocator sequentially examines other PEs with in-
creased resource consumption. If multiple PEs of the same
type exist, the one with least utilization is chosen. The above
procedure continues until all actors are mapped. If at least one
actor cannot be mapped on any PE, the task is not accepted
for execution.

The procedure above guarantees feasibility of mapping
from the resource availability point of view. Nevertheless,
the real-time requirements must be also enforced. In the next
steps, local scheduling analysis and global bandwidth alloca-
tion are performed. The former step provides an upper bound
of WCRT of each actor. The later step determines the token
transfer time of each channel. With this information, all end-
to-end deadlines can be checked. If the timing constraints
cannot be fulfilled, feedback is generated to the task mapping
step to activate a timing adjustment phase, which works as
follows. The task allocator firstly computes the Critical Path
(CP) between the source and sink actors. For all actors in
CP, the one with least average virtual resource consumption is
chosen and the mapping is removed. Then, the task allocator
checks if the WCRT of this actor can be reduced by mapping
it to any other PEs. If yes, the new mapping is adopted and
the end-to-end deadline is re-checked. If no, the mapping is
kept unchanged and next actor is examined. The timing ad-
justment phase ends when the end-to-end deadline is fulfilled

or no timing improvement can be achieved.

3.3. Local Scheduling Analysis

With known task-to-PE mapping computed in previous step,
classical single processor scheduling techniques can be
reused to compute the WCRT of each actor under the re-
source sharing scheme. Any deterministic scheduling policy
can be used here, e.g. TDMA and static priority preemptive
scheduling. For TDMA arbitration, the WCRT can be found
as:

wi,j =

⌈
ei,j
ti,j

⌉
(W − ei,j) + ei,j (6)

Where W is the TDMA time wheel, ei,j is the stand-alone
WCET of actor ai on pj and ti,j is the time slot allocated for
ai. For static priority preemptive scheduling, standard tech-
niques exist for WCRT computation [10, 11]. After the local
analysis step, the obtained WCRTs are annotated in the model
for later steps.

3.4. Global Bandwidth Allocation

The final step in the proposed workflow is to assign band-
width to each communication channel. As mentioned before,
a channel needs to be established only if the two communi-
cating entities are mapped to two different PEs. The goal of
this step is to allocate a minimal yet adequate time slot to each
channel such that the end-to-end deadlines can be guaranteed
with the token transfer time being taken into account. To do
this, we first perform data flow analysis to obtain the timing
budget for each channel. Since the WCRT is available from
the previous step, the timing budget for all channels along
an arbitrary path between the source and sink actors can be
found as the difference between the accumulated WCRT of
all actors along the path and the end-to-end deadline. The
remaining slack time can then be distributed to all channels
along the path proportionally to the token size. We start from
the CP between source and sink and sequentially visit other
paths until an appropriate timing budget is obtained for each
channel. Then, the minimum possible time slot with which
the token transfer can be finished within the timing budget
is computed according to equation 1. If the required band-
width is more than available, the new task is considered as
non-schedulable and a feedback is generated to the task map-
ping step.

In the GENESYS architecture, the global NoC bandwidth
is shared by all tasks. Hence, suboptimal usage of the band-
width can degrade the system performance significantly. A
bad situation that should be avoided is that the slack time for
token transfer is very small, resulting in a huge request in
global bandwidth. We solve the problem by two means. First,
we introduce a minimum timing budget for token transfer that
should be guaranteed by each task, e.g. 5% of the end-to-end
deadline. Second, a runtime adaptive actor clustering tech-
nique is developed, which is presented in the next section.

3.5. Adaptive Actor Clustering

Since communication is one of the most critical issues in
many MPSoC platforms, clustering approaches are developed
in existing studies to reduce the bandwidth consumption. In
[4], Moreira et al present a Clustering Before Packing (CBP)
algorithm, which attempts to contract a certain amount of
channels (e.g. 20%) before submitting the task to allocator.
By actor clustering, two communicating actors are grouped
into a single larger actor, forcing them to be mapped to the
same PE. Clustering can also be done at runtime by inten-
tionally mapping communicating actors to the same PE. A
drawback of clustering is that large actors are produced,
which make it more difficult to optimize the usage of other
resources. Results in [4] show that clustering is not bene-
ficial when the communication load is low, because of the
side effect. Nevertheless, for communication-intensive tasks,
the mapping success rate can be improved significantly by
clustering.

Our runtime clustering technique aims at balancing the us-
age of tile resources (PE and memory) and global bandwidth.
Assume an actor a1 is already mapped to px and the task allo-
cator is considering a communicating task a2. If the preferred
PE of a2 is of the same type as px, clustering is taken as nat-
ural optimum. Otherwise a tradeoff needs to be evaluated.
Assume py is the preferred PE of a2, the loss in tile resources
caused by clustering can be computed as:

Cdiff = (vu2,x + vm2,x)− (vu2,y + vm2,y)

The bandwidth that can be saved is estimated by:

Csave = S1,2b̄

Where S1,2 is the token size and b̄ is the average bandwidth
per token size over all existing channels. Then, clustering is
taken if the ratio between Csave and Cdiff is larger than a
threshold:

Csave

Cdiff
>
Bavail

Uavail
(7)

WhereBavail andUavail are respectively the current available
bandwidth and tile resources in the system. As it can be seen,
the clustering threshold is set according to the relative scarcity
of bandwidth resource. When the bandwidth utilization grows
faster than the tile utilization, the strength of clustering algo-
rithm will increase, and vice verse. This makes the algorithm
self-adaptive at runtime and allows for more balanced usage
of bandwidth, PE and memory.

3.6. Discussion of Self-Adaptability

One advantage of the proposed workflow is self-adaptability.
Given the hardware model and a set of tasks, the underlying
task allocator can adapt to the application domain in the ap-
plication profile analysis phase, in which the demand factors
of each PE and virtual resource consumption of each actor are

approach #task hardware average
used graphs utilization usage

task-level 12.40 89% 7.17%
system-level 14.18 93% 6.56%

Table 1. Performance Evaluation of Task-Level and System-
Level Algorithms

computed. This feature is particularly useful when changes in
the system occur, e.g. when the system gets updated or when
a new task is added to the system. In such cases, we just need
to re-activate the analysis phase.

Our workflow can also benefit from execution probabil-
ity information of tasks if available. Such information may
be either known at design time or obtained by runtime profil-
ers. For example, different users of a consumer device may
have distinct favorite programs that execute more often. In
such cases, a set of weighting factors can be easily added to
equation 4 according to the relative occurrence probabilities.
The task allocator is then adapted more to the highly probable
tasks.

4. EVALUATION

To evaluate the performance of the approach, we use the stan-
dard task graph set available at [12]. The benchmarking suit
contains both randomly generated TGs and graphs modeled
from real world applications. The number of actors in each
graph ranges from 50 to 100. A MPSoC with 9 PEs of 3 dif-
ferent types are used as the architecture model. On each PE,
deadline monotonic scheduling is used as the local scheduling
policy and the iterative algorithm from [11] is used to com-
pute WCRT. In each experiment round, we pick up a new task
set randomly from the TG suit as potential applications. Then,
the tasks in this set are activated in a random sequence and
submitted to the allocator. This procedure ends until the first
allocation failure occurs. We run such experiment for 1000
rounds and record the average data, e.g. the number of tasks
that is successfully allocated.

We first compare the performance of traditional ap-
proaches that optimize the resource consumption of each
single task (labeled task-level) and the proposed approach
that considers the system-level resource management (la-
beled system-level). Table 1 summarizes the results. As can
be seen, the system-level algorithm allocates 14.18 TGs on
average, which is 14% better than the task-level algorithm.
The third and fourth columns of the table show respectively
the total hardware utilization and average resource usage
of each task. Clearly, the system-level algorithm achieves
higher hardware efficiency. After analyzing the simulation
traces, we find out that the performance gap comes from two
sources. The first is unbalanced usage of the resources in the
task-level algorithm. In many cases, either the processor or

approach #tasks HW average perf.
used graphs util. usage drop

case1 task-level 10.71 86% 8.03% 14%
system-level 13.86 97% 7% 2%

case2 task-level 10.04 85% 8.47% 19%
system-level 13.00 95% 7.31% 8%

Table 2. Comparing the Performance Drop with Reduced Re-
source Availability

the memory is overloaded and becomes a bottelneck, which
prevents further actors from being allocated. The second rea-
son is that the most scarce resources are not used at their best
in the task-level alogrithm. Since tasks are activated in ran-
dom sequences, the task-level algorithm overlooks the side
effect of a mapping on furture tasks and uses highly requested
resources for actors with low desirability.

As explained before, self-adaptability is one of the major
improvement of the proposed task allocator. In table 2, results
from another two sets of experiments are presented, in which
the available memory on some types of PEs are reduced by
a certain amount. In case1, we reduce 20% of the memory
for PEs with highest demand factor and 10% of memory for
PEs with second highest demand factor. In the second case,
30% and 15% memory are removed, respectively. As can be
seen, the number of tasks allocated using the task-level algo-
rithm decreases by 14% in case1, whereas the performance of
system-level algorithm decreases by only 2%. For case2, per-
formance drop of 19% and 8% are observed by task-level and
system-level algorithms, respectively. Clearly, the task-level
algorithm is very sensitive to reduction of highly demanded
resources, since the side effects of suboptimal usage of those
resources become more severe. In the second case, the per-
formance of system-level algorithm is already 29.5% better
than that of the task-level algorithm. These results clearly ver-
ify that the proposed approach is capable of self-adaptation
to platform changes. Also, since the candidate task sets are
chosen randomly in each experiment round, adaptability to
changes in the applications is already justified.

Another set of experiments are carried out to evalu-
ate the performance of difference clustering approaches.
Four algorithms are compared: No-Clustering, Clustering-
20, Clustering-50 and Adaptive. The Clustering-20 and
Clustering-50 are two instances of the CBP algorithm pre-
sented in [4], which contracts 20% and 50% of total edges
in each TG. In each experimental rounds, we fix the task-set
and amplify the communication load by dividing the NoC
data rate by a constant factor. Figure 4 summarizes the results
with the x axis being the scaling factor. As can be seen, when
the network load is low, Clustering-20 and Clustering-50
degrade the performance compared with No-Clustering. The
reason is that bandwidth is not the current resource bottle-
neck and clustering introduces suboptimal usage of processor

Fig. 4. Performance Comparison of Clustering Approaches

and memory resources. Nevertheless, the performance of
No-Clustering drops rapidly as the network load increases.
With a scaling factor larger than 2, Clustering-20 already out-
performs No-Clustering approach. When the scaling factor is
between 2 and 3, the less aggressive Clustering-20 approach
is more preferable. With a large scaling factor (greater than
3), Clustering-50 clearly shows its advantage. Concerning
the proposed adaptive approach, the strength of clustering
changes dynamically at runtime. With low network load and
correspondingly low bandwidth usage, the threshold in equa-
tion 7 becomes relatively large, resulting in a less aggressive
clustering method. Alternatively, the strength of clustering
increases upon high bandwidth utilization. The results from
figure 4 clearly show that the proposed algorithm features
good self-adaptability and achieves best results in most cases.

5. RELATED WORK

Since task mapping/scheduling is one of the most important
step during design with multiprocessor systems, much work
has been published on this topic. Traditionally, designers rely
more on static design time exploration to find the desired al-
location scheme. Prominent tools that can handle this job in-
clude DOL[8] and SymTA/S [13]. Sophisticated optimization
algorithms can be used since everything is computed offline,
e.g. evolutionary algorithm are used in [8, 13], ILP is used
in [1]. A prerequisite of using static optimization is that the
applications must be fixed and entirely known, which limits
the design flexibility with MPSoCs.

Runtime dynamic task allocation methodologies are stud-
ied more recently. One of the most viable alternatives to our
solution is semi-static approach [14, 15, 16]. The basic idea
of these approaches is to divide the problem into two phases,
namely the offline phase and online phase. In the offline part,
thorough analysis of the application set is done to identify
all possible co-existing combinations of tasks (the use cases).
Then, a separate mapping and schedule is computed for each

use case and stored in the system. In the online phase, the re-
source manager looks up and adopts the pre-calculated con-
figurations upon activation of a task. The major advantage
of this strategy is that offline optimization algorithms can be
used, since the execution time is not critical. However, de-
spite the overhead for storing configuration data, this strat-
egy has several limitations. First, the scalability is bad, since
the number of use-cases can increase exponentially with the
number of tasks. Second, the flexibility is limited, because
1) the application set needs to be completely known at de-
sign time; 2) a major re-calculation and system update are
needed upon a change in the system, e.g. when a new appli-
cation is added. Last but not least, since the same task may
be mapped to different PEs in different use cases, task mi-
gration is needed during reconfiguration, which makes it very
difficult to guarantee continuous QoS of the task. Our ap-
proach is more scalable and flexible compared to the semi-
static approaches, since only a low-complexity application
profile analysis phase needs to be repeated for different sys-
tems.

Our work can also be compared with purely dynamic ap-
proaches such as [4, 17, 5, 6]. A key improvement of the
proposed approach is that, in contrast to all existing work,
the task allocator considers the system-level resource man-
agement instead of optimizing the resource consumption of
a single task. Another important advantage of the proposed
task allocation flow is runtime self-adaptability.

6. CONCLUSION

This paper presented a runtime task allocation flow target-
ing the GENESYS MPSoC platform, characterized by het-
erogeneous processing elements connected via a global time-
triggered NoC. In the existing prototype implementation of
GENESYS, only static task allocation is supported [18]. We
identified two important requirements in the task allocator to
enable efficient dynamic task allocation, which has several
advantages as discussed previously. First, since MPSoCs are
typically used for co-hosting multiple tasks with unknown ac-
tivation sequences, optimal resource management should be
done in the system scope with future tasks taking into con-
sideration. The proposed task allocator incorporates a global
analysis step to gather the resource demand profile of all po-
tential applications, allowing for better allocation schemes
from the system point of view. Second, the GENESYS ar-
chitecture is designed for cross-domain applications. Hence,
adaptability to different task-sets should be supported. This
is achieved by application profile analysis together with an
adaptive actor clustering algorithm. We evaluated the ap-
proach using a standard benchmark set and observed signif-
icant performance gain (up to 29.5%) compared with tradi-
tional task allocators.

Our work could be extended in multiple directions. One
interesting issue is to consider other important optimization

criterion, e.g. energy consumption. Moreover, we want to
consider task systems with mixed criticality, e.g. to develop
algorithms that guarantee 100% success rate for critical ap-
plications. Real world experiments are also planed after the
GENESYS MPSoC development finishes.

Acknowledgment
This work has been supported in part by the European re-
search project ACROSS under the Grant Agreement ARTEMIS-
2009-1-100208.

7. REFERENCES

[1] Michel Goraczko, Jie Liu, Dimitrios Lymberopoulos,
Slobodan Matic, Bodhi Priyantha, and Feng Zhao,
“Energy-optimal software partitioning in heterogeneous
multiprocessor embedded systems,” in DAC ’08: Pro-
ceedings of the 45th annual Design Automation Confer-
ence, 2008.

[2] Dongkun Shin and Jihong Kim, “Power-aware commu-
nication optimization for networks-on-chips with volt-
age scalable links,” in International Conference on
Hardware - Software Codesign and System Synthesis
(CODES+ISSS), 2004.

[3] Ruibin Xu, Rami G. Melhem, and Daniel Mossé,
“Energy-aware scheduling for streaming applications on
chip multiprocessors,” in IEEE Real-Time Systems Sym-
posium (RTSS), 2007.

[4] Orlando Moreira, Jan-David Mol, Marco Bekooij, and
Jef van Meerbergen, “Multiprocessor resource alloca-
tion for hard-real-time streaming with a dynamic job-
mix,” in 11th IEEE Real Time on Embedded Technology
and Applications Symposium (RTAS), Washington, DC,
USA, 2005.

[5] Philip K. F. Hölzenspies, Johann Hurink, Jan Kuper,
and Gerard J. M. Smit, “Run-time spatial mapping
of streaming applications to a heterogeneous multi-
processor system-on-chip (MPSOC),” in Design Au-
tomation and Test in Europe (DATE), 2008.

[6] A. Kumar, B. Mesman, B. Theelen, H. Corporaal,
and H. Yajun, “Resource manager for non-preemptive
heterogeneous multiprocessor system-on-chip,” in
IEEE/ACM/IFIP Workshop on Embedded Systems for
Real Time Multimedia (ESTMED), Washington, DC,
USA, 2006.

[7] R. Obermaisser and H. Kopetz, “Genesys book: A can-
didate for an artemis cross-domain reference architec-
ture for embedded systems.,” in Publisher SVH. ISBN
3838110404, 2009.

[8] L. Thiele, I. Bacivarov, W. Haid, and Kai Huang, “Map-
ping applications to tiled multiprocessor embedded sys-
tems,” in Application of Concurrency to System Design
(ACSD), 2007.

[9] Ayse Kivilcim Coskun, Tajana Šimunic Rosing,
Keith A. Whisnant, and Kenny C. Gross, “Static and dy-
namic temperature-aware scheduling for multiprocessor
socs,” IEEE Trans. Very Large Scale Integr. Syst., 2008.

[10] M. Joseph and P. Pandya, “Finding response times in a
real-time system,” BCS Computer Journal, Oct 1986.

[11] J. P. Lehoczky, “Fixed priority scheduling of periodic
task sets with arbitrary deadlines,” IEEE Real-Time Sys-
tems Symposium, 1990.

[12] http://www.kasahara.elec.waseda.ac.jp/schedule/index.html,
“Standard Task Graph Set,” .

[13] Rafik Henia, Arne Hamann, Marek Jersak, Razvan
Racu, Kai Richter, and Rolf Ernst, “System level per-
formance analysis - the symta/s approach,” in IEE Pro-
ceedings Computers and Digital Techniques, 2005.

[14] Luca Benini, Davide Bertozzi, and Michela Milano,
“Resource management policy handling multiple use-
cases in mpsoc platforms using constraint program-
ming,” in 24th International Conference on Logic Pro-
gramming (ICLP), 2008.

[15] Chengmo Yang and Alex Orailoglu, “Towards no-cost
adaptive mpsoc static schedules through exploitation of
logical-to-physical core mapping latitude,” in DATE,
2009.

[16] Andreas Schranzhofer, Jian-Jia Chen, Luca Santinelli,
and Lothar Thiele, “Dynamic and adaptive allocation of
applications on mpsoc platforms,” in Asia and South Pa-
cific Design Automation Conference (ASPDAC), 2010.

[17] Orlando Moreira, Jan-David Mol, and Marco Bekooij,
“Online resource management in a multiprocessor with
a network-on-chip,” in ACM Symposium on Applied
Computing, NY, USA, 2007.

[18] Christian Paukovits, The Time-Triggered System-on-
Chip Architecture, Ph.D. thesis, Technische Universität
Wien, Institut für Technische Informatik, Dec. 2008.

