
Reliability-Aware Design Optimization for Multiprocessor Embedded Systems

Jia Huang, Jan Olaf Blech, Andreas Raabe, Christian Buckl
fortiss GmbH

Guerickestr. 25, 80805 Munich, Germany
{huang,blech,raabe,buckl}@fortiss.org

Alois Knoll
Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
knoll@in.tum.de

Abstract—This paper presents an approach for the
reliability-aware design optimization of real-time systems on
multi-processor platforms. The optimization is based on an
extension of well accepted fault- and process-models. We
combine utilization of hardware replication and software re-
execution techniques to tolerate transient faults. A System Fault
Tree (SFT) analysis is proposed, which computes the system-
level reliability in presence of the hardware and software
redundancy based on component failure probabilities. We
integrate the SFT analysis with a Multi-Objective Evolutionary
Algorithm (MOEA) based optimization process to perform
efficient reliability-aware design space exploration. The solution
resulting from our optimization contains the mapping of tasks
to processing elements (PEs), the exact task and message sched-
ule and the fault-tolerance policy assignment. The effectiveness
of the approach is illustrated using several case studies.

I. INTRODUCTION

With the continuous shrinking of transistor sizes, modern
devices are becoming more susceptible to faults. Such faults
can be permanent ones, e.g., device defects or transient ones,
e.g., single event upsets (SEUs) caused by electromagnetic
interference. Several research studies have shown that tran-
sient faults occur much more frequently than permanent
faults, and their number is increasing with new technology
generations [1]. Consequently, in many embedded systems,
especially those for safety-related applications, the capability
to provide reliable execution even in the presence of transient
faults becomes a major requirement.

One traditional way to enhance reliability of systems is
to use hardware redundancy (also known as spatial redun-
dancy). For example, in a triple-modular-redundancy (TMR)
system, the critical components are replicated three times
and the results from the three redundant components are
voted (usually based on the majority criterion) to produce
the output. Such a system can then detect and correct a
single fault in any of the three replicas. However, hardware
replication often incurs high design and production cost.
As the counterpart, the idea of software redundancy (or
temporal redundancy) is proposed to reduce the cost. One
possible approach is to schedule critical tasks multiple times
and perform voting of the results [2]. Another common
technique is to insert checkpoints into the software and re-
execute the task in case faults are detected [3], [4]. For
real-time applications, software redundancy must be used

with utmost care, since the overhead in time may lead to
deadline violations. The schedulability issue in the context of
software redundancy has therefore become a very important
topic [5], [6], [7].

In many utilization scenarios, the optimal implementation
which respects all design constraints can only be achieved
with simultaneous application of multiple fault-tolerance
techniques. For example, in [8], the authors show that a
schedulable and cost-efficient solution can be achieved by
combined utilization of spatial and temporal redundancy.
The combination of software redundancy and hardware
hardening techniques is considered in [9]. Also, the safety
standards sometimes have special requirements or recom-
mendations of the fault-tolerance techniques to be applied.
For example, [10] requires a device certifiable to Safety
Integrity Level (SIL) 4 to implement at least hardware fault
tolerance of one. This means, pure software techniques even
with a large amount of redundancy are not sufficient to
achieve the desired level of reliability for SIL4. On the
other hand, a pure hardware-based solution might become
prohibitively expensive. Therefore, integrating several fault-
tolerance techniques and analyzing the overall system is a
critical task. Modern Multiprocessor System-on-Chip (MP-
SoC) platforms provide adequate hardware resources and
flexibility to well explore the tradeoff between different
fault-tolerance techniques.

The focus of this paper is on the reliability-aware design
optimization for real-time embedded systems. We consider
the combined utilization of hardware replication and soft-
ware re-execution techniques to tolerate transient faults.
Our work is based on well accepted fault- and process
models, e.g., these models have been used in [9], [11].
The design optimization is performed using Multi-Objective
Evolutionary Algorithms (MOEA), the result of which con-
tains the mapping of tasks to Processing Elements (PEs),
the exact task and message schedule and the amount of the
hardware/software redundancy to be applied. We illustrate
the effectiveness of the approach using several case studies.

The main contribution of this paper is: 1) a system fault
tree analysis that computes the system-level failure proba-
bility in the presence of hardware/software redundancy; 2)
an approach that integrates the proposed reliability analysis
into a MOEA based optimization framework; 3) an inter-job

slack sharing scheme for further reliability enhancement.
The rest of the paper is organized as follows. Section II

provides a related work review. The system models used
in this paper are introduced in Section III. Section IV
and V present the proposed reliability analysis and design
optimization approaches. Experimental results are presented
in Section VI. Section VII concludes this paper.

II. RELATED WORK

Reliability-aware design consists of two major tasks:
modeling/analyzing reliability and integration of reliability
into the design process. An overview can be found in [12].

Reliability analysis is typically performed in a hierarchical
manner, from the reliability model of individual components
up to the system-level model. In [13], the authors present a
symbolic approach for reliability analysis focusing on per-
manent faults. The so called structure function is introduced
and represented as a Binary Decision Diagrams (BDDs). It
describes the system behavior under the influence of faults.
Then, based on the reliability model of the components and
the structure function, system-level reliability is evaluated.
The work [9] describes a system failure probability analysis
that determines the system reliability based on the amount
of software redundancy and component failure rate. It is also
integrated into a tabu-search based optimization procedure.
Recent work [14] proposes a modeling framework that
integrates device, component and system level models.

In [2], the authors describe an approach that enhances the
reliability by selectively inserting task re-executions. The
reliability analysis introduced in [13] is integrated into a
MOEA based optimization framework in [15]. The spatial
redundancy is considered and represented by binding the
same task to multiple PEs. No software fault-tolerance tech-
nique is considered since only permanent faults are regarded.
The same authors further consider the automatic insertion
of voting components in [16]. There are also studies that
consider the tradeoff between reliability and other design
objectives, such as energy [11] and cost [3].

Our work is most closely related to [8], [3], [17]. In [8]
the authors study the design optimization of fault-tolerance
systems using both hardware and software redundancy. The
case for combined utilization of check pointing and hardware
replication is considered in [3]. In [17], the authors propose
a hybrid scheduling approach for mixed hard and soft real-
time tasks. In the work mentioned above, the optimization
framework automatically determines the task-to-PE mapping
and fault-tolerance policy assignment, e.g., the amount of
replication and placement of check points. We took their
fault- and process-model as a starting point for our work and
adapted it to our needs. In their fault model, a total number
of faults that may occur in any components of the system is
assumed. However, in many systems, the component failure
probability can be highly distinct depending on the type of
hardware and such an assumption might be inaccurate. We

therefore propose an accurate probabilistic analysis for the
system-level reliability. In addition to this, we introduce an
approach based on Evolutionary Algorithms that allows us
to consider multiple optimization objectives, e.g., reliability,
schedule length and resource utilization.

III. SYSTEM MODELS

We consider an application A as a set of independent
periodic jobs running simultaneously in the system. A job
J ∈ A is a directed acyclic graph, whose vertices V
represent a set of tasks to be executed and the edges E
capture data dependencies between tasks. For each edge,
a message is associated to represent the data transfer. We
assume that the set of jobs in A share the same period. If jobs
have originally different periods, they are first transformed
into larger graphs representing a hyper-period (LCM of all
periods) of the application. We use T to denote the set of
all tasks in application A and T (n) to represent the set of
tasks mapped to processor n.

Our target architecture is a Multiprocessor System-on-
Chip (MPSoC) with time-triggered on-chip communication.
The GENESYS 1 platform is one example of such an
architecture. The set of available Processing Elements (PEs)
is denoted using N . The communication bus is arbitrated
using TDMA. If the two communicating tasks are mapped to
the same PE, data transfer can be realized via local memory
and no bus slot is needed. Otherwise, a dedicated time
slot needs to be reserved. The message transfer is currently
assumed to be fault-free. The consideration of message
fault and optimization of the fault handling techniques are
addressed in future work.

Timing predictability is highly desirable for safety-related
applications. In this paper, we target on synthesizing static
time-triggered schedules. Such a schedule S is a set of
sub-schedules, each describing the scheduling information
for a specific PE. There must be exactly one sub-schedule
Sn for each PE n ∈ N . A sub-schedule consists of a
set of scheduling slots. A scheduling slot is a 3-tuple
s = (ts, tf , T), where ts is the start time of the slot, tf
is the finish time and T is a set of tasks that may execute
in the slot. A slot can be a normal task execution slot or a
re-execution slot (also called slack slot). The later is meant
to be shared by multiple tasks and used for re-execution
of instances misbehaving due to transient faults. Figure 1a
depicts an example schedule that has three slots for processor
n1 and n2 each.

The actual utilization of scheduling slots depends on how
the scheduler responds to the occurred faults. In this paper,
we consider a static non-preemptive scheduling approach.
In this case, the task t ∈ s.T 2 that has the highest
priority among all pending tasks acquires the slot. Figure

1http://www.genesys-platform.eu/
2The notation s.X denotes the element X in the tuple s in the entire

paper.

1 demonstrates two example execution scenarios. In 1b, the
slot S2 is used to re-execute t1, since both S0 and S1 fail. In
1c, the same slot is used for t2, since t1 is already finished
with S0. We use the same assumption as in [8], [9], [17],
[11] that the transient faults are detected using sanity checks
at the completion of a tasks’ execution. The timing overhead
of fault detection is assumed to be contained in the Worst-
Case Execution Time (WCET) of tasks.

The combination of faults that occur is described by a fault
scenario F , which is a set of partial fault scenarios, one for
each PE. A partial fault scenario Fn for PE n is a vector
of integers of length |T (n)|, specifying the number of faults
happening to each of the tasks mapped to n. A partial fault
scenario with x faults in total compares to a selection of x
tasks out of T (n), where each task can be selected multiple
times and the order does not matter [9], [18]. For a specific
PE n, the maximum number of tolerable faults depends on
the amount of redundancy. We define the fault-tolerance
capability max(S, n) as the number of re-execution slots
scheduled on n plus the number of tasks which are replicated
at least once in other PEs. Obviously, a fault-scenario is not
expected to be tolerable if the amount of faults specified for
any processor n is higher than max(S, n). To analyze the
system-level reliability, we are interested in identifying the
set of fault scenarios that can be tolerated using the current
schedule. To do this it is safe to investigate only the finite
set of fault-scenarios:

F̂ (S) = {F |∀n ∈ N :
∑

t∈T (n)

Fn(t) ≤ max(S, n))}.

IV. SYSTEM FAULT TREE ANALYSIS

This section presents the System Fault Tree (SFT) anal-
ysis that computes the system failure probability (SFP)
based on the component failure rate and the amount of
software/hardware redundancy. In general, to compute the
failure probability of a specific job J , we need to identify
the complete set of tolerable fault scenarios that does not
lead to a failure of J . Such a set is called the working set
of J with schedule S, denoted by W (J, S).

We define a function σ, which takes an application A, a
schedule S and a fault scenario F ∈ F̂ (S) and returns a
set of booleans, representing the execution result (success
or failure) of each job J ∈ A under the impact of faults
specified in F . A job succeeds if at least one instance of
each of its tasks is executed without fault before the deadline
D(T). Evaluation of σ compares to a symbolic execution
of the schedule according to the fault scenario, and then
identify the result for each job from the trace. Figure 1 shows
the execution traces of two example fault scenarios. As it can
be seen, although F1 and F2 specify both three faults, F1 can
be tolerated with the current schedule whereas F2 leads to
a failure of J1 (since t2 is not executed successfully). Note
that some fault scenarios may not be applicable according
to the scheduling policy. Consider the setup in Figure 1

Figure 1. Example Fault Scenario

for example, the fault scenario F = {(2, 0), (0, 1)} is non-
applicable, because it specifies two faults in t1 on n1, but the
second execution of t1 on n1 will not occur since a replica
of p1 is already executed successfully on n2 and a message
is transfered to n1. The set of non-applicable fault scenarios
must be excluded from the working set.

Computing the working set can be done via fault tree
analysis. Figure 2 illustrates the analysis for the schedule
depicted in Figure 1. From the none-fault case {(0, 0)(0, 0)},
we iteratively increase the number of faults and check if the
new fault scenario is still tolerable. The procedure builds
a tree structure representing the possible fault scenarios.
The depth of the tree is restricted by the fault-tolerance
capabilities max(S, n) of the PEs. The failure or non-
applicable nodes of the tree will not spawn further branches.

After obtaining the working set, the success probability
of a job (denoted by Pr(J, S)) can be computed by sum-
marizing the occurrence probability of the set of tolerable
fault scenarios Pr(F):

Pr(J, S) =
∑

F∈W (J,S)

Pr(F) (1)

Let Pr(t, n) denote the success probability of task t on node
n, the occurrence probability of fault scenario F is:

Pr(F) =
∏
n∈N

(
∏

t∈T (n)

(1− Pr(t, n))Fn(t) ·
∏

t∈Succ

(F,S,n)

Pr(t, n))

(2)
Where T (n) is the set of tasks mapped on n, Fn(t) is the
number of faults on task t specified in Fn and Succ(F, S, n)
is the set of successfully finished tasks on n. Succ(F, S, n)
can be obtained from the trace of evaluating σ(A,S, F).

The number of nodes visited during the fault-tree analysis
increases exponentially with the depth. Let |F | =

∑
n∈N
|Fn|

be the total number of entries in the fault scenario, we need
to visit

(|F |+d−1
d

)
nodes at depth d in the worst case. This

implies that the computational complexity also increases
exponentially. Since the stand-alone failure rates of the tasks
are typically very low, the nodes located deeper in the fault-
tree have much lower occurrence probability. Moreover, the
portion of non-tolerable fault-scenarios will also increase
significantly as the depth increases. In Figure 2 for example,

Figure 2. Example Fault Tree Analysis

only 2 out of 20 fault scenarios are tolerable at depth 3. Thus,
in many circumstances, a safe underestimation of system
reliability would be to consider only a bounded depth during
analysis. This compares to assuming a maximum number of
faults that may occur anywhere in one period of execution.

A. Inter-Job Slack Sharing

The above analysis is able to handle the case for shared
re-execution slots for tasks within the same job (intra-job
slack sharing). In this paper, we propose in addition an
inter-job slack sharing scheme. This scheme is motivated
by the emerging needs to cope with mixed-criticality jobs,
i.e. applications with highly distinct reliability requirements
running in the same platform. For high criticality jobs,
significant amount of software redundancy is needed to meet
the high reliability requirements. However, the probability
that the software slack is actually used is typically very low.
In this case, reusing the slack time for low criticality jobs
using the static-priority approach may lead to significant
saving of hardware resources. We demonstrate this point
using an example shown in Figure 3.

Assume two jobs J1 and J2 having the same period and
deadline is to be scheduled. J1 is a high-criticality task
requiring failure probability lower than 1 ·10−11 and J2 is a
low-criticality task with the requirement 5 · 10−6. Simple
analysis shows that three re-execute slots are needed to
fulfill the requirement of J1, if it is scheduled on a single
processor (Figure 3a). However, the deadline is violated in
this case. Figure 3b and 3c present two feasible schedules
that meet both deadline and reliability requirements of J1
on two processors via combined utilization of redundancy
in space and time domain. For both cases, the low-criticality
job can not be scheduled using the remaining resources
on processor N1 and N2, hence, a third processor N3

is needed for J2. However, using the proposed inter-job
slack-sharing approach, the two jobs can be scheduled as
shown in Figure 3d with all requirements met. The low-
criticality job J2 is assigned to low priority on the shared
re-execution slack, i.e. the low-criticality job J2 will use the
re-execution slot reserved for high-criticality task J1, only if

Figure 3. Motivating Example of Inter-Job Slack Sharing

Figure 4. SFT Analysis under Resource Availability Constraints

J1 successfully finishes without using that slot. Due to the
fact that the failure rate of J1 is low, such a setup already
fulfills the requirement of J2. In this case, two processors
are sufficient for executing J1 and J2.

The example shows the benefit of the slack-sharing.
Another important observation is that, when slack sharing is
used, the system-level optimal allocation strategy might be
different from the job-level optimum. For example, the two
schemes in Figure 3b and Figure 3c have the same resource
consumption for J1(in total 8 execution slots on two pro-
cessors). However, the further task J2 is scheduable on two
processors only using the scheme shown in Figure 3c. This
implies the need for a system-level optimization strategy.

The SFT analysis needs to be extended to cope with the
inter-job slack sharing scheme. The extended procedure is
explained as follows using an example (Figure 4). A sketch
of the algorithm is also provided in Algorithm 1. Assume
that a low priority job consisting of a single task t4 shares
the last slots of job J1 in Figure 1. We first do the SFT
for the high priority job J1. Besides determining the failure
probability, the SFT also gathers information about which
slots are still left for the low priority job (Figure 4b). As

it can be seen, when no fault occurs or only a single fault
occurs on t1, both re-execution slots are available for t4
(availability scenario [(1), (1)]). When a fault occurs on t2 or
t3, only one slot is left for t4 (availability scenario [(0), (1)]
or [(1), (0)]). A partial schedule of t4 can be built based
on the resource availability and the corresponding SFT can
be performed (Figure 4c and 4d). In a certain availability
scenario, the occurrence probability of a fault scenario is
computed as:

Pr(F,RA) = Pr(RA) · Pr(F |RA) (3)

Where Pr(RA) is the probability of the availability scenario
computed from SFT of high priority tasks and Pr(F |RA)
is the occurrence probability of F in the partial schedule
associated with RA. One possible way to reduce the com-
plexity of the extended SFT analysis is to ignore resource
availability scenarios with occurrence probability lower than
a threshold value. This is obviously again a safe underesti-
mation of reliability.

Algorithm 1 IterativeTreeAnalysis(): iterative SFT for
multiple jobs using the inter-job slack sharing scheme.
ASold: the set of availability scenarios from previous job.
ASnew: the set of availability scenarios for next job. The
function buildPartialSchedule constructs the partial schedule
for a job based on the availability of shared re-execution
slots. Since different fault scenarios may result in the same
availability scenario, a function combine is used to compute
the overall occurrence probabilities.

1: ASold ← initAvailability();
2: ASnew ← initAvailability();
3: for all J ∈ A with decreasing priority do
4: for all a ∈ ASold do
5: S′ = buildPartialSchedule(S,a)
6: avail ← SFTAnalysis(S′,J)
7: combine(ASnew,avail)
8: end for
9: ASold ← ASnew

10: end for

V. OPTIMIZATION HEURISTIC

Our optimization strategy is based on the Multi-Objective
Evolutionary Algorithm (MOEA). The MOEA optimizer
works as follows. The algorithm maintains a set of candidate
solutions called the population. During each iteration, the
optimizer selects a subset of solutions as parents, which
are manipulated using crossover and mutation operators to
produce offspring. The new solutions are evaluated using
the fitness function and high quality solutions will replace
low quality ones in the population. This process can be
repeated until a candidate with sufficient quality is found or
a maximum number of iterations is reached. The efficiency
of EA-based optimization is heavily influenced by the length

Figure 5. Workflow of EA-based Optimization

of the chromosome, since it determines the overall search
space. However, a direct encoding of the schedule as dis-
cussed in Section III results in a very large chromosome. To
cope with this problem, we utilize a two-step optimization
process as shown in Figure 5 inspired from [19]. The
main idea is that, instead of encoding the entire schedule,
we only put partial information, namely the mapping and
fault-tolerance policy, into the chromosomes. A scheduler
is integrated into the general variation-selection process to
transform the chromosome to an optimized schedule. The
resulting schedule is then used for fitness evaluation, e.g.,
the SFT analysis.

Using the above approach, we encode the mapping and
the fault-tolerance policy information as shown in Figure 6.
The chromosome contains one gene for each task t ∈ T .
Each gene is a pair g = (i, j), where i is the integer index
of the task and j is a list of integer indicating the set of PEs
onto which task i is mapped. Multiple mappings of the same
task onto the same PE are interpreted as re-execution slots
(task 2 and 3 in Figure 6); multiple mappings of the same
task onto different PEs are interpreted as spatial replications
(task 4 in Figure 6). Reconstruction of the schedule from the
chromosome is the same as scheduling the task executions
with known mapping and fault-tolerance policy. A notable
advantage of the two-step approach is that the scheduling
algorithm is orthogonal to our encoding scheme in the sense
that any existing scheduling algorithms for this purpose can
be used. Moreover, as long as the scheduler is implemented
correctly, the variation of the chromosome will always
produce valid solutions.

The scheduling procedure we propose consists of three
main steps. In the first step, a list scheduler is used to
greedily schedule the tasks to the beginning of the schedul-
ing period. The list scheduler determines the order of tasks
based on their priorities. In our implementation, we use
two criteria: tasks belonging to a job with shorter deadline
have higher priority (job-level EDF); for tasks within the
same job, the one that has longer path to the sink node has
higher priority. An example is shown in Figure 6a. Note that
data dependencies between tasks are automatically respected
by the list scheduler. In the second step, bus scheduling is
performed. For each task, which expects input from some
predecessors mapped to other PEs, a non-overlapping bus
slot is reserved for the message transfer. In this paper, we

Figure 6. Computing the Schedule from Chromosome

consider the transparent recovery mechanism [20], where a
fault happening on one PE is masked to other PEs. It has
several advantages such as fault-containment and improved
traceability. Transparent recovery requires that the message
is scheduled in a way that the faults occurring to the
sender are not visible to the receiver. For example, consider
Figure 6b, the message m2 can not be scheduled directly
after execution of t1, instead, it should be placed after the
possible re-execution of t1. Naturally, the receiver task t3
must then be delayed to the end of the message transfer. It
is a known limitation that transparent recovery may increase
the overall schedule length.

In the third step, we do optimization of the schedule using
the slack sharing scheme (Figure 6c). As mentioned before,
the idea is to re-claim the unused slack slots. Note that the
slack slots can be used to re-execute a task only if its size
is larger than the WCET of that task. This implies that a
larger slack slot is possible to be utilized for re-execution of
a larger set of tasks, and therefore introduces higher benefit
for system reliability, and vice verse. Hence, we need to
determine properly the size of each slack slot. To reduce the
complexity, we do not introduce the optimization of slack
sizes explicitly, instead, we fix the size of the slack slots
scheduled for a task t to the WCET of t. In Figure 6b for
example, the chromosome specifies one slack slot for t1 and
one for t2. The slot S1 scheduled after t1 is set to the WCET
of t1 and is sharable with t2. In contrast, the slack slot S2

of smaller size is not sharable with t1. Due to the penalty
in reliability, adding one slack slot for t1 will be preferred
by the optimizer. By mutating the number of slack slots
scheduled for each task, we implicitly optimize the size of
re-execution slack. Both intra-job and inter-job slack sharing
schemes can be integrated in this step.

A. Crossover and Mutation

In order to improve the performance of the EA, we have
implemented some crossover and mutation operators that
add problem-specific knowledge to the optimization. We
present those operators in the following:

Figure 7. Task Implementation Crossover Example

Task Implementation Crossover: This operator randomly
selects a set of tasks and swaps the entire implementation of
these tasks between two chromosomes, including the amount
of spatial/temporal redundancy and mapping. The rest of
the chromosome remains unchanged. Figure 7a shows an
example in which task 2 is selected for crossover.

Task Mapping Crossover: This operator performs
crossover for the implementation of each task separately.
Given two chromosomes, the mapping entries for a chosen
task are randomly swapped. Figure 7b shows an example in
which 3 mapping entries are selected for crossover in total.

Increment Redundancy: This mutation operator inserts a
new mapping entry for a randomly selected task. Insertion
of the new mapping x to task t might result in: 1) a slack
slot, if the chromosome already contains a mapping of t to
x, or 2) a spatial replication, if t has not been mapped to x.

Decrement Redundancy: The counterpart of Increment
Redundancy, removes one mapping entry from a random
task. There must be at least one mapping for each task.

Re-Mapping: This mutation operator randomly changes
selected mapping entries. The result might be: 1) re-mapping
of the tasks to other PEs or 2) transformation of a slack slot
to a spatial replication or vice verse.

VI. EXPERIMENTS

For the first experiment we applied the proposed design
optimization flow to an MPEG2 decoder example [21].
The analysis and optimization algorithm are implemented in
JAVA and run on a Windows machine with 4GHz CPU and
4GB memory. The MOEA is configured with a population
of 100 implementations and runs for 300 generations. We
assume that the target platform consists of two types of PEs,
namely a RISC processor and a DSP. The failure probability
of each task on a certain PE is randomly generated between
1 · 10−5 and 1 · 10−6. We restrict each task to have at most
2 spatial replicas and 2 re-execution slots. For the metric of
reliability, we use the system failure probability per hour in
logarithmic scale in all experiments, i.e. the lower the value
is, the higher the reliability is.

An important step during embedded system design is
design space exploration. For example, the designers may
need to determine the amount and the type of PEs that are
necessary to fulfill the application requirements. To illustrate
this step, we first run the optimization procedure with five
platform configurations consisting of 2 to 6 PEs. Figure 8

Figure 8. Optimal Solutions under Different Platform Configurations

Figure 9. Achievable Reliability under Different Platform Configurations

shows the Pareto front results from the optimization. The
horizontal axis shows the reliability and the vertical axis is
the overhead of schedule length with respect to the deadline,
i.e., overhead 0 implies meeting the deadline and a positive
value means a deadline violation. It can be seen that, the
Pareto fronts obtained with more PEs dominate in most cases
the Pareto fronts obtained with less PEs, i.e. the application
is finished with shorter time and higher reliability. This is
due to the increased opportunity for spatial redundancy.

For each platform, we are interested in the solutions
that achieve maximum reliability with deadline constraints
fulfilled. These solutions are marked with 1 to 3 in Figure 8.
As it can be seen, the 2RISC + 2DSP platform is the
minimal one to achieve System Failure Probability (SFP) of
1 · 10−6 and the 3RISC + 3DSP platform is necessary
to achieve SFP of 1 · 10−9. An important observation
from Figure 8 is that, for the 2RISC + 1DSP platform,
several solutions with SFP around 1 · 10−6 are very close
to meeting the deadline. The same is observed for the
platform 3RISC+2DSP , where several solutions are close
to achieve SFP of 1 · 10−9. This implies that, if some PEs
can be replaced by faster ones, using 3 or 5 PEs might
already be sufficient and become more cost-efficient design
choices. We therefore tested two additional platforms with 1
RISC + 2 DSP and 2 RISC + 3 DSP (the DSP is faster for
the mpeg2 application). Figure 9 compares for each platform
the maximum reliability achieved under deadline constraints.
Clearly, the new platforms with 1 RISC + 2 DSP and 2 RISC
+ 3 DSP are the most cost-efficient solution to achieve SFP
of 1 · 10−6 and 1 · 10−9, respectively.

For the second experiment we use a set of synthetic task

graphs to evaluate the slack sharing schemes. Each of the TG
consists of 5 to 15 tasks and we consider random use cases in
which 2 to 3 TGs run simultaneously. The platform contains
two RISCs and two DSPs and the execution time of tasks are
generated randomly between 100 to 1000. We consider three
optimization objectives, namely schedule length, reliability
and resource utilization. For the objective of schedule length,
the penalty value is calculated as:

penalty(S) =

{
−1 iff l ≤ d
l − d otherwise

where l is the actual schedule length and d is the deadline of
the task. The idea is, if the deadline is met, we set the penalty
to −1 and if the deadline is violated we set the penalty
to the gap between the actual length and the deadline. In
this way the optimization will lead to solutions that meet
the deadline and optimize other objectives. The same is
done for the reliability objective, i.e. the penalty is −1 if
the reliability requirements are fulfilled and a positive value
otherwise. The resource utilization is the absolute processor
time occupation. Using the above setup, all three objectives
need to be minimized. Three configurations are compared:
NSS, for which no slack sharing is enabled; INTRA, which
only uses intra-job slack sharing and INTER, which uses
both intra and inter job slack sharing.

Figure 10 shows the two-dimensional projection of the
Pareto optimal solutions for one example use case. Similar
results are also obtained for other use cases. The horizontal
axis is the reliability penalty and the vertical axis is the
resource utilization. As it can be seen, significant resource
saving comparing with NSS is achieved using the intra-
job slack sharing scheme. By enabling the INTER scheme,
further saving in resource consumption is observed. In the
right part of the curve (reliability penalty larger than 4),
the performance of INTRA and INTER is very close to
each other. The reason is, for those solutions, the reliability
is actually very low which suggests that the available re-
execution slots are very limited, resulting in limited opportu-
nity for further improvement using inter-job slack sharing. In
contrast, in the left part of the curve, INTER shows notable
benefit. In particular, considering the minimum resources
that are needed to fulfill the reliability requirement (solution
1 to 3 marked in Figure 10), INTRA and INTER saves
14% and 20% total resource consumption, respectively.
Figure 11 compares the solution that has the minimum
resource consumption and fulfills all deadline and reliability
requirements. The resource consumption is normalized with
respect to the NSS approach. On average, INTRA and
INTER saves 12% and 20% resources, respectively.

VII. CONCLUSION

This work considers the reliability-aware Design Space
Exploration (DSE) problem for real-time embedded systems.
The main contribution is a SFT analysis that provides

Figure 10. Optimization Result: Reliability vs Utilization

Figure 11. Comparison of Slack Sharing Schemes

probabilistic information about system reliability and an
approach that integrates SFT into an evolutionary algorithm
based optimization process. We have proposed a two-step
approach for efficient encoding of the chromosome and a
set of problem-specific operators for manipulation of the
chromosome. We have also proposed and evaluated an inter-
job slack sharing scheme for further reliability enhancement.
Next step will be the integration of DSE procedure into
a model-based development framework. The optimization
process will then take a set of input models and produce
a set of transformed models that fulfill certain reliability
requirements. Another direction of future work is to consider
other non-functional properties besides reliability.

ACKNOWLEDGMENT

This work has been supported in part by the Euro-
pean research project ACROSS under the Grant Agreement
ARTEMIS-2009-1-100208.

REFERENCES

[1] J. Sosnowski, “Transient fault tolerance in digital systems,”
IEEE Micro, February 1994.

[2] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. Irwin,
“Reliability-aware co-synthesis for embedded systems,” in
ASAP, 2004.

[3] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimiza-
tion of time- and cost-constrained fault-tolerant embedded
systems with checkpointing and replication,” IEEE Transac-
tions on Very Large Scale Integration Systems, 2009.

[4] Y. Zhang and K. Chakrabarty, “A unified approach for fault
tolerance and dynamic power management in fixed-priority
real-time embedded systems,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 2006.

[5] F. Liberato, R. Melhem, and D. Mosse, “Tolerance to multiple
transient faults for aperiodic tasks in hard real-time systems,”
IEEE Transactions on Computers, 2000.

[6] C.-C. Han, K. Shin, and J. Wu, “A fault-tolerant scheduling
algorithm for real-time periodic tasks with possible software
faults,” IEEE Transactions on Computers, 2003.

[7] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vincentelli,
“Fault-tolerant deployment of embedded software for cost-
sensitive real-time feedback-control applications,” in DATE,
2004.

[8] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Design optimiza-
tion of time-and cost-constrained fault-tolerant distributed
embedded systems,” in DATE, 2005.

[9] V. Izosimov, I. Polian, P. Pop, P. Eles, and Z. Peng, “Analysis
and optimization of fault-tolerant embedded systems with
hardened processors,” in DATE, 2009.

[10] Architectural Requirments, “IEC61508-2, chapter 7.4.3.1.1,
Tab.2 and 3.”

[11] D. Zhu and H. Aydin, “Reliability-aware energy management
for periodic real-time tasks,” IEEE Trans. Computers, 2009.

[12] A. Birolini, “Reliability engineering - theory and practice,”
Springer, 4th edition, Berlin, Heidelberg, 2004.

[13] M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt, and
J. Teich, “Reliability-Aware System Synthesis,” in DATE,
2007.

[14] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and
L. Shang, “System-level reliability modeling for mpsocs,” in
CODES+ISSS, 2010.

[15] M. Glaß, M. Lukasiewycz, F. Reimann, C. Haubelt, and
J. Teich, “Symbolic Reliability Analysis and Optimization of
ECU Networks,” in DATE.

[16] F. Reimann, M. Glaß, M. Lukasiewycz, C. Haubelt, J. Keinert,
and J. Teich, “Symbolic Voter Placement for Dependability-
Aware System Synthesis,” in CODES+ISSS, 2008.

[17] P. K. Saraswat, P. Pop, and J. Madsen, “Task mapping
and bandwidth reservation for mixed hard/soft fault-tolerant
embedded systems,” in RTAS, 2010.

[18] A. Björner and R. P. Stanley, A Combinatorial Miscellany.

[19] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich, “Sat-
decoding in evolutionary algorithms for discrete constrained
optimization problems,” in CEC, 2007.

[20] N. Kandasamy, J. Hayes, and B. Murray, “Transparent re-
covery from intermittent faults in time-triggered distributed
systems,” IEEE Transactions on Computers, 2003.

[21] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping
applications to tiled multiprocessor embedded systems,” in
ACSD, 2007.

