
Analysis and Optimization of Fault-Tolerant Task
Scheduling on Multiprocessor Embedded Systems

Jia Huang
fortiss GmbH, Germany
huang@fortiss.org

Jan Olaf Blech
fortiss GmbH, Germany
blech@fortiss.org

Andreas Raabe
fortiss GmbH, Germany
raabe@fortiss.org

Christian Buckl
fortiss GmbH, Germany
buckl@fortiss.org

Alois Knoll
TU München, Germany

knoll@in.tum.de

ABSTRACT
Reliability is a major requirement for most safety-related
systems. To meet this requirement, fault-tolerant techniques
such as hardware replication and software re-execution are
often utilized. In this paper, we tackle the problem of anal-
ysis and optimization of fault-tolerant task scheduling for
multiprocessor embedded systems. A set of existing fault-
and process-models are adopted and a Binary Tree Analysis
(BTA) is proposed to compute the system-level reliability in
the presence of software/hardware redundancy. The BTA
is integrated into a multi-objective evolutionary algorithm
via a two-step encoding to perform reliability-aware design
optimization. The optimization results contain the mapping
of tasks to processing elements, the exact task and message
schedule and the fault-tolerance policy assignment. Based
on the observation that permanent faults need to be consid-
ered together with transient faults to achieve optimal system
design, we propose a virtual mapping technique to take both
types of faults into account. To the best of our knowledge,
this is the first approach in fault-tolerant task scheduling
that considers permanent and transient faults in a unified
manner. The effectiveness of our approach is illustrated us-
ing several case studies.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; C.3 [special-purpose and ap
plication-based systems]: Real-time and embedded sys-
tems

General Terms
Algorithms, Design, Reliability

Keywords
Embedded Systems, Reliability, Design Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS 2011,Taipei,Taiwan
Copyright 2011 ACM 978-1-4503-0715-4/11/10 ...$10.00.

1. INTRODUCTION
With the continuous shrinking of transistor sizes, mod-

ern devices are becoming more susceptible to faults [21, 9].
Such faults can be roughly categorized as permanent or tran-
sient ones. Permanent faults, as the name suggests, are non-
recoverable device defects. They occur relatively rarely but
have a large impact on the running system. Transient faults
appear for a short time and disappear without damage to
the device, e.g., single event upset caused by electromagnetic
interference. The occurrence probability of transient faults
is usually higher than that of permanent faults. In many
safety-related embedded systems, the capability to provide
reliable execution even in the presence of both permanent
and transient faults is a major requirement.

One traditional way to enhance system reliability is to use
spatial redundancy (also known as hardware redundancy).
For example, in a triple-modular-redundant system, the crit-
ical components are replicated three times and the results
are voted to produce the output. Hardware replication tol-
erates both permanent and transient faults and has the ad-
vantage of simplified fault detection. However, it comes with
high design and production cost. An alternative to han-
dle permanent faults is task migration, i.e. the re-mapping
of tasks running on a faulty processor to other non-faulty
ones as soon as a defect is detected. Naturally, task migra-
tion is only possible if adequate hardware resources are still
available. Re-mapping schemes are usually designed care-
fully to guarantee the feasibility and minimize the migration
cost [13, 25].

Temporal redundancy is more cost-efficient to handle tran-
sient faults. One possible approach is to schedule critical
tasks multiple times and perform voting of the results [24].
Another common technique is to insert checkpoints into the
software and rollback the execution from a safe state in
case faults are detected [18, 26]. For real-time applications,
temporal redundancy must be used with utmost care, since
the overhead in time may lead to deadline violations. The
schedulability issue in the context of temporal redundancy
has therefore become a very important topic [14, 7, 17].

Safety-related systems must tolerate both permanent and
transient faults. In most existing work, they are considered
separately using dedicated techniques. However, it is par-
ticularly important to consider both types of faults in an
unified manner, in order to achieve the most efficient and
reliable design. We explain this point using the following
example. Consider the system in Figure 1 consisting of two

This is the author’s version of this work. For copyrighted work refer to the publisher.

Figure 1: Motivating Example

jobs J1 and J2 to be executed on two processors n1 and
n2. It has the requirement to tolerate a single defect on
any of the two processors. A straitforward design consid-
ering only the permanent faults could be to use hardware
redundancy as shown in Figure 1b. However, such a setup
has very limited capability of tolerating transient faults. As-
sume transient fault probability is 1×10−5 for one iteration
of each task and the period of both jobs are 360ms, the fail-
ure rate per hour of both J1 and J2 can be easily computed
as 4× 10−6. Using the same amount of resources, the soft-
ware re-execution technique can achieve much better toler-
ance to transient faults. In Figure 1c, two re-execution slots
(or slack slots) are scheduled on each processor, which can
be used to re-execute any previous task that is misbehaving
due to transient faults. Using the analysis presented later in
section 4, the failure probability of both applications is com-
puted to 4×10−11. However, the schedule in Figure 1c is not
capable of tolerating permanent faults on n1, since the slack
slots S21 and S22 are not large enough to accommodate A
and B. Actually, when we schedule the re-execution slots to
tolerate transient faults, we can keep the requirement from
permanent faults in mind and intentionally increase the sizes
of slot S21 and S22 to fit task A and B (Figure 1d). In this
way, permanent defects can also be handled since migration
of task A and B are now possible. The schedule 1d therefore
has the same tolerance to permanent faults as schedule 1b
and achieves much higher tolerance to transient faults.

The focus of this paper is on analysis and optimization of
real-time systems that tolerate both permanent and tran-
sient faults. We consider the combined utilization of hard-
ware replication and software re-execution techniques and
advocate the consideration of both types of faults in a unified
manner. The main contributions of this paper are: 1) A bi-
nary tree based approach that enables probabilistic analysis
of system reliability in the presence of spatial and temporal
redundancy; 2) an approach that integrates the analysis with
a Multi-Objective Evolutionary Algorithm (MOEA) via an
efficient two-step encoding; 3) a virtual mapping technique
to consider permanent faults together with transient faults.
To the best of our knowledge, this is the first approach that
considers permanent and transient faults in a unified manner
in fault-tolerant task scheduling.

The remainder of the paper is organized as follows. An
overview of existing work is presented in Section 2. The
system models used in this paper are introduced in Section 3.
Section 4 to 6 describe the proposed reliability analysis and
design optimization approach. Section 7 presents the virtual

mapping technique. Experimental results are presented in
Section 8. Section 9 concludes this paper.

2. RELATED WORK
Reliability-aware design consists of two major tasks: mod-

eling/analyzing of reliability and integration of the approach
into the design process. An overview can be found in [3].

Reliability analysis is typically performed in a hierarchi-
cal manner, from individual component models up to the
system-level model. Recent work [23] proposes a framework
that integrates device, component and system level models.
Glaß et al present in [6] a symbolic approach for reliability
analysis focusing on permanent faults. The system behav-
ior under influence of faults is described using the so-called
structure function. Then, the system-level reliability can
be evaluated based on component level reliability models.
The analysis is integrated into a MOEA based optimiza-
tion framework in [5]. Spatial redundancy is considered and
represented by binding the same task to multiple Process-
ing Elements (PEs). No software fault-tolerance technique
is considered since only permanent faults are regarded. The
same authors further consider the automatic insertion of vot-
ing components in [19]. Compared to the work mentioned
above, our reliability analysis considers transient faults and
also handles software fault-tolerance techniques.

Several existing approaches focus on transient faults. In
[24], the authors present an approach to handle transient
faults by selectively inserting task re-executions. Izosimov
et al [11] study the design optimization of fault-tolerance
systems using both spatial and temporal redundancy. The
case for combined utilization of check pointing and hard-
ware replication is considered by Pop et al [18]. In [20],
the authors propose a hybrid scheduling approach for mixed
hard and soft real-time tasks. The optimization framework
automatically determines the task-to-PE mapping and fault-
tolerance policy assignment, e.g. the amount of replication
and placement of check points. The fault model in [11, 18,
20] assumes a total number of faults that may occur in any
component of the system. The distinct failure probabili-
ties of different hardware components are not taken into
account. The work [10] describes a more accurate proba-
bilistic analysis of system reliability based on the amount
of temporal redundancy and component failure rate. It is
also integrated into a tabu-search based optimization proce-
dure. Other work also studies the tradeoff between reliabil-
ity and other design objectives, such as energy [28] and cost
[18]. Our paper tackles a similar problem as the work men-
tioned above [11, 18, 20, 28] and adopts a similar fault- and
process-model. We extend these approaches and propose a
probabilistic analysis that computes the system reliability
in presence of both spatial and temporal redundancy. Ad-
ditionally, we introduce an approach based on evolutionary
algorithms that allows us to consider multiple optimization
objectives, e.g. reliability, schedule length and resource uti-
lization. Another major advantage of our approach is that
permanent faults can be taken into account efficiently using
the proposed virtual mapping technique.

3. SYSTEM MODEL
We consider an application as the functionality of the sys-

tem as a whole. The application A consists of a set of inde-
pendent jobs, each given as a directed acyclic graph. For a

Figure 2: Example Fault Scenario

job J = (T , E), the vertices T = {t0, t1, ..., tm} represent a
set of tasks to be executed and the edges E = {e0, e1, ..., el}
capture data dependencies between tasks. We assume that
the set of jobs in A share the same period. If jobs origi-
nally have different periods, they are first transformed into
larger graphs representing a hyper-period (Least Common
Multiple of all periods) of the application.

Timing predictability is highly desirable for safety-related
applications. In this paper, we target on synthesizing static
time-triggered schedules. Such a schedule S is composed of a
set of non-overlapping slots {s0, s1, ..., sn}, each of which is
a four-tuple s = (b, f, p, T), where b is the start time of the
slot, f is the finish time, p is the processor on which the slot
is allocated and T is a set of tasks assigned to s. A slot can
be a normal task execution slot or a re-execution slot (also
called slack slot). The later is meant to be shared by multi-
ple tasks and used for re-execution of instances misbehaving
due to transient faults. The length of each slot must be no
smaller than the Worst Case Execution Time (WCET) of
any task possibly assigned to it. The time needed for recov-
ery from faults is also considered in slack slots. The actual
utilization of scheduling slots depends on how the scheduler
responds to the occurred faults. We adopt a static priority
based approach within a slot, i.e. the task t ∈ s.T 1 that
has the highest priority among the pending tasks acquires
the slot. A similar scheduling setup is also used in the AR-
INC 653 standard. In our case, a task will be skipped in
all subsequent slots once it is executed successfully and the
results are made available. Figure 2a depicts an example
schedule consisting of 6 slots. Figure 2b and 2c demonstrate
two example execution sequences in the presence of faults.
In Figure 2b the slot s2 is used for re-execution of t1 since
both s0 and s1 fail. In Figure 2c s2 executes t2 since s0
succeeded with t1. We use the same assumption as in [11,
10, 27, 20, 28] that transient faults are detected using sanity
checks when a task is completed. The timing overhead of
fault detection is assumed to be contained in the WCETs
of tasks. The effect of simplified fault detection using spa-
tial redundancy and voting is currently ignored, but will be
considered in further work.

In multiprocessor systems, if two communicating tasks are
mapped to different processors, a message must be scheduled
for data transfer, e.g. message m1 and m2 in Figure 2a.
The latency of message transfer is also considered but not
depicted in the figure for clarity. In this work, we consider
systems with reliable time-triggered on-chip communication,

1The notation s.X denotes the element X in the tuple s in
the entire paper.

e.g., the GENESYS architecture [4]. The message schedule
M is described as a set of message slots {m0,m1, ...,mk}.
Each message slot is a four-tuple m = (b, f, tsrc, ttgt), where
b is the start of the message, f is the finish time, tsrc is the
source task of the message and ttgt is the sink.

4. RELIABILITY ANALYSIS
To analyze the system reliability, we need to investigate

how the system behaves in case of faults. We describe the
faults occurring in a system by a fault scenario:

Definition 1 (Fault Scenario). A fault scenario is
a vector x = {x0, x1, ..., xn}, which contains for each schedul-
ing slot si a variable xi ∈ {1, 0,NA}. It encodes the execu-
tion result of si: xi is 1 if the slot executes some task suc-
cessfully and 0 if the execution fails. xi is NA if the slot
si is not used, i.e. each task in si.T is either not ready or
finished earlier and no task is currently executed in si.

For the given job J , a fault scenario x is tolerable by
a schedule S if J is still executed correctly in presence of
faults specified in x. The entire set of fault scenarios that
are tolerable by schedule S is called the working set of J ,
denoted as W (S, J). The overall probability that J is correct
can be obtained by summarizing the occurrence probability
of all fault scenarios in the working set:

Pr(S, J) =
∑

x∈W (S,J)

Pr(x) (1)

Before presenting the calculation of the working set, we
first introduce some intermediate notations. Let S(tj) repre-
sent the set of slots to which task tj is assigned, i.e. S(tj) =
{s ∈ S| ∧ tj ∈ s.T}. The boolean request variable ri,j eval-
uates to true if the task tj requests to execute in slot si
and false otherwise. The boolean utilization variable ui,j

is true if the slot si is actually used to execute task tj and
false otherwise. For the case of static priority scheduling,
ui,j computes to:

ui,j = ri,j ∧
(∧

tl∈si.T∧
priority(tl)>priority(tj)

¬ri,l
)

(2)

that is, si is utilized by task tj only if tj has the highest
priority among all tasks requesting the slot. An execution
request is sent only if the following conditions are fulfilled:

ri,j = isReady ∧ notPrev ∧ notOther (3)

The first term isReady requires the task tj to be ready, i.e.
all predecessor tasks have been finished successfully. The
following terms check the necessity of executing tj . The
term notPrev is computed as:

notPrev =
∧

sk∈S(tj)∧sk.p=si.p

∧sk.f≤si.b

¬(uk,j ∧ xk = 1) (4)

It is true if tj has not been finished in previous slots on
the same processor. The term notOther checks if the task
has been executed successfully on other processors and a
message is sent properly:

notOther =
∧

sk∈S(tj)∧sk.p 6=si.p

∧sk.f≤si.b

¬((uk,j ∧ xk = 1) ∧

(∃m ∈M : m.tsrc = tj ∧m.f ≤ si.b ∧m.b ≥ sk.f))

Figure 3: An Example of Binary Tree Analysis

The values of variables ri,j and ui,j can be calculated in
an iterative manner. Starting from the earliest scheduling
slot, we iteratively consider each s ∈ S. For a specific slot,
we compute the variables from the task with highest priority
to the task with lowest priority.

A task is successful if at least one instance of it is executed
without faults. Hence we have:

success(tj ,x) =
∨

sk∈S(tj)

(uk,j ∧ xk = 1)

For a given schedule, we can construct a function ϕJ :
{0, 1}|x| → {0, 1}, which takes a fault scenario x and re-
turns 1 if the job J is still correct under impact of x and
0 otherwise. Since the entire job is correct only if all of its
tasks are correct, the function is given as:

ϕJ(x) =
∧

tj∈T

success(tj ,x) (5)

With the help of function ϕ, the working set W (S, J) =
{x|ϕJ(x) = 1} can be obtained by a Binary Tree Analysis
(BTA). The procedure is demonstrated using an example
shown in Figure 3. We consider the scheduling slots accord-
ing to the order of occurrence, i.e. the slots with earlier
starting time are selected first (e.g., from S0 to S5 in Figure
3). Slots with equal start time can be considered in arbi-
trary order. The ith level in the tree is associated with the
ith slot and the edges leaving a node in the ith level repre-
sent the execution result of that slot. Left branches (solid
lines in Figure 3) represent the case that the slot executes
some task correctly. Right branches (dashed lines in Figure
3) represent a slot with failed execution. Note that a slot
might be unused when all tasks in s.T are either not ready
or finished earlier. In this case we skip this level and spawn
children in the next level, e.g. node n1 in Figure 3. By con-
structing the tree in this way, each node will have a unique
path to the start node representing a unique fault scenario.
A node at depth m represents a fault scenario in which the
first m variables are determined and the rest are considered
to be NA. The total depth D of the tree equals the number
of scheduling slots: D = |x| = |S|.

Each node in the tree is associated with its own request/
utilization variables. For a specific node n, we compute
those variables using (2) to (3) based on the values of re-
quest/utilization variables associated with the nodes on the
path from n to the start node. This procedure actually com-

Algorithm 1 analysis(n): binary tree analysis with start-
ing node n.

computeRUVariables(n);
l ← createLeftBranch(n)
if checkLeftBranch()=successful then

addToWorkingSet(l)
else

analysis(l)
end if
r ← createRightBranch(n)
if checkRightBranch()6= faulty then

analysis(r)
end if

Algorithm 2 BinaryTreeAnalysis(S): top-level routine
of BTA for schedule S

setScheduleToBeAnalyzed(S);
n0 ← createStartNode();
analysis(n0);

putes which task is going to be executed in a slot based on
the execution results of previous slots.

With the request/utilization variables, a fault scenario x
can be evaluated using (5), and the corresponding node is
assigned to one of the states: unknown, faulty or successful.
A node is faulty iff, given the current faults specified in x,
there exists no possibility to execute the job successfully in
the remaining slots. A node is successful iff the entire job is
already finished using the successful slots specified in x, i.e.
the remaining slots are not needed. The faulty and successful
nodes will not spawn further branches. If a node is neither
identified as faulty nor successful, the analysis continues with
its children. The tree analysis is complete if all nodes at the
maximum depth D was visited or no more unknown node
exists. Afterwards, the set of successful nodes is used as the
working set. The analysis process above can be implemented
recursively as outlined in Algorithms 1 and 2.

The occurrence probability of a successful node x can be
computed as:

Pr(x) =
∏

xi∈x∧xi=1

Pr(si) ·
∏

xi∈x∧xi=0

(1− Pr(si)) (6)

where Pr(si) is the success probability of the task executed
in slot si. The probability Pr(si) can be computed based

on the reliability function of the hardware platform and we
assume that it is given a priori [27]. The system reliability
can then be obtained using (1).

4.1 Complexity Issues
The complexity of processing a node during BTA is linear

with respect to the number of tasks assigned to the corre-
sponding slot (variables r and u need to be computed for
each task). However, this number is typically very small
and does not grow significantly when the system becomes
more complex. We therefore assume the complexity of vis-
iting a node to be constant. In this case, the complexity
of the entire analysis is determined by the number of nodes
visited. The worst case scenario occurs when all the nodes
in depth smaller than |S| are in the unknown state. The

complexity is in O(2|S|+1) in this case.
As the analysis has a worst case exponential complexity,

it is important to find approximations that improve the scal-
ability. An observation from equation (6) is that the fault
scenarios that specify more faulty slots have much lower oc-
currence probability, because the failure rate of a task is
typically very low. Moreover, a fault scenario that specifies
more faults is more likely to be a faulty node. Hence, an ap-
proximation of the system reliability would be to visit only
nodes with at most d faulty slots and to assume all nodes
specifying more than d faults as non-tolerable. Since the
reliability is obtained using (1), ignoring possibly tolerable
nodes is a safe underestimation of system reliability. From
the tree point of view, this corresponds to eliminating all
nodes with more than d right branches on their paths to the
start node.

With the above estimation, the total amount of visited
nodes can be computed as follows. We divide the tree into
two parts. For the first d levels of the tree, all nodes should
be visited, i.e. in total 2d+1 − 1 nodes. For the rest, recall
that the set of nodes in level l is a complete enumeration
of all possible assignments of the first l variables in a fault
scenario. Hence, the number of assignments with maximum

d zeros is
d∑

x=0

(
l
x

)
. The total amount of nodes is then:

T (|S|) = 2d+1 − 1 +

|S|∑
l=d

d∑
x=0

(
l

x

)
(7)

By applying a simple upper bound for the sum of binomial

coefficients
d∑

x=0

(
l
x

)
≤ (l + 1)d, the complexity of the algo-

rithm computes to:

O(T (|S|)) = O(

|S|∑
l=d

d∑
x=0

(
l

x

)
) ⊆ O(

|S|∑
l=d

(l + 1)d) (8)

The expression above can be further overestimated as:

O(T (|S|)) ⊆ O(|S| · (|S|+ 1)d) = O(|S|d+1) (9)

As it can be seen, the complexity of BTA is reduced to
be polynomial in |S| by bounding the maximum number
of faults by a constant d. The above analysis shows the
worst-case complexity of BTA. During our experiments, we
observe that the portion of terminating nodes (mostly faulty
nodes) increases significantly with higher d and the actual
number of visited nodes is much smaller. As an example of
runtime, the average execution time of BTA on the mpeg2

Figure 4: Example of Static Priority Slack Sharing

application (|S| ≈ 35, measured on a 3GHz CPU) is 754ms
for d = 3 and 3405ms for d = 5. Thus the runtime of BTA
is acceptable for an offline optimization process. To obtain
high-quality schedules, we should focus on increasing the
coverage of fault scenarios with high probabilities instead of
tolerating rare cases. Hence, the BTA is in most cases used
with small d, e.g., d = 3.

5. STATIC PRIORITY SLACK SHARING
FOR MULTIPLE JOBS

Many multiprocessor systems are designed for co-hosting
multiple functionalities concurrently. In particular, there is
an increasing trend towards implementing jobs with mixed
criticality on a single shared computing platform [2]. It is
likely that jobs with different criticality have highly distinct
reliability requirements. For highly critical tasks, a signifi-
cant amount of temporal redundancy is needed to meet their
reliability requirements. However, the probability that the
software slack is actually used is typically very low. In this
case, implementing each job in a step-wise manner without
a global view may result in sub-optimal system design (see
example below). To cope with this problem, we propose
a Static Priority Slack Sharing (SPSS) scheme. The idea
is to introduce global re-execution slots and enable sharing
of those slots among multiple jobs using a job-level static
priority approach based on the criticality.

Figure 4 shows an example schedule of two jobs using
the SPSS technique. A high-criticality job J1 and a low-
criticality job J2 are allocated on two processors. Four global
slack slots are scheduled, in which J1 is assigned a higher
priority. In this case, scheduling of J2 in slack slots will
have no influence on the execution of J1. Assume the failure
rate of each task is 10−5 and the period is 360ms, we find
that the reliability requirement of J1 is met. For the low
priority task J2, a re-execution slot is granted only if J1

finishes successfully without using that slot. Due to the fact
that the task failure rate is low, such a setup already fulfills
the requirement of J2. Thus, two processors are sufficient to
execute both jobs. Without using SPSS, a third processor
would be necessary for J2, since the remaining resources on
N1 and N2 are not enough.

The BTA is able to analyze a global schedule of multiple
jobs and compute the reliability of each job. For this, it has
to be modified to consider a node as unknown unless the
results of all jobs are available (either successful or faulty).
As discussed in section 4.1, the complexity grows rapidly
with the total number of scheduling slots. To cope with this
problem, we present an extended approach that computes
the reliability of each job iteratively, a sketch of which is
shown in Algorithm 3.

In the extended algorithm, we iterate over each job from
the one with highest priority to the one with lowest priority.
For a specific job J , we perform the BTA and obtain the
set of successful nodes (working set). For each node ñ ∈
W (S, J), there is an availability scenario g̃ associated. It
denotes which shared re-execution slots are used and which
are not. Let SG denote the set of shared re-execution slots
in schedule S, g̃ is a subset of SG that computes to:

g̃ = {si ∈ SG|x̃.xi = NA} (10)

Where x̃.xi refers to the value of variable xi in fault scenario
x̃ associated with node ñ. An example is given in Figure 3.
The availability is {S4, S5} for the successful node c1, {S5}
for node c2 and {S4} for node c3. Note that multiple suc-
cessful nodes may result in the same availability scenario.
Hence, the occurrence probability of a specific availability
scenario g is:

Pr(g) =
∑

ñ∈W (S,J)∧g̃=g

Pr(x̃) (11)

For the analysis of next job J ′, we iterate over each avail-
ability scenario (line 4 in Algorithm 3). For a specific avail-
ability scenario g, the remaining slack slots are combined
with the slots dedicated for J ′ to obtain the total sched-
ule Ŝ (line 5 in Algorithm 3). The Ŝ is then used for the
BTA of J ′ (line 6). In a certain availability scenario g, the
occurrence probability of a fault scenario is

Pr(x, g) = Pr(g)Pr(x|Ŝ) (12)

Where Pr(x|Ŝ) is the occurrence probability of x using the

schedule Ŝ associated with g. The probabilities of tolerable
fault scenarios found with each availability scenario are sum-
marized using equation (1) to obtain the system reliability.
The BTA of J ′ computes again the availability scenario for
further jobs (line 7 and 9 in Algorithm 3).

Algorithm 3 IterativeTreeAnalysis(): iterative tree
analysis for multiple tasks. ASold: the set of availability
scenarios from previous job. ASnew: the set of availability
scenarios for next job. S(J): the set of slots dedicated for
job J . The function combine computes the overall occur-
rence probabilities of availability scenarios using (11).

1: ASold ← initAvailability();
2: ASnew ← initAvailability();
3: for all J ∈ A with decreasing priority do
4: for all a ∈ ASold do
5: Ŝ = S(J) ∪ a

6: avail ← BinaryTreeAnalysis(Ŝ)
7: combine(ASnew,avail)
8: end for
9: ASold ← ASnew

10: end for

Complexity. Let |A| be the number of jobs and S(J)
be the set of scheduling slots dedicated to job J , the to-
tal number of slots of schedule S can be represented as
|S| =

∑
J∈A
|S(J)| + |SG|. Consider the case that we assume

maximum d faults in each job, the maximum number of
faults in the entire system is |A| d and complexity of the

analysis is in O(|S||A|d+1) according to equation 9. Using
the iterative approach, the worst-case complexity of BTA

Figure 5: Workflow of EA-based Optimization

for a single job J is in O((|S(J)| + |SG|)d+1). The BTA
needs to be done for each availability scenario. Assume J
is the xth job that we consider, then the previous jobs may
encounter up to (x− 1)d faults. Those faults may consume
shared slack slots and thus result in different availability sce-
narios. In the worst case, each combination of faults has a
different availability scenario, so the total number of BTAs

to be performed is
(x−1)d∑
i=0

(|SG|
i

)
≤ (|SG| + 1)(x−1)d. It can

be easily seen that the complexity is significantly reduced.
For further complexity reduction, we can apply the same
idea as in section 4.1 on availability scenarios by considering
the availability scenarios with occurrence probabilities lower
than a threshold value as faulty. This is obviously also a safe
underestimation of reliability.

6. OPTIMIZATION PROCEDURE
After reliability analysis, the next step is to find the op-

timal task schedule. Our approach is based on the Multi-
Objective Evolutionary Algorithm (MOEA). The EA is per-
formed in two main steps: production of new solutions by
varying existing solutions and selection of good solutions
based on their fitness (Figure 5). In order utilized MOEA,
the schedules need to be encoded as chromosome. How-
ever, a direct encoding of a schedule described in Section
3 needs a very large chromosome, which results in a huge
search space and low optimization efficiency. To cope with
this problem, we utilize a two-step encoding process inspired
from [15]. The main idea is, instead of encoding the entire
schedule, we only put partial information, namely the map-
ping and fault-tolerance policy, into the chromosome. A
scheduler is integrated to transform the chromosome to an
optimized schedule. The resulting schedule is then used for
fitness evaluation, e.g. the reliability analysis.

Using this approach, the chromosome contains one gene
per task. Each gene is a pair g = (i, L), where i is the integer
index of the task and L is a list of integer values denoting the
PEs task i is mapped to. An example is shown in Figure 6.
Multiple mappings of the same task onto the same PE are
interpreted as re-execution slots (task 2 and 3 in Figure 6);
multiple mappings of the same task onto different PEs are
interpreted as spatial replications (task 1 in Figure 6). The
operators that we apply on the chromosome are described
in details in [8].

Reconstruction of the schedule from the chromosome is
the same as scheduling the task executions with known map-
ping and fault-tolerance policy. In principle, any existing
scheduler for this purpose can be used. The scheduling pro-
cedure that we propose consists of three main steps. First,
for each mapping entry of a task t, we instantiate a schedul-

Figure 6: Encoding and Reconstruction of Schedule

Figure 7: Influence of Data Dependency on Task
Migration

ing slot with length equal to the execution time of t. The
set of slots is scheduled using a list scheduler. The priority
is computed based on two criteria: 1) a task belonging to a
job with earlier deadline has higher priority (job-level EDF);
2) for tasks in the same job, the one that has a longer criti-
cal path to the sink is assigned a higher priority. Using such
an approach, data dependencies are automatically regarded.
Second, bus scheduling is performed for each message (Fig-
ure 6b). In this paper, we adopt the transparent recovery
approach [12], which requires that a fault occurring on one
PE is masked to other PEs. This has several advantages such
as fault-containment and improved traceability. According
to transparent recovery, the message should be scheduled
after possible re-executions so that faults occurring at the
sending side are not visible to the receiver, e.g., if the task t2
in Figure 6 wants to sent a message to other tasks, the mes-
sage should be placed at time T2. Tasks may be postponed
due to dependency on messages. In a third step, we perform
slack sharing (Figure 6c) using a greedy approach. A slot is
shared with all tasks that 1) may become ready before the
start time of this slot; 2) has a execution time not greater
than the slot size.

An advantage of the two-step encoding is that additional
application constraints can be realized as constraints on the
chromosome. E.g, the safety standard IEC 61508 requires
each device certifiable to Safety Integrity Level (SIL) 4 to
implement at least hardware fault tolerance of one [1]. This
can be achieved by adding a constraint on the chromosome
enforcing that the mapping list of each task must have at
least two unequal entries, meaning that each task has at least
one spatial replica. Another example would be separation
constraints, e.g. two critical tasks are required to be strictly
isolated in space. This in turn requires that the mapping
entries of the two tasks do not collide.

7. TOLERATING PERMANENT FAULTS
USING VIRTUAL MAPPING

Many safety-related applications require to tolerate cer-
tain permanent faults. In section 1 we made the case for
a unified consideration of permanent and transient faults.
Nevertheless, the analysis and optimization approach pre-
sented so far focuses only on transient faults. In this sec-
tion, we present an extension integrating the consideration
of permanent faults. Recall that, to tolerate a permanent
defect of some processor p, we need to guarantee that each
task mapped to p either has another running instance (spa-
tial replication) or can be migrated to a slack slot on another
processor. Thus, a straitforward way is to ensure that each
task has at least one replica by adding constraints on the
chromosomes. However, such an approach has the draw-
back that spatial redundancy is much less efficient in terms
of contribution to transient fault tolerance and also comes
with high hardware cost.

A more cost-efficient alternative to handle permanent faults
is task migration. To design such a system, one of the most
important goals is to minimize the overhead of migration.
The ideal case is that the system recovers from faults with
only minor re-configuration. Since attaining the optimal
task migration decision is a highly complex task, recent work
[13] proposes to compute the task re-mappings statically of-
fline and store them in tables. The pre-computed configu-
rations are then applied at runtime if a processor fails. We
adopt a similar approach and target at synthesizing a static
schedule that can be adapted with minor changes to han-
dle failure of processors. In case of static time-triggered
scheduling, we observe that the migration cost is highly in-
fluenced by the data dependencies. Consider the example
depicted in Figure 7, where we are going to migrate the task
X to one of the possible locations S1 to S3. The task A
and B are communicating with X via messages. If X is
re-mapped to S1, which is earlier than the original message
M1, the predecessor task A and the message M1 need to be
shifted forward due to data dependency. In consequence,
other tasks communicating with A need further adaptation
and overall migration cost could be high. A similar situa-
tion occurs if X is migrated to S3, which is later than the
original message M2. In this case the successor tasks need
to be shifted backwards. Instead, if X is moved to S2, the
rest of the schedule does not have to change. We learn from
this example that, while building a schedule, it is very im-
portant to keep track of the migration locations and try to
put them into the optimal locations. For the given example,
we should try to schedule a slack slot between t1 and t2.

To solve this problem, we propose a virtual mapping tech-
nique. The idea of virtual mapping is to trace potential
places for task migrations already at the time when the
schedule is constructed from the chromosome. A virtual
mapping of task t to p is represented in our encoding scheme
using a negative integer −p, which implies that p is the tar-
get of migration of task t. For example, the chromosome
shown in Figure 8a specifies two entries 1 and −2 for task
A, which means A is executed on processor n1 during nor-
mal execution and it should be migrated to n2 if n1 fails.
When constructing the schedule, we instantiate for a virtual
mapping also a slot of the size equal to the execution time of
A (slot V A in Figure 8b). This slot is the place where A will
be migrated to. Note that the virtual mapping slots are also

Figure 8: Example of Virtual Mapping

scheduled using the same heuristic presented in Section 6 so
that data dependencies are also regarded. This is essential
to achieve a low-overhead task migration as shown in Fig-
ure 7. Nevertheless, during normal execution, this slot is not
left empty but used as a slack slot for other tasks mapped
onto the same processor. For example, in Figure 8c, the slot
V A is actually used for task C. This technique reclaims the
time reserved for task migration and uses it to improve the
transient fault tolerance in normal execution. The efficiency
of resource utilization is therefore improved. Note that vir-
tual mapping slots may be combined with other slack slots
scheduled on the same processor to reduce the length of the
schedule. For example the slot V C is combined with B1

and slot V D is combined with B2. The combination is only
possible if two rules are obeyed: 1) the normal slack slot
is no smaller than the virtual mapping slot; 2) no data de-
pendency is violated. These two rules guarantee that the
task migration is still valid after combination. Afterwards,
the corresponding slack slots are marked as new migration
targets (Figure 8c).

There are two main advantages of using virtual mapping.
The first is easy implementation, since the optimization pro-
cess remains unchanged and no further objective is neces-
sary. Tolerance of permanent faults is achieved by adding
simple constraints to the chromosome. For example, if it is
required to tolerate a defect of processor p, we just need to
add the constraint saying that tasks that are mapped only
to p must have a virtual mapping. The second advantage
is low migration effort. Using the proposed approach, the
places for task migrations to handle certain hardware de-
fects are already found and scheduled statically. To carry
out the task migration, the scheduling slots do not need to
change. Only a simple update of the priority table of virtual
mapping slots needs to be done, e.g., during normal execu-
tion, task A can already be mapped to V A and be set to
lowest priority. When migration is needed, we just set A to
the highest priority in the slot. Since the binary of task A
is already loaded to the target of migration, timely recovery
is expected.

8. EXPERIMENTAL RESULTS
We implemented the analysis and optimization algorithm

in JAVA with the help of the opt4j library [16]. The MOEA
has a population of 100 implementations and runs for 300
generations. We assume that the target platform consists of
two types of PEs, namely a RISC processor and a DSP. The

Figure 9: Pareto Optimal Solutions under Different
Platform Configurations

Figure 10: Achievable Reliability Comparison

failure probability of each task on a certain PE is randomly
generated between 1× 10−5 and 1× 10−7. We restrict each
task to have at most 2 spatial replicas and 2 re-execution
slots. For the metric of reliability, we use the System Fail-
ure Probability (SFP) per hour in logarithmic scale in all
experiments, i.e. the lower the value, the higher the relia-
bility. We start our experiment from the single job case and
apply the proposed design optimization flow to an mpeg2
decoder example [22].

An important step during embedded system design is de-
sign space exploration. The designer needs to make key
design decisions such as the amount and the type of PEs
needed, considering various application requirements. To il-
lustrate this step, we run the optimization procedure with
several platform configurations consisting of 2 to 6 PEs.
Only transient faults are considered for the moment. The
MOEA is configured with two objectives. The first one is
timing overhead. It is defined as:

penalty(S) =

{
−1 iff l ≤ d
l − d otherwise

(13)

where l is the finish time of the job in schedule S and d is the
deadline. The idea is that, if the deadline is met, we set the
penalty to a constant −1 and if not, we set the penalty to the
difference between the finish time and the deadline. In this
way the optimizer will prefer solutions that meet the timing
constraints and optimize other objectives. The second objec-
tive is reliability using the SFP as a metric. Figure 9 shows
the Pareto optimal solutions found by the optimization. It
can be seen that the Pareto fronts obtained with more PEs
dominate those obtained with less PEs in most cases, i.e.
with more hardware resources, the application can be fin-
ished with shorter time and higher reliability. This is due to
the increased opportunity for spatial redundancy.

Figure 11: Performance Comparison of Step-wise
and Unified Approaches

Figure 12: Example of Pareto Optimal Results

For each platform, we are interested in the solution that
achieves maximum reliability while meeting the deadline.
These solutions are marked with 1 to 3 in Figure 9. As it
can be seen, the 2RISC+2DSP platform is the minimal one
to achieve SFP of 10−6 and the 3RISC + 3DSP platform
is necessary to achieve SFP of 10−9. An important observa-
tion from Figure 9 is that, if the 2RISC+1DSP platform is
used, several solutions with SFP around 10−6 are very close
to meeting the deadline. The same is observed for the plat-
form 3RISC + 2DSP , where several solutions are close to
achieving SFP of 10−9. This implies that, if some PEs can
be replaced by faster ones, using 3 or 5 PEs might already
be sufficient and become more cost-efficient design choices.
We therefore test two additional platforms with 1 RISC +
2 DSP and 2 RISC + 3 DSP (the DSP is faster for the
mpeg2 application). Figure 10 shows the best solution un-
der deadline constraint for each platform. Clearly, the new
platforms with 1 RISC + 2 DSP and 2 RISC + 3 DSP are
the most cost-efficient solutions to achieve SFP of 10−6 and
10−9, respectively.

In the next step, the consideration of permanent faults is
added and two approaches are compared:

• The step-wise approach in which permanent faults are
handled first using spatial replications and then, on
top of that, transient faults are handled using temporal
and spatial redundancy.

• The proposed unified approach, in which permanent
faults and transient faults are considered together us-
ing the virtual mapping technique.

As a reference we also compare them with the case in
which only transient faults are considered (No-PF). We are
interested in how much overhead is needed to fulfill the addi-

tional requirement concerning permanent faults. Three opti-
mization objectives are considered, namely schedule length,
reliability and resource utilization. For the first two ob-
jectives, the same technique as in equation 13 is applied,
i.e. the penalty is −1 if the timing/reliability requirements
are fulfilled and a positive value otherwise. The resource
utilization is the total processor time a schedule occupies.
Clearly, all objectives need to be minimized. We assume
that it is required to tolerate a single defect on any of the
processors. We use a set of Task Graphs (TG) consisting
of 5-20 tasks generated synthetically using TGFF. The ex-
ecution time of each task on the RISC/DSP are generated
randomly between 100 to 1000. Figure 11 compares the so-
lution that meets both timing and reliability requirements
with minimum resources. The resource consumption is nor-
malized with respect to the reference (No-PF). For the step-
wise approach, 47% more resources are needed on average to
handle the permanent faults. The unified approach reduces
the resource overhead to 33%, i.e. 14% resource saving is
achieved. Figure 12 gives a closer view of the Pareto op-
timal results for one example TG. As it can be seen, the
solutions found using the unified approach dominate those
found by the step-wise approach. For some jobs, e.g. TG3,
the additional resources needed to tolerate permanent faults
is large. The reason is, those jobs exhibit limited paral-
lelism and the optimizer tends to schedule a large part of
the job onto the same processor, so that transient faults can
be handled efficiently using re-execution slots. In this case,
a large part of the job needs to be replicated/migrated if
a defect occurs. As the opposite case, the mpeg2 applica-
tion is easy parallelizable and has a relatively tight deadline,
which guides the optimizer to a distributed implementation
even if permanent faults are not considered. In this case,
the additional resources needed are marginal (2% using the
unified approach), since only some minor modifications are
needed to guarantee feasibility of task migrations.

We proceed with experiments with multiple jobs running
concurrently. The focus of this set of experiments is on
evaluation of the slack sharing schemes. We compare three
configurations: in the first one, no slack sharing is enabled
(NSS), i.e. each task has its dedicated replicas and slack
slots; in the second one, intra-job slack sharing is used (IN-
TRA), i.e. job-level global slack slots are scheduled and
shared amongst all tasks belonging to the same job; and in
the third configuration, the proposed SPSS scheme is used
(INTER), i.e. global slack slots are shared with all jobs us-
ing static priority based approach. We generate 10 random
applications with 2 to 3 jobs running concurrently. Figure 13
compares the solution that fulfills deadline and reliability re-
quirements of all jobs with minimum resource consumption.
The resource consumption is normalized with respect to the
NSS approach. As it can be seen, significant resource saving
can be achieved using slack sharing. On average, INTRA
and INTER saves 12% and 20% resources, respectively.

9. CONCLUSION
This work considers the reliability-aware task scheduling

problem for real-time embedded systems. One main contri-
bution is the proposed BTA approach that enables proba-
bilistic analysis of system reliability in the presence of spatial
and temporal redundancy. We also propose an extended
version of BTA to handle the case with global slack slots
shared by multiple tasks. The analysis is integrated with

Figure 13: Comparison of Slack Sharing Schemes

an MOEA based optimization process to synthesize legal
schedules under timing, reliability and resource constraints.
Another contribution of this paper is the virtual mapping
technique that enables consideration of permanent and tran-
sient faults together in a unified manner. Experimental re-
sults verify the effectiveness of our approach. In the next
step, we are interested in developing fast heuristics for fault-
tolerant task scheduling in order to enhance the scalability of
the approach. Another extension of the current work could
be to consider the impact of fault-tolerance mechanisms on
energy consumption.

Acknowledgment
The authors would like to thank Paul Pop for his helpful
suggestions. This work has been supported in part by the
European research project ACROSS under the Grant Agree-
ment ARTEMIS-2009-1-100208.

10. REFERENCES
[1] Architectural Requirements. IEC61508-2, chapter

7.4.3.1.1, Tab.2 and 3.

[2] S. Baruah, H. Li, and L. Stougie. Towards the design
of certifiable mixed-criticality systems. In RTAS, 2010.

[3] A. Birolini. Reliability engineering - theory and
practice. Springer, Berlin, Heidelberg, 2004.

[4] GENESYS Platform.
http://www.genesys-platform.eu/.

[5] M. Glaß, M. Lukasiewycz, F. Reimann, C. Haubelt,
and J. Teich. Symbolic Reliability Analysis and
Optimization of ECU Networks. In DATE, 2008.

[6] M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt,
and J. Teich. Reliability-Aware System Synthesis. In
DATE, 2007.

[7] C.-C. Han, K. Shin, and J. Wu. A fault-tolerant
scheduling algorithm for real-time periodic tasks with
possible software faults. IEEE Trans. Comp., 2003.

[8] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and
A. Knoll. Reliability-aware design optimization for
multiprocessor embedded systems. In Euromicro
Conference on Digital System Design (DSD), 2011.

[9] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh.
Measurement and modeling of computer reliability as
affected by system activity. ACM Trans. Comput.
Syst., 4, 1986.

[10] V. Izosimov, I. Polian, P. Pop, P. Eles, and Z. Peng.

Analysis and optimization of fault-tolerant embedded
systems with hardened processors. In DATE, 2009.

[11] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Design
optimization of time-and cost-constrained
fault-tolerant distributed embedded systems. In
DATE, 2005.

[12] N. Kandasamy, J. Hayes, and B. Murray. Transparent
recovery from intermittent faults in time-triggered
distributed systems. IEEE Trans. Computers, 2003.

[13] C. Lee, H. Kim, H.-w. Park, S. Kim, H. Oh, and
S. Ha. A task remapping technique for reliable
multi-core embedded systems. In CODES+ISSS, 2010.

[14] F. Liberato, R. Melhem, and D. Mosse. Tolerance to
multiple transient faults for aperiodic tasks in hard
real-time systems. IEEE Trans. on Computers, 2000.

[15] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich.
Sat-decoding in evolutionary algorithms for discrete
constrained optimization problems. In CEC, 2007.

[16] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich.
Opt4J - A Modular Framework for Meta-heuristic
Optimization. In GECCO, Dublin, Ireland, 2011.

[17] C. Pinello, L. P. Carloni, and A. L.
Sangiovanni-Vincentelli. Fault-tolerant deployment of
embedded software for cost-sensitive real-time
feedback-control applications. In DATE, 2004.

[18] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design
optimization of time- and cost-constrained
fault-tolerant embedded systems with checkpointing
and replication. IEEE Transactions on VLSI, 2009.

[19] F. Reimann, M. Glaß, M. Lukasiewycz, C. Haubelt,
J. Keinert, and J. Teich. Symbolic Voter Placement
for Dependability-Aware System Synthesis. In
CODES+ISSS, 2008.

[20] P. K. Saraswat, P. Pop, and J. Madsen. Task mapping
and bandwidth reservation for mixed hard/soft
fault-tolerant embedded systems. In RTAS, 2010.

[21] J. Sosnowski. Transient fault tolerance in digital
systems. IEEE Micro, February 1994.

[22] L. Thiele, I. Bacivarov, W. Haid, and K. Huang.
Mapping applications to tiled multiprocessor
embedded systems. In ACSD, 2007.

[23] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and
L. Shang. System-level reliability modeling for mpsocs.
In CODES+ISSS, 2010.

[24] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and
M. Irwin. Reliability-aware co-synthesis for embedded
systems. In ASAP, sep 2004.

[25] C. Yang and A. Orailoglu. Predictable execution
adaptivity through embedding dynamic
reconfigurability into static mpsoc schedules. In
CODES+ISSS, 2007.

[26] Y. Zhang and K. Chakrabarty. A unified approach for
fault tolerance and dynamic power management in
fixed-priority real-time embedded systems. IEEE
Trans. CAD of Integrated Circuits and Systems, 2006.

[27] B. Zhao, H. Aydin, and D. Zhu. Enhanced
reliability-aware power management through shared
recovery technique. In ICCAD, 2009.

[28] D. Zhu and H. Aydin. Reliability-aware energy
management for periodic real-time tasks. IEEE
Transactions on Computers, 99:1382–1397, 2009.

