
Towards Fault-Tolerant Embedded Systems with
Imperfect Fault Detection

Jia Huang
fortiss GmbH, Germany

huang@fortiss.org

Kai Huang
fortiss GmbH, Germany

khuang@fortiss.org

Andreas Raabe
fortiss GmbH, Germany

raabe@fortiss.org
Christian Buckl

fortiss GmbH, Germany

buckl@fortiss.org

Alois Knoll
TU München, Germany

knoll@in.tum.de

ABSTRACT
Many state-of-the-art approaches on fault-tolerant system
design make the simplifying assumption that all faults
are detected within a certain time interval. However,
based on a detailed experimental analysis, we observe
that perfect fault detection is not only an impractical
assumption but even if implementable also a suboptimal
design decision. This paper presents an approach that takes
imperfect fault detection into account. Novel analysis and
optimization techniques are developed, which distinguish
detectable and undetectable faults in the overall workflow.
Besides synthesizing the task schedules, our approach also
decides which of the available fault detectors is selected for
each task instance. Experimental results show that our
approach finds solutions with several orders of magnitude
higher reliability than current approaches.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; C.3 [special-purpose and ap-
plication-based systems]: Real-time and embedded sys-
tems

General Terms
Algorithms, Design, Reliability

Keywords
Embedded Systems, Reliability, Design Optimization

1. INTRODUCTION
To meet the reliability requirements of safety-critical

embedded systems, fault-tolerance techniques such as active
redundancy are widely adopted. Active redundancy can be
implemented in both the space and the time domains. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 03-07, 2012, San Francisco, California, USA
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$5.00.

the space domain, critical components can be replicated into
multiple copies to enhance the error resilience. In the time
domain, software tasks can be selectively re-executed. Fault-
tolerant system design using active redundancy is a very
challenging task that involves solving two major problems,
namely finding the optimal utilization of temporal and/or
spatial redundancy and the scheduling of tasks (including
replicas) under timing constraints. Over the past decades,
a lot of research efforts have been devoted to this field. A
review of related work is presented in Appendix A.

To cope with the high problem complexity, many state-
of-the-art studies make simplifying assumption on the fault
models and modes. Perfect fail-silent behavior is one
assumption that is often used in literature. It is assumed
that all faults are detected within a certain time interval and
the fault-detection overhead is contained in the tasks’ Worst-
Case Execution Times (WCETs), e.g., in fault-tolerant task
scheduling [8, 15, 4, 17, 6, 5], in reliability-aware energy
management [16, 20, 22] and in error-aware system design
[9, 10]. With this assumption, each task will produce either
a correct output or no output at all. Although fail-silence
is a highly desirable property, it is difficult to implement in
practice. The prerequisite is the existence of a perfect fault
detector that achieves 100% coverage under the given fault
hypothesis.

The simplifying assumption of perfect fault detection is
problematic. On the one hand, a perfect detector might
not exist or is difficult to implement, making the algorithms
developed under this assumption less useful in practice. On
the other hand, even if implementable, perfect detectors
typically come with high resource and timing overheads.
In recent work [12, 18] it has been shown that the time
needed for high-coverage fault detection may become much
longer than the execution time of the task itself (e.g. the
timing overhead could be 400% using techniques proposed
in [12]). Hence, approaches under this assumption are very
pessimistic, as the most expensive fault detector is selected
for every task.

This problem can be viewed from a slightly different
angle: choosing to implement the perfect fault detector is
not only an assumption but also an important design
decision. While making this assumption, all design al-
ternatives with partial fault detectors are ignored without
any justification. For example, when active redundancy
is concerned, no analysis is performed to find out if it is
more efficient to spend the available resources on applying

This is the author’s version of this work. For copyrighted work refer to the publisher.

better fault detection or a higher number of replications.
Actually, our experimental results show that the answer
is highly application and architecture dependent. Detailed
discussions are presented in Section 3 and Appendix B.

In this work, we put special emphasis on the effect of
imperfect fault detection and present the first approach
(to the best of our knowledge) to synthesize fault-tolerant
schedules with reliability guarantee using imperfect fault
detectors. Besides computing the task schedule and utilizing
redundancy, our approach also decides which of the available
fault detectors should be selected for each task. The
main contributions of this papers are: 1) an experimental
analysis on the impact of imperfect fault detection on
system-level reliability; 2) a reliability analysis approach
that computes the probabilities of both detectable and
undetectable faults in the presence of redundancy; 3) an
Multi-Objective Evolutionary Algorithm (MOEA) based
approach for reliability-aware design optimization.

The remainder of the paper is organized as follows.
The system models is first introduced in Section 2. The
next Section discusses a motivating example. The main
contribution of this work, namely the reliability analysis
and optimization approaches are presented in Section 4 and
Section 5, respectively. Experimental results are provided
in Section 6. Section 7 concludes the paper.

2. PRELIMINARIES

2.1 Fault Model and Fault Tolerance
This paper focuses on tolerating transient faults and

adopts the classical fault model that occurrence of transient
faults follows a Poisson distribution with a constant failure
rate λ. The consideration of permanent faults could be
added, e.g. using the technique proposed in [5]. A task
may be replicated into multiple copies (or instances) to
implement temporal/spatial redundancy. The set of N
replicas for a task ti is denoted as R(ti) = {ti,1, ..., ti,N}.
For a specific instance, software fault detectors can be
implemented. A software fault detector typically transforms
the original program into an instrumented version, adding
the capability to detect transient faults that occur at
runtime of the program. The arithmetic codes [18] and
critical variable technique [13] are examples of this kind. We
assume that each task instance tries to implement the fail-
silent behavior, i.e., as long as the fault detector1 reports a
fault, this specific task instance will not produce any output.
This behavior is desirable since the correct outputs from
other instances will not be polluted.

As discussed in section 1, fault detectors are typically
imperfect in reality. We characterize a fault detector
implementation as a pair d = {c, o}, where c is the
fault detection coverage in percentage and o is the timing
overhead for fault detection. The overhead is defined in
percentage with respect to the stand-alone WCET of the
task. In this way, a task ti that implements the fault
detector indexed k has the WCET wi(1 + ok). We assume
that a library of implementable fault detectors are available
at design time for each task (denoted as Di for task ti).

We assume a voting mechanism with majority voting is

1For simplicity, the term fault detector used in the rest of
the paper is meant to be software fault detectors unless
mentioned otherwise.

Figure 1: Example Fault Scenario

implemented if redundancy is available. The voter collects
results from all instances and produces a single output for
the successor tasks. The qualitative execution results of
these replicas (i.e. if they deliver a correct output or not)
are described by a fault scenario. A fault scenario is a vector
x = {x1, ..., xN}, which contains a variable xl ∈ {1, 0,−1}
for each task instance, where xl is 1 if ti,l produces a correct
output (no fault occurs); xl is 0 if ti,l fails silent (a fault
occurs and is detected) and xl is −1 if ti,l produces an
incorrect output (i.e., a fault occurs and is not detected).
The voter generates an output if and only if a dominating
result (or a majority) is found.

The overall execution of a task, considering all its in-
stances, could result in the following 3 scenarios: 1) the
task executes successfully (SUC): it experiences no fault
or only some faults that are later masked by the voter; 2)
Detected Unrecoverable Faults (DUF): the voter fails to find
a dominating result and thus produces no output; and 3)
Silent Data Corruption (SDC): multiple faults occur and
the incorrect outputs mask the correct one. Both DUF and
SDC are unwanted behavior that negatively influences the
system reliability (see Section 3).

Figure 1 depicts an example of the voting scenario. If the
fault scenario is x = {1, 1,−1}, the incorrect output of t1,3
is masked and the overall result is SUC. In the scenario
x = {1, 0, 0}, both t1,2 and t1,3 produce no result, and the
only output from t1,1 will be taken. Hence, the overall result
is also SUC. In the scenario x = {1, 0,−1}, a correct and an
incorrect output are sent to the voter. However, the voter
cannot identify the correct input since no majority is found.
In this case, the voter will generate no output and the overall
result is DUF . In the last example scenario x = {−1, 1,−1},
two incorrect outputs are sent to the voter. Note that the
fault scenarios model only the qualitative result (0,1, or −1),
but the voting is performed based on the real value of the
tasks’ outputs. Hence, if two outputs are incorrect, two
cases might happen: 1) the two incorrect outputs are equal
and mask the single correct one, resulting a SDC; 2) the
two incorrect outputs are unequal and the voter does not
see a dominating value, resulting in a DUF . To stay on the
safe side, we have to assume the first case (SDC), because
the probabilities of the two cases are very difficult to be
quantified, even if possible2.

2.2 System models
We consider applications modeled as directed acyclic Task

Graphs (TGs). The vertices T = {t0, t1, ..., tm} of a TG
represent a set of tasks to be executed and the edges
capture data dependencies. The stand-alone WCET of

2The probabilities are highly influenced by the application
characteristic, the output data type, common caused errors,
etc.

Perfect detector with 300% overhead

Partial detector Partial detector

a)

Partial detector Partial detector Partial detector

b)

c) Partial detector Partial detector Partial detectorc)

400% task execution time

d) No detection No detection No detection No detection

Figure 2: Example Scenario

the task ti on processor pj without any fault detection
is denoted using wi,j . For a instance ti,l ∈ R(ti), the
processor that will execute ti,l is denoted by node(ti,l)
and the fault detector ID it implements is denoted by
det(ti,l). The execution time and fault detection coverage
of this instance are therefore wli = wi,node(ti,l)(1 + odet(ti,l))
and cdet(ti,l), respectively. According to the Poisson fault
model, the following formulas could be used to compute
the probabilities that an instance is executed successfully
without transient faults (denoted by SUC) or experiences
detectable/undetectable faults (denoted by DUF/SDC):

PSUC(ti,l) = e
−λnode(ti,l)

wl
i

PDUF (ti,l) = (1− e−λnode(ti,l)
wl

i)cdet(ti,l)

PSDC(ti,l) = (1− e−λnode(ti,l)
wl

i)(1− cdet(ti,l))

Our target architectures are heterogeneous multiprocessor
platforms with time-triggered communication, e.g., the
GENESYS [3] architecture. The communication between
tasks is implemented with messages. The communication
can be protected with dedicated techniques (e.g., error
correction code) and is therefore assumed as reliable.

3. MOTIVATING EXAMPLE
To understand the impact of imperfect fault detection on

the system reliability, we carried out a set of experiments
considering two scenarios. In the first one, we fix the
amount of redundancy and analyze the influence of detection
coverage on the system-level reliability. In the second one,
we do it vice-versa, i.e., varying the number of replications
with fixed fault detector. The detailed experimental data
and discussion is presented in Appendix B. In general, we
observe that the selection of fault detector and the utiliza-
tion of redundancy show a tradeoff. In particular, when
the system features only limited amount of resources or
the application has tight timing constraints, inappropriate
selection of fault detector might disallow certain options for
redundancy due to the timing overhead. We explain this
issue using the following example.

Consider a simple task running on a single processor
system. Similar as the experiments in Appendix B, we reuse
the result of [18] and assume that the rate of undetectable
faults decreases exponentially with linear fault detection
effort. It is further assumed that the perfect fault detection
(100% coverage) incurs 300% timing overhead (typical value
in [18]). Figure 2a depicts the schedule using the perfect
detector. By spending all resources on fault detection,
SDCs are completely eliminated. Figure 2b is another
possible schedule, in which the task is replicated twice

Figure 3: Reliability of the Example Schedules

and the remaining time (200% task execution time in this
case) is used to implement two partial fault detectors (each
90% coverage using the 100% detection effort). Figures
2c and 2d show two similar schedules with higher number
of replications. When multiple replicas of the same task
are available, the results from different instances can be
compared to detect or even mask the occurred faults. Figure
3 compares the probability of DUF and SDC for each
schedule. For schedule a, although SDCs are avoided
completely, the DUF probability is very high, since any
transient fault occurring on the single task instance results
in a DUF . With imperfect fault detectors (schedule b to
d), SDC will not totally disappear but the probability of
DUF can be significantly reduced. If both types of faults are
considered together, the overall failure probability (DUF +
SDC) of schedule c is almost six orders of magnitude lower
than that of schedule a.

The selection of the best schedule depends on the relia-
bility goal of the application. Many systems have specific
requirements concerning DUF and/or SDC. For example,
the IBM Power 4 processor-based systems target 10-25
years Mean Time Between Failures (MTBF) for DUF
and 1000 years MTBF for SDC [2]. The schedule using
perfect fault detectors may not meet the requirements of
all applications. Moreover, the criticality of a certain
type of faults is application-specific. For systems that
require fail-operational behavior, DUF s and SDCs could be
equally bad and schedule c is clearly a much better design
choice. For other systems, SDCs might be more critical and
schedule a or d are more preferable.

From the analysis above, it can be seen that the selection
of appropriate fault detectors is critical. The decision
has to be made jointly with other design parameters, e.g.,
task mapping and utilization of redundancy. However, the
existing work assuming perfect fault detection prohibits
the exploration of design alternatives using partial fault
detectors. To tackle this problem, we need 1) a way
to evaluate the system quality regarding both DUF and
SDC; and 2) an optimization approach for reliability-aware
design space exploration. The next two sections present our
approach on these issues.

4. RELIABILITY ANALYSIS
Using the voting setup introduced in Section 2, the

schedule generated by our algorithm falls into the category
of strict schedules [4, 1]. Strict schedules obey the rule that
if a task t has a data dependency on task t′, all replicas of
t′ should be completed before any replica of t starts. With
this restriction, all tasks use exclusively the voter output
and the tasks of a TG can be considered independently in
the reliability analysis.

For a task ti, a fault scenario x is tolerable if the voter
can produce a correct output in the presence of the faults
specified in x. This condition can be computed by the
following binary function tolerable(), which evaluates to true
if the correct outputs are able to dominate.

tolerable(x) = ((
∑

ti,l∈R(ti)

xl) > 0) (1)

Where R(ti) denotes the set of replicas of task ti and xl ∈
{1, 0,−1} is the execution result of task ti,l. Similarly, the
fault scenario x is silent if the voter cannot distinguish a
dominating result and x is faulty if the incorrect results are
majority.

silent(x) = ((
∑

ti,l∈R(ti)

xl) = 0) (2)

faulty(x) = ((
∑

ti,l∈R(ti)

xl) < 0) (3)

The probability that a task is executed successfully can be
computed by summarizing the occurrence probability of all
tolerable fault scenarios:

PSUC(ti) = (
∑

∀x:tolerable(x)=true

P (ti, x)) (4)

where Pr(ti, x) is the probability that the fault scenario
x happens. As x specifies the qualitative execution result
(SUC/DUF/SDC) of each instance of task ti, the proba-
bility Pr(ti, x) can be computed as a product of occurrence
probability of each task instance:

P (ti, x) =∏
ti,l∈R(ti)

∧xl=1

PSUC(ti,l)
∏

ti,l∈R(ti)

∧xl=0

PDUF (ti,l)
∏

ti,l∈R(ti)

∧xl=−1

PSDC(ti,l)

The instance-level probabilities PSUC(ti,l), PDUF (ti,l) and
PSDC(ti,l) are computed from the fault model introduced in
Section 2.2. In a similar way as in equation 4, the probability
that a task results in a fail-silence (PDUF (ti)) or it produces
a faulty output (PSDC(ti)) can be computed.

The complete set of tolerable (or silent or faulty) scenarios
can be obtained by systematically enumerating all fault
scenarios. Since each task instance has three possible results
(1,0, or−1), the overall number of combinations is 3N , where
N is the number of replicas. Although this enumeration
has exponential complexity, it is still acceptable in practice
since the number of replicas for a task is typically very
small, e.g., more than 3 replicas for a task is rarely used
in practice. The above step is performed for all tasks in
the application so that the task-level probabilities PSUC ,
PDUF and PSDC are obtained. Then, we can proceed with
analyzing the reliability of the entire application. Naturally,
an application consisting of tasks T is successful (i.e. SUC)
only if all of its tasks are successful:

PSUC(T) = (
∏
ti∈T

PSUC(ti)) (5)

The application is silent (i.e. DUF) if at least one of its tasks
is silent, because if any task fails to produce an output, the
successor tasks cannot proceed due to data dependency and
the entire application has to start over. This probability is
denoted by PDUF (T). The application is faulty (i.e. SDC,

the corresponding probability is denoted by PSDC(T)), if
none of its tasks is silent and at least one of its tasks is faulty.
Assume t0 is the first task in T , the application is faulty if
t0 is faulty and the remaining tasks are non-silent (denoted
by PDUF (T \t0)), or t0 is successful and the remaining tasks
are faulty.

PSDC(T) = PSDC(t0)PDUF (T \t0) + PSUC(t0)PSDC(T \t0)

Since PDUF (T \t0) is the sum of PSUC(T \t0) and PSDC(T \t0),
the above formula can be rewritten as:

PSDC(T) = PSDC(t0)PSUC(T \t0)+

(PSDC(t0) + PSUC(t0))PSDC(T \t0) (6)

As can be seen, PSDC(T \t0) is the only unknown term.
Hence, the SDC probability can be computed in a recur-
sively manner. The complexity is linear with the number of
tasks. The DUF probability can then be computed by:

PDUF (T) = 1− PSUC(T)− PSDC(T) (7)

5. OPTIMIZATION PROCEDURE
After having the reliability analysis, the next step is to

develop an optimization approach to search for high-quality
designs. We identify two major scenarios that the designers
may encounter. In the first one, the system is intended
to execute a single application, so the design goal is to
maximize the reliability while meeting the deadline. We
show that this problem can be transformed into a deadline
assignment problem that can be solved using Integer Linear
Programming. Appendix C details the transformation
and ILP formulation. In the second scenario, multiple
applications may be executed on the same platform. We
add an additional optimization objective that the resource
consumption is to be minimized so that more space can be
reserved for future applications. A Multi-Objective Evolu-
tionary Algorithm (MOEA) based optimization procedure
is presented for this case.

To use MOEA for optimization, the solutions (in our case
the task schedules) need to be encoded into chromosome.
The proposed encoding scheme maintains a gene (i,M) for
each task, where i is the integer index of the task and M
is a list of mapping entries. Each mapping entry encodes
an instance of the task and is represented as a pair (p, d),
where p is the processor that will execute the instance
and d is the index of the fault detector to implement.
Figure 4 illustrates an example, in which task 1 and 3 are
replicated 2 times and task 2 is replicated 3 times. The
lower part of the figure depicts the corresponding schedule
that the chromosome represents. Since we are targeting
on generating strict schedules [4, 1], the reconstruction of
the schedule from the chromosome can be done using a
simple greedy heuristic. We consider all tasks in the TG in
topological order. For each task, the replicas specified in the
chromosome are instantiated and scheduled greedily at the
earliest possible time. Output messages are scheduled at the
end of execution. If the current task has data dependency
on previous tasks, a voter is inserted. The failure rate of the
voter is added to the failure rate of the current task.

We consider three optimization objectives. The first two
are the reliability objectives, one for DUF and one for
SDC. The metric is Failure In Time (FIT). One unit
FIT specifies one failure in a billion hours. The conversion
from failure probabilities computed in section 4 to FIT is

Figure 4: Example of Encoding Scheme

Figure 5: The Resource Consumption Objective

straightforward. In the third objective, we intend to encode
the design goal of minimizing resource consumption while
meeting the deadline. The resource consumption (denoted
by C) is defined as the overall processor time that a schedule
occupies. Let B be the deadline of the application and N be
the number of processors available in the execution platform.
The available time budget within the deadline is Ĉ = NB.
For a given schedule S, we use C− to denote the fraction
of resource consumption that is within the deadline and C+

to denote the part above the deadline. Figure 5 depicts an
example. The objective function is defined as follows:

penalty =

{
C iff C+ = 0

Ĉ + C+ otherwise
(8)

By constructing the objective function as above, each
schedule that violates the deadline (C+ > 0) has a higher
penalty value than any schedule that meets the deadline.
For two schedules that meet the deadline, the one that has
less resource consumption will be preferred. Clearly, all
three objectives are to be minimized.

6. EXPERIMENTS
We implement the analysis and optimization algorithms

in JAVA using the opt4j library [11]. We assume that
the target platform consists of two types of Processing
Elements (PEs), namely a RISC processor and a DSP. The
failure probability of each task on a certain PE is randomly
generated between 1×10−5 and 1×10−7. We again use the
exponential model in [18], i.e., the undetectable faults reduce
exponentially with linear fault detection effort. Random
fault detectors are generated following this law.

The proposed approach is applied on an mpeg2 decoder
example taken from [19]. We compare the performance of
two approaches: 1) the proposed approach that explores the
optimal utilization of fault detectors (ExploreDetector); 2)
existing approaches that utilize the perfect fault detector3

3For better visualization in the logarithmic scale, the results
we presents are using the detector with 99.9% coverage. If
the perfect fault detector is used, the probability of SDC

F
IT

 o
f

S
D

C
 e

rr
o

rs
 (

lo
g
a

ri
th

m
ic

 s
ca

le
)

0

2

4

6

8

10

B

D
E

C

F
IT

 o
f

S
D

C
 e

rr
o

rs
 (

lo
g
a

ri
th

m
ic

 s
ca

le
)

FIT of DUF errors (logarithmic scale)

-6

-4

-2

-4 -2 0 2 4 6 8 10

PerfectDetector

ExploreDetector

A

D
E

F

Figure 6: 2D Projection of Optimization Results

for all tasks (PerfectDetector). We use the MOEA
optimizer to compute the Pareto optimal results considering
the three objectives introduced in section 5. Figure 6
shows the results using an example platform that consists
of 2 RISCs and 2 DSP s. The dots in the figure show
the results projected into a 2D plane, with the vertical
axis being the FIT of SDC and the horizontal axis being
the FIT of DUF . The Pareto front considering only
the two reliability objectives is marked using a solid line.
The triangle symbols in Figure 6 show the results of the
PerfectDetector approach. Clearly, the solutions found by
ExploreDetector is of much higher quality than those found
by PerfectDetector. The gap in terms of FIT is several
orders of magnitude in this experiment. Moreover, the
ExploreDetector approach provides a much wider spectrum
of solutions, allowing the designers to carefully evaluate the
tradeoff between the two classes of faults and select the
implementation that fits the application requirements.

We mark some representative implementation alternatives
in Figure 6. A is the best solution in terms of reliability
found by the PerfectDetector approach; B is a solution
found by ExploreDetector which is close to and dominates
A; C to F belong to the Pareto optimal solutions found by
ExploreDetector. Table 1 compares these implementations
in several aspects, e.g., the average number of replications
for each task, the average fault detection coverage over
all task instances and the resource consumption. It can
be seen that implementation A has the lowest number of
replications, since a lot of resources are already consumed
by fault detection. The solution B has higher quality than
A concerning all three objectives. Using fault detectors with
average coverage of 63%, it achieves much higher reliability
than A and saves 35% resources. The implementation F
achieves higher reliability than A as well. By spending 65%
more resources, it reduces the FIT of DUF by 5 orders of
magnitude and the FIT of SDC by more than 3 orders of
magnitude. It is also worth noticing that, since most of the
solutions found by PerfectDetector implement 2 replicas,
the curve formed by those solutions has similar shape as the
curve in Figure 7b.

The optimization results from MOEA can also be viewed
from different angles. Extended discussion of this case study
is presented in Appendix D. To go one step further, our
approach can be used to perform reliability-aware design
space exploration (DSE), e.g., to find out the amount and

can be reduced to 0, but the probability of DUF remains
almost the same.

solution DUF FIT SDC FIT avg. avg. resource
(log.) (log.) rep. cov.(%) (time unit)

A 5.06 -0.23 3.25 99.9 114.0
B 3.24 -0.93 3.67 63.0 74.2
C -3.25 7.15 3.50 84.4 55.9
D -2.49 2.93 3.83 74.9 65.5
E -1.04 2.30 3.92 83.0 150.6
F 0 -3.62 3.92 89.3 189.5

Table 1: Comparing Representative Implementation
Alternatives

Application 200 500 1000 1500
(num. tasks) round round round round

mpeg2(13 tasks) 29.0 76.4 120.8 198.3
TG1(50 tasks) 78.3 179.0 395.1 583.0

TG2 (100 tasks) 195.9 442.2 777.0 1692.0

Table 2: Execution Time of Optimization Approach

type of PEs necessary to meet certain reliability goal. The
DSE flow is also illustrated in Appendix D.

We measure the execution time (in seconds) of the our
approach on a Windows machine with 3GHz CPU. The
MOEA is configured to run for 200, 500, 1000 and 1500
rounds. Table 2 presents the results. For a small TG
(e.g. mpeg2), the analysis and optimization procedure takes
only a few minutes to execute for 1500 iterations. As
expected, the execution time grows linearly with the number
of iterations. It is also worth mentioning that the execution
time also increases roughly linearly with the size of TG. This
is because the reliability analysis, as most computational
intensive operation, has linear complexity in the number of
tasks. For a syntactic TG4 with 100 tasks, the 1000-iteration
EA takes about 13 minutes. In general, the runtime is
acceptable for an off-line design space exploration procedure.

7. CONCLUSION
In reliability-aware system design, many existing studies

adopt the assumption that fault detection is always perfect
to simplify the problem. We observe that this assumption
causes several practical issues and may exclude the optimal
design alternative. In this paper, we present an approach to
synthesizing fault-tolerant design with reliability guarantee
applying imperfect fault detectors. The proposed analysis
and optimization techniques can be used for reliability-aware
DSE. Experimental results verify that our approach finds
solutions with several orders of magnitude higher reliability
compared to current approaches.

Acknowledgement
This work has been supported in part by the European research

project ACROSS under the Grant Agreement ARTEMIS-2009-1-

100208.

8. REFERENCES
[1] A. Benoit, L.-C. Canon, E. Jeannot, and Y. Robert.

Reliability of task graph schedules with transient and
fail-stop failures: complexity and algorithms. Journal of
Scheduling, 2011.

4generated using TGFF http://ziyang.eecs.umich.edu/

~dickrp/tgff/

[2] D.C.Bossen. Cmos soft errors and server design. In Reliability
Physics Tutorial Notes, Reliability Fundamentals, pp.
121.07.1, 2002.

[3] GENESYS. http://www.genesys-platform.eu/.
[4] A. Girault and H. Kalla. A novel bicriteria scheduling

heuristics providing a guaranteed global system failure rate.
IEEE Transactions on Dependable and Secure Computing,
2009.

[5] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll.
Analysis and optimization of fault-tolerant task scheduling
on multiprocessor embedded systems. In CODES+ISSS, Oct
2011.

[6] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll.
Reliability-aware design optimization for multiprocessor
embedded systems. In Euromicro Conference on Digital
System Design (DSD), 2011.

[7] V. Izosimov, I. Polian, P. Pop, P. Eles, and Z. Peng. Analysis
and optimization of fault-tolerant embedded systems with
hardened processors. In Design, Automation and Test in
Europe (DATE), 2009.

[8] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Design
optimization of time-and cost-constrained fault-tolerant
distributed embedded systems. In DATE, 2005.

[9] J. Lee, I. Shin, and A. Easwaran. Online robust optimization
framework for qos guarantees in distributed soft real-time
systems. In EMSOFT, 2010.

[10] A. Lifa, P. Eles, Z. Peng, and V. Izosimov. Hard-
ware/software optimization of error detection implemen-
tation for real-time embedded systems. In CODES+ISSS,
2010.

[11] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich. Opt4J
- A Modular Framework for Meta-heuristic Optimization. In
GECCO, Dublin, Ireland, 2011.

[12] G. Lyle, S. Chen, K. Pattabiraman, Z. Kalbarczyk, and
R. Iyer. An end-to-end approach for the automatic derivation
of application-aware error detectors. In DSN, 2010.

[13] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer. Automated
derivation of application-aware error detectors using static
analysis: The trusted illiac approach. Dependable and Secure
Computing, IEEE Transactions on, 8(1):44 –57, 2011.

[14] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vincentelli.
Fault-tolerant deployment of embedded software for cost-
sensitive real-time feedback-control applications. In DATE,
2004.

[15] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design
optimization of time- and cost-constrained fault-tolerant
embedded systems with checkpointing and replication. IEEE
Trans. VLSI, 2009.

[16] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles.
Scheduling and voltage scaling for energy/reliability trade-
offs in fault-tolerant time-triggered embedded systems. In
CODES+ISSS, 2007.

[17] P. K. Saraswat, P. Pop, and J. Madsen. Task mapping
and bandwidth reservation for mixed hard/soft fault-tolerant
embedded systems. In RTAS, 2010.

[18] U. Schiffel, A. Schmitt, M. Süßkraut, and C. Fetzer.
Software-implemented hardware error detection: Costs and
gains. In Third International Conference on Dependability,
2010.

[19] L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping
applications to tiled multiprocessor embedded systems. In
ACSD, 2007.

[20] B. Zhao, H. Aydin, and D. Zhu. Enhanced reliability-aware
power management through shared recovery technique. In
ICCAD, 2009.

[21] D. Zhu and H. Aydin. Energy management for real-time
embedded systems with reliability requirements. In ICCAD,
2006.

[22] D. Zhu and H. Aydin. Reliability-aware energy management
for periodic real-time tasks. IEEE Trans. Computers, 2009.

APPENDIX
A. RELATED WORK

In the past decades, much research effort has been
devoted to fault-tolerant system design considering transient
faults. Girault et al [4] combine task scheduling with
active spatial redundancy and present a bicriteria heuristic
algorithm. Beside scheduling parameters, their algorithm
also determines the number of replications that are needed
to achieve certain reliability goal. Izosimov et al [8] study
the design of fault-tolerance systems using both spatial
and temporal redundancy. In particular, the technique of
sharing re-execution slack among multiple tasks is proposed
to improve the efficiency. A tabu-search based optimization
procedure is used to find the best schedule with scheduling
length being the optimization goal. In [15] Pop et al study
a similar problem and consider in addition the utilization
of check-pointing and roll-back technique. The authors in
[17] utilize a hybrid scheduling approach to handle mixed
hard and soft real-time tasks. The aforementioned work
[8, 15, 17] is based on a simplified fault model. Instead
of modeling faults as probabilistic events, they assume that
the system may experience at most N faults and those faults
may occur in any component of the system. In the follow-up
work [7], a more accurate probabilistic analysis is presented.
Nevertheless, this analysis considered only temporal redun-
dancy. Huang et al further extend the approach and propose
a binary tree based approach for probabilistic reliability
analysis considering both spatial/temporal redundancy and
shared re-execution slack.

Other work also studies the tradeoff between reliability
and other design objectives, such as energy [22] and cost
[14]. In [16] the authors present a Constraint Logical
Programming (CLP) based approach for scheduling and
voltage scaling for fault-tolerance systems. Zhu et al show
that voltage scaling has direct and adverse effects on system
reliability [21]. They study static scheduling approaches
for energy minimization under reliability constraints [22].
The core idea is, instead of using all available slack time
for energy management, a portion of the slack is especially
reserved to schedule task re-executions, such that the
reliability loss can be recuperated.

In all the work mentioned above, perfect fault detection
is assumed. The assumption is that, all faults can be
detected when a task is completed and timing overhead of
fault detection is contained in the WCETs of tasks. In this
paper, we show that certain configuration using imperfect
fault detectors combined with replication can outperform
those approaches that assumes perfect fault detection.

B. EXPERIMENTAL ANALYSIS ON THE
IMPACT OF IMPERFECT FAULT DE-
TECTION ON SYSTEM RELIABILITY

Figure 7 summarizes the results of the first simulation.
We increase the fault detection coverage from 1% to 100%
with a step width of 1% while fixing the number of
replications. Figure 7a shows the case that a single
instance is scheduled. As expected, the probability of
SDC decreases linearly with the detection coverage, since
all detected faults are converted to DUFs. In Figure 7b,
two replicas are scheduled. The probabilities of both SDC
and DUF decrease with higher coverage. The reason is

as follows: In general, adding redundant components is
a recovery technique that migrates faults from the DUF
to the DTF class and implementing fault detectors is a
detection technique that migrates faults from the SDC to
the DUF class. However, if used together, the effects of
redundancy and that of fault detection become correlated.
As an example, assume the first instance generates a correct
output whereas the second one encounters a fault. If the
fault is undetected, the second one will produces a faulty
output. Since the voter cannot distinguish which of the
two outputs is correct, the system results in DUF . As the
counterpart, if the fault is detected, the faulty instance can
fail-silent and the only (and correct) output from the first
instance is taken, resulting in a successful scenario. Hence,
besides converting SDCs to DUFs, fault detection can also
convert DUFs to DTFs if voting is available. For this
reason, probabilities of both DUF and SDC decease.

If three replicas are utilized (Figure 7c), the DUF proba-
bility first increases and then decreases with higher coverage,
whereas the probability of SDC decreases constantly. The
reason is that, the effect of SDC-to-DUF dominates when
the coverage is still low (upper part of the Figure 7c), and
the effect of DUF -to-DTF dominates when the coverage is
relatively high. An observation from this set of simulations
is that, higher fault detection coverage reduces the amount
of SDCs but not necessarily reduces the amount of DUF s.

In the second simulation, we increase the number of repli-
cations while fixing the detector implementation. We reuse
the result of [18] and assume that the rate of undetectable
faults decreases exponentially with linear fault detection
effort. We further assume the perfect fault detection (100%
coverage) incurs 300% timing overhead (typical value in
[18]). Several fault detectors with timing overhead ranging
from 0% to 300% (corresponds to detection coverage from
0% to 100%) are tested. Figure 8 summarizes the results5.
As can be seen, when the detection coverage is low, the
probability curve shows a zigzag behavior with increasing
number of replications (e.g., curve a). This is because the
task instances themselves have only poor fault detection and
the system relies mainly on the voter to discover the faults.
On the one hand, the voter detects a fault when the number
of correct and incorrect results breaks even. Hence, when
we increment the number of replicas from an odd number
and make it even (e.g., from 1 to 2), the fault detection
capability of the voter is enhanced, resulting in a reduction
of undetected faults (SDC probability drops). On the other
hand, the voter recovers a fault when correct results are
the majority. Hence, when a new instance is added to an
even number of replicas, the amount of recoverable faults
increases (DUF probability drops).

As the counterpart, if the task instances have already
good fault detectors (e.g., in the case of curve d), the system
reliability will be improved more smoothly by inserting more
redundancy, i.e., both DUFs and SDCs can be eliminated
at the same time. In other words, the effect of active
redundancy could be amplified by good fault detection.

C. ILP BASED OPTIMIZATION FOR SINGLE-
OBJECTIVE CASE

5The figure excludes the case of 0% and 300% by intension,
because some of the probabilities are 0 and hard to be
visualized in logarithmic scale.

p
ro

b
a

b
il

it
y

 (
lo

g
a

ri
th

m
ic

 s
ca

le
)

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

DUF probability (logarithmic scale)

S
D

C
 p

ro
b

a
b

il
it

y
 (

lo
g

a
ri

th
m

ic
 s

ca
le

)

a) Number of replication: 1

0.00E+00

1.00E-06

2.00E-06

0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06

S
D

C
 p

ro
b

a
b

il
it

y
 (

lo
g

a
ri

th
m

ic
 s

ca
le

)

1.00E-11

1.50E-11

2.00E-11

2.50E-11

3.00E-11

S
D

C
 p

ro
b

a
b

il
it

y
 (

lo
g

a
ri

th
m

ic
 s

ca
le

)

DUF probability (logarithmic scale)

b) Number of replication: 2

0.00E+00

5.00E-12

0.00E+00 2.00E-06 4.00E-06 6.00E-06 8.00E-06 1.00E-05 1.20E-05

3.00E-11

4.00E-11

5.00E-11

6.00E-11

7.00E-11

8.00E-11

p
ro

b
a

b
il

it
y

 (
lo

g
a

ri
th

m
ic

 s
ca

le
)

0.00E+00

1.00E-11

2.00E-11

0.00E+005.00E-12 1.00E-11 1.50E-11 2.00E-11 2.50E-11 3.00E-11 3.50E-11 4.00E-11

c) Number of replication: 3

DUF probability (logarithmic scale)

S
D

C
 p

ro
b

a
b

il
it

y
 (

lo
g

a
ri

th
m

ic
 s

ca
le

)

Figure 7: Effect of Fault Detection with Fixed Replication

-50

-45

-40

-35

-30

-25

-20

-15

-10

fault detection effort = 1% (coverage 2%)

fault detection effort = 100% (coverage 90%)

S
D

C
 p

ro
b

a
b

il
it

y
 (

lo
g
a

ri
th

m
ic

 s
ca

le
)

a)

b)

c)

d)

#replication = 2

-5

0

-45-40-35-30-25-20-15-10-50

fault detection effort = 100% (coverage 90%)

fault detection effort = 200% (coverage 99%)

fault detection effort = 299% (coverage 99.9%)

DUF probability (logarithmic scale)

S
D

C
 p

ro
b

a
b

il
it

y
 (

lo
g
a

ri
th

m
ic

 s
ca

le
)

#replication = 1

Figure 8: Effect of Replication with Fixed Fault
Detection Coverage

As mentioned in Section 5, this section presents an ILP
based solution to handle the design scenario of maximizing
the reliability of a single application. A real-time application
typically has an end-to-end deadline that represents the time
budget B for the entire application. The total budget can
be distributed to individual tasks so that each task ti has
a local deadline bi. The maximum reliability that can be
archived by a task is constrained by the available local time
budget. To describe this relationship, we define a Reliability
Function (RF) Ui(b), which is a monotonic function that
models the achievable reliability of task ti with given time
budget b. Figure 9 depicts an example RF. The metric for
reliability is Failure In Time (FIT). To capture both DUFs
and SDCs, we define the value of Ui(b) to be a weighted
sum of the FIT of both fault classes, i.e.:

Ui(bi) = αFITDUF (bi) + βFITSDC(bi) (9)

The weighting factors represent the criticality of the type
of fault for the application. The RF for a task ti can be
obtained as follows. The possible time budget bi assigned to
ti is lower-bounded by its execution time and upper-bounded
by the available system slack time, i.e., bi ∈ [Ci, Ci + B −∑
∀j
Cj]. We sample this range with a fixed step width. For

each sample value b, we investigate all design alternatives
that fit into b, i.e., we try different numbers of replications
and all implementable fault detectors6. For each design, the
DUF and SDC probabilities are analyzed using equation

6This procedure is durable since the number of alternatives
is very limited. On the one hand, the number of replications
for a single task is typically very small. On the other hand,

-4

-2

0

2

4

6

8

10

Fa
il

u
re

 I
n

 T
im

e
 i

n
 l

o
g
a

ri
th

m
ic

 s
ca

le lower FIT = higher reliability

-6

-4

0 20 40 60 80 100 120 140 160

Fa
il

u
re

 I
n

 T
im

e
 i

n
 l

o
g
a

ri
th

m
ic

 s
ca

le
Time Budget (Deadline)

Figure 9: Example of Reliability Function

1-3 and the reliability is evaluated by equation 9. We assign
the value of the U(b) to be highest achievable reliability
under the budget constraint.

After having the reliability function for all tasks, we can
now compute the system reliability. The system-level SDC
probability can be computed using equation 6. Since the
success probabilities PSUC(T \t0) and PSUC(t0) are typically
very close to 1, we approximate equation 6 as follows:

PSDC(T) < PSDC(t0) + PSDC(T \t0) < ...

=
∑
i

PSDC(ti)

As can be seen, the system-level SDC probability can be
overestimated by summarizing the SDC probabilities of all
tasks. It can easily be verified that the system FIT can also
be computed in an additive manner from the tasks’ FITs.
Similar approximation exists for the DUF probability. Let
~b be a vector that contains the timing budget for each task.

The system reliability can be approximated as Usys(~b) =∑
ti∈T

Ui(bi). The optimization problem becomes a deadline

assignment problem stated as follows:

Minimize :Usys(~b) =
∑
ti∈T

Ui(bi),

Subject to :
∑
bi∈~b

bi ≤ B
(10)

since fault coverage increases monotonically with detection
effort, we can simply choose the best detector that fits into
the budget. When the complexity is still too high, methods
like Monte Carlo simulation can be used to approximate the
RF.

10

12

14

16

18

20

ExploreDetector

PerfectDetector

R
e

so
u

rc
e

 C
o

n
su

m
p

ti
o

n

(i
n

 1
0

 t
im

e
 u

n
it

s)

0

2

4

6

8

10

-4 -2 0 2 4 6 8 10

FIT of DUF errors (logarithmic scale)

R
e

so
u

rc
e

 C
o

n
su

m
p

ti
o

n

(i
n

 1
0

 t
im

e
 u

n
it

s)

Figure 10: 2D Projection of Optimization Results:
FIT of DUF vs Resource Consumption

By restricting the local time budget of each task to be a
set of discrete values (as what is done to sample the RF),
the above problem can be transformed into an integer linear
programming problem and solved using standard solvers.
Assume that M samples in the RF are considered for each
local deadline value, i.e. bi ∈ {bi,1, ..., bi,M}. We define a set
of binary variables to describe the assignment of bi:

xi,m =

{
1 iff bi is assigned to the mth sample bi,m
0 otherwise

Obviously, bi can only be assigned to exactly one sampling
value: ∑

m∈[1,M]

xi,m = 1, ∀ti ∈ T .

The actual value of bi can then be denoted as:

bi =
∑

m∈[1,M]

xi,mbi,m.

The actual reliability of the task i is:

ui =
∑

m∈[1,M]

xi,mUi(bi,m).

The ILP problem can be stated as:

Minimize :
∑
ti∈T

ui,

Subject to :
∑
ti∈T

bi ≤ B
(11)

The ILP formulation consists of M |T | binary variables (the
x variables) and 2 |T | integer variables (for the b and u
variables).

D. EXTENDED EXPERIMENTAL RESULTS
As mentioned in Section 6, this section presents extended

experimental results. In Figure 6, the performance of
two approaches is compared. For the PerfectDetector
approach, the FIT of SDC can be kept relatively low due
to good detection coverage. However, the FIT of DUF is
always beyond 105. Using the ExploreDetector approach,
we can obtain a wider spectrum of solutions, from the one
that achieves very low FIT of DUF (C in Figure 6) to the
one that achieves very low FIT of SDC (F in Figure 6).
The designers can select the best implementation according
to the application requirements.

14

16

18

20

ExploreDetector

PerfectDetector

R
e

so
u

rc
e

 C
o

n
su

m
p

ti
o

n

0

2

4

6

8

10

12

14

-6 -4 -2 0 2 4 6 8 10

FIT of SDC errors (logarithmic scale)

R
e

so
u

rc
e

 C
o

n
su

m
p

ti
o

n

(i
n

 1
0

 t
im

e
 u

n
it

s)

Figure 11: 2D Projection of Optimization Results:
FIT of SDC vs Resource Consumption

4

6

8

10

1 RISC + 1 DSP

2 RISC + 1 DSP

2 RISC + 2 DSP

F
IT

 o
f

S
D

C
 e

rr
o

rs
 (

lo
g
a

ri
th

m
ic

 s
ca

le
)

A

-6

-4

-2

0

2

4

-4 -3 -2 -1 0 1 2 3 4F
IT

 o
f

S
D

C
 e

rr
o

rs
 (

lo
g
a

ri
th

m
ic

 s
ca

le
)

FIT of DUF errors (logarithmic scale)

Figure 12: Comparing Results of three Architec-
tures

The optimization results from MOEA can also be viewed
from different angles. In Figure 10, the results are projected
to in a 2D plane considering the FIT of DUF and resource
consumption. Similarly, Figure 11 focuses on the FIT of
SDC and resource consumption. Clearly, for both cases,
the solutions found by ExploreDetector have better quality
than those found by PerfectDetector. Concerning SDC,
the performance of PerfectDetector is relatively close to
that of ExploreDetector. Nevertheless, the performance
gap is significant considering DUF . In this sense, the
main drawback of the PerfectDetector approach is that the
design objective is biased. It fails to take application-specific
reliability requirements into account. Instead, the focus is
always on reducing the SDCs. For many applications (e.g.
those requires fail-operational behavior), this is certainly a
suboptimal approach.

The propose approach can be used to perform reliability-
aware design space exploration. To show the DSE flow,
we apply the approach on several platforms consisting of
2 to 4 processors. In Figure 12, we compare the maximum
achievable reliability using different architectures. Clearly,
the solutions found using a larger architecture dominate
those obtained using a smaller architecture, due to the
possibility of implementing more replications and/or better
detectors. From these results, the designer may choose the
best platform that meets the application requirement. For
example, if the reliability goal is point A in Figure 12, the
2RISC + 1DSP platform is the cheapest one adhering to
the requirement.

