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Abstract Applying system-level fault-tolerant techniques such as active redundancy is a
promising way to enhance the system reliability for safety-related applications. Embedded
system design using active redundancy is a challenging task that involves solving two major
problems, namely finding the optimal redundancy configuration and mapping/scheduling of
the application (including the redundant components) to the platform under timing and reli-
ability constraints. This paper presents a framework for automatic synthesis of fault-tolerant
designs on multiprocessor platforms. The core of the framework consists of: (1) a reliability
analysis, that computes the system-level reliability in the presence spatial and temporal re-
dundancy, and (2) an optimization approach for reliability-aware design space exploration.
The proposed approach considers both transient and permanent faults and is among the first
to support system design using imperfect fault detectors. The framework takes an applica-
tion model, a platform model and a set of application requirements as input, and generates
the recommended design parameters, including task-to-processor binding, task schedule and
the selection/placement of redundancy. The effectiveness of our approach is illustrated using
several case studies.
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1 Introduction

Reliability and safety are becoming one of the most important concerns in today’s embedded
system design. However, as technology scales, modern devices are becoming more suscep-
tible to faults [6]. The hardware faults can be permanent (hard errors), transient (soft errors),
or intermittent [46]. Permanent faults cause non-recoverable device defects once they man-
ifest, threatening the system’s lifetime. Permanent faults are expected to increase signifi-
cantly in deep-submicron era [45], due to increased power density and other scaling effects.
Transient faults typically arise due to cosmic particles striking the circuit. They do not fun-
damentally damage the device but may corrupt the application execution. The soft error rate
is also expected to increase for each technology generation [6]. Intermittent faults represents
malfunction of the device that appear and disappear repeatedly.1 Despite the efforts made in
the hardware community to enhance the hardware reliability, there is an increasing need to
use system-level fault-tolerant mechanisms to mitigate the impact of such faults.

System-level fault-tolerance typically involves active redundancy. By replicating certain
components in the system, certain faults could be tolerated due to the availability of redun-
dant components. Redundancy can be implemented in both the space and the time domains
[9]. In the space domain, critical components can be replicated into multiple copies (also
called hardware redundancy). Hardware replication tolerates both transient and permanent
faults. For example, a triple-modular-redundant system replicates the critical components
three times and votes the results to produce an output. Hardware replication has less timing
overhead since the replicas can typically run in parallel. However, extra hardware comes
with high design and production cost. In the time domain, software tasks can be selectively
replicated (also called software redundancy) [49]. Software replication is more cost-efficient
to tolerate transient faults but comes with an overhead in time [20]. For real-time applica-
tions, temporal redundancy must be used with utmost care to guarantee schedulability of the
tasks (including replicas).

The configuration of fault-tolerant mechanisms, including selection and placement of
redundancy, is a critical design decision. First of all, the designer has to reason about the
timing and reliability properties of the system in the presence of redundancy to check if all
requirements are met. Second, since redundancy comes with high overhead, the optimality
of the design is an important concern. Last but not least, the placement of redundancy is
tightly coupled with many other design parameters. For example, the amount of redundancy
highly influences the schedulability of the application [20, 22]. In particular, for system
design on Multiprocessor System-On-Chip (MPSoC) platforms, the selection/placement of
redundancy has to be considered jointly with the classical task mapping and scheduling
problem.

Over the past decades, a lot of research efforts have been devoted to the field of fault-
tolerant system design using active redundancy. However, the existing work still has some
limitations. In general, most of the limitations are caused by the simplifying assumptions
made to reduce the problem complexity. For example, a lot of work considers either tran-
sient fault [12] or permanent fault [14]. Also, only certain class of redundancy are considered
and the concurrent usage of temporal/spatial redundancy are not well studied (see Sect. 2 for

1Our approach focuses on fine-grained analysis of system reliability. E.g., the proposed analysis can compute
the probability that the application is executed correctly for one iteration. In this context, the impact of inter-
mittent faults is similar to that of permanent faults. Hence, we do not consider intermittent faults separately
in the scope of this paper.
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details). Moreover, fault detection is often assumed to be perfect, i.e., the system always de-
tects the fault if one occurs [55]. Although studying simplified version of the entire problem
forms important steps, those simplifications limit the practical use of the approaches.

This paper presents a new approach for the design of reliable real-time systems on MP-
SoCs. Our approach takes an application model, a platform model and a set of application re-
quirements as input, performs design space exploration and generates a set of recommended
design parameters, including task-to-processor binding, tasks schedule and the configura-
tion of fault-tolerant mechanisms. The main contributions of our approach are: (1) A binary
tree based approach for probabilistic analysis of system reliability in the presence of spatial
and temporal redundancy. The analysis is very generic and supports many advanced fault-
tolerance techniques such as shared recovery slack [20] and imperfect fault detection [17];
(2) An efficient two-step encoding to transform the problem into a Multi-Objective Evolu-
tionary Algorithm (MOEA) instance for reliability-aware design optimization; (3) a frame-
work that integrates analysis and exploration approaches to allow automated synthesis of
fault-tolerant system design [16].

The remainder of the paper is organized as follows. Section 2 reviews related work in the
field. Some preliminaries including the system models are provided in Sect. 3. Section 4 and
Sect. 5 details the analysis and optimization approaches, respectively. Section 6 presents the
experimental results. Section 7 concludes this paper.

2 Related work

Reliability-aware design consists of two major tasks: modeling/analyzing of reliability and
integration of the approach into the design process. An overview can be found in [5].

Reliability analysis Reliability analysis is typically performed in a hierarchical manner,
from individual component model up to the system-level model. For permanent faults, re-
liability models can be constructed at the component-level by analyzing the physical fail-
ure mechanisms, such as electromigration (EM) and time dependent dielectric breakdown
(TDDB). Based on large set of experiments, researchers proposed several empirical models.
For example, EM and TDDB are usually considered to have lognormal and Weibull distri-
butions, respectively [7, 10]. Recent work [48] proposes a framework that integrates device,
component and system level models. For transient faults, one classic model is from Shatz
and Wang [44], which assumes that the occurrence of transient faults follows a Poisson
law with a constant error rate. The reliability model is also extended to cover the effects of
voltage scaling on reliability [52, 54].

Fault-tolerant system design focusing on permanent faults When focusing on permanent
faults, the system reliability is often referred to lifetime reliability. The common measure is
Mean Time To Failure (MTTF). Popular mechanisms to increase the MTTF of the system
include hardware hardening, hardware redundancy and task migration. While hardening is
mainly a hardware technology, the last two mechanisms involve interesting scheduling and
optimization problems. The work [15] presents a lifetime-aware task mapping approach on
chip multiprocessors. They focus on wear-out related permanent faults and take into account
temperature-dependent failure mechanisms. The Ant Colony Optimization (ACO) algorithm
is used to search for the optimal task mapping schemes. The authors in [18] consider a simi-
lar problem. In particular, the aging effect of components in a multiprocessor system is taken
into account. Feldmann et al. [8] presents an approach that focuses on analyzing the feasi-
bility of the system up on permanent faults. They define a new metric k-bindability, which
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specifies the property that a feasible binding of the application to the platform exists even if
any k components fail. Quantified Boolean Formulas are used to calculate the k-bindability
of a system. Glaß et al. consider a similar problem [14]. They extend the approach in [8]
and consider redundant binding of a task to multiple resources for the sake of reliability
improvements. The system behavior in the presence of redundancy is described using the
so-called structure function and represented as Binary Decision Diagrams (BDDs). A path
in the BDD towards true represents a combination of faults that is tolerable with the current
system setup. The system-level reliability can then be evaluated based on component-level
reliability models. The analysis is integrated into a MOEA based optimization framework to
find the best task bindings [13]. The same authors further consider the automatic insertion of
voting components in [41]. Compared to the work mentioned above, our reliability analysis
considers transient faults and is also able to handle software fault-tolerance techniques.

In [53] the authors utilize online fault detection and task migration to maximize the
expected MTTF. On detecting certain faults, the system is restarted and the tasks are re-
allocated to remaining non-faulty components according to a pre-computed plan. The task
migration cost is not considered, instead, the focus is on increasing the MTTF as much as
possible. The work [30] proposes to extend the MTTF by active allocation of slack in the
system. For example, some processors can be intentionally replaced by high-performance
ones, so that tasks from failed processors have higher possibility to be migrated. When task
migration is used, one of the most important issues is to guarantee the application require-
ments after the recovery while in the mean time reducing the migration cost. Yang et al. [50]
propose an approach for generating schedules with predictable response to faults. They par-
tition the initial schedule into several bands, which are designed in a way that the capability
of re-mapping tasks is embedded. The work is extended in [51] to minimize the latency of
applications. Lee et al. [25] study the problem of static task re-mappings under throughput
constraints for streaming applications.

Fault-tolerant scheduling considering transient faults Several existing approaches focus
on transient faults. In [49], the authors present an approach to handle transient faults by se-
lectively inserting task re-executions. They focus on using the otherwise wasted resources
to enhance the system reliability in a best-effort manner. The work [40] presents an ap-
proach for static scheduling with fixed fault-tolerant mechanism assignment. To be more
specific, each task is replicated twice so that a single processor failure can be handled. Gi-
rault et al. [12] consider fault-tolerant scheduling with active task replications and present a
bicriteria heuristic algorithm. They adopt the classic Poisson fault model and assume perfect
fail-silent behavior. Besides task scheduling, their algorithm also determines the number of
replications that are needed to achieve certain reliability goal. Only spatial redundancy is
considered and the replicas of a task are always scheduled on different cores.

Izosimov et al. [20] study the design optimization of fault-tolerance systems using both
spatial and temporal redundancy. In particular, the technique of sharing re-execution slack
among multiple tasks is proposed to improve the efficiency. A tabu-search based optimiza-
tion procedure is used to find the best schedule with scheduling length being the optimiza-
tion goal. In [37] Pop et al. study a similar problem and consider in addition the utilization
of check-pointing and roll-back technique. The authors in [42] utilize a hybrid scheduling
approach to handle mixed hard and soft real-time tasks. The aforementioned work [20, 37,
42] is based on a simplified fault model. Instead of modeling faults as probabilistic events,
they assume that the system may experience at most N faults and those faults may occur
in any component of the system. Under this assumption, the authors propose approaches
for automatic derivation of the optimal the task-to-PE mapping and fault-tolerance policy
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assignment (e.g., the amount of replication and placement of check points). The simplified
fault model has the limitation that the distinct failure probabilities of different hardware com-
ponents are not taken into account. In the follow-up work [19], a more accurate probabilistic
analysis is presented. Nevertheless, this analysis considered only temporal redundancy. Our
paper tackles a similar problem as the work mentioned above [20, 37, 42, 55]. The pro-
posed probabilistic reliability analysis is more generic and computes the system reliability
in presence of both spatial/temporal redundancy and shared re-execution slacks. Addition-
ally, we introduce an approach based on evolutionary algorithms that allows consideration
of multiple optimization objectives, e.g., reliability, schedule length and resource utilization.
Another major advantage of our approach is that permanent faults can be taken into account
efficiently using the proposed virtual mapping technique.

Other work also studies the tradeoff between reliability and other design objectives, such
as energy [55] and cost [36]. In [38] the authors present a Constraint Logical Programming
(CLP) based approach for scheduling and voltage scaling for fault-tolerance systems. Zhu
et al. show that voltage scaling has direct and adverse effects on system reliability [54]. They
study static scheduling approaches for energy minimization under reliability constraints
[55]. The core idea is, instead of using all available slack time for energy management,
a portion of the slack is especially reserved to schedule task re-executions, such that the
reliability loss can be recuperated.

An important limitation of the work mentioned above [20, 37, 38, 42, 54, 55] is perfect
fault detection assumption. To reduce the problem complexity, the authors assume that all
transient faults can be detected when a task is completed and timing overhead of fault de-
tection is contained in the WCETs of tasks. However, fault detectors, especially those have
high detection coverage, may come with high resource and timing overheads [43]. These
resources could potentially be used for other purposes, e.g., to implement more replicas.
Seen from another angle, the overhead in fault detection may limit the resource available for
active redundancy, resulting in sub-optimal system reliability. Hence, it is important to con-
sider optimization of fault detector implementation in the design flow. The previous work
[17] discusses in particular the selection of error detector and the proposed techniques are
integrated in our analysis/optimization framework (see Sect. 4.2). Experimental results ver-
ify that certain configuration using imperfect fault detectors combined with replication can
outperform those approaches that utilize only perfect fault detectors.

In [26], the authors consider another important tradeoff, namely the tradeoff between
hardware-implemented and software-implemented fault detection. They propose to selec-
tively implement fault detectors in a FPGA fabric tightly coupled with the processor, so
that the fault detector can run in parallel with the original program and the timing over-
head of fault detection can be reduced. Given limited FPGA resource, it is critical to decide
which fault detector goes to hardware. Optimization techniques are proposed for this pur-
pose. FPGA-accelerated fault detection is currently not considered in our work. To take this
issue into account, the problems considered in [26] and [17] have to be combined. Here, the
design goal is to decide both which fault detector to implement and where to implement.
Nevertheless, considering the combined problem is out of the scope of this paper.

3 Preliminaries

3.1 Fault model

Following the classic terminology, a fault is a physical defect, imperfection, or flaw that
occurs within some hardware or software component [39]. A fault may be dormant, which
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means the execution of the component is not affected, or it may be activated, which means
an error is incurred in the component.2 The error, as the manifestation of a fault, may
subsequently cause a failure. A failure is an observable event that the system deviates from
the specified behavior. Fault-tolerance is the technique to reduce the probability of failure
despite the presence of faults. It can be applied at architectural level to reduce the probability
of fault-to-error transition [33], or it can be applied on application-level to reduce the error-
to-failure transition. Our work focuses on the later case.

We consider software tasks as the basic components. The DSE framework takes the error
rates of tasks as input and aims at optimizing the system reliability (i.e., the system-level
failure rate). The task-level error rates are obtained from an fault model, which describes
the mode, distribution and other properties of faults. Fault models are typically proposed by
reliability engineers after detailed analysis and modeling of the physical failure mechanisms
[48]. The system designer may select the appropriate one for the target application domain.
Our DSE approach do not have restriction on the selected fault model, as long as the task
error rates can be obtained. This section discusses the fault models that we select for the
experiments, concerning both transient and permanent faults.

Transient faults may cause errors in a program. It can either be that the program execu-
tion is corrupted (program hanging, segmentation error, etc.) or that the program executes
smoothly but delivers an incorrect output. In both cases, the task is considered as faulty.
Nevertheless, since transient faults do not fundamentally damage the device, we assume that
only the single task during which the faults occur is corrupted. The successor tasks can be
executed normally after a recovery process. Moreover, we focus on errors of the application
program and consider the kernel software (e.g., OS scheduler, watchdog) to be fault-free.3

We adopt the classical Poisson fault model to describe the distribution of transient faults.
The Poisson model is well established and used in many related literature [2, 12, 44, 55].
It assumes transient faults to be independent events following a Poisson distribution with a
constant failure rate. Under this assumption, the following equations compute the probabil-
ity that a task is executed correctly and the converse probability that the task experiences
transient faults:

P (task ti executes correctly on processor p) = e−λpwi (1)

P (task ti experiences transient faults) = 1 − e−λpwi (2)

where λp is the failure rate of the processor p and wi is the Worst-Case Execution Time
(WCET) of task ti . The reliability requirement concerning transient fault is given by the
maximally allowable failure probability of the system.

Note that by assuming the Poisson fault model, our approach does not consider Common-
Mode Failures (CMF). In reality, CMFs could cause correlation between faults, which vio-
lates the independence assumption made in the fault model. However, our approach is not
intended to handle CMFs, since, as observed in [24], active redundancy is not a solution
to CMF [31]. Instead, CMFs have to be mitigated by dedicated techniques, such as design
diversity, architectural-level fault-containment and spatial/temporal separation [32, 34]. In
general, taking CMFs into reliability analysis is relatively straightforward, e.g., using tech-
niques mentioned in [31]. The real problem is how to estimate the probability of CMFs,

2Dormant faults are not considered in our approach, since they are neither noticeable nor harmful. In other
words, we focus on activated faults only. In this case, a fault is equivalent to an error from the designer’s
viewpoint.
3This is because we cannot apply fault-tolerant techniques such as active redundancy on the kernel software.
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which can be extremely difficult [31]. For this reason, a lot of research effort has been
devoted to CMF avoidance. In our paper, we assume CMF avoidance techniques are sys-
tematically applied, allowing us to use the Poisson model to model transient faults.

Concerning permanent faults, we focus on defects of processing elements in the MPSoC
platform and assume each individual core to fail independently. This assumption requires
core-level fault containment in the underlying platform. Although fault containment is chal-
lenging to implement, it is a prerequisite to enable using MPSoCs for safety-related appli-
cations.4 Hence, recent work [15, 18, 25] mostly make the same assumption. Also, research
efforts are spent on temporal/spatial separation techniques to implement the desired fault
containment property, e.g., the ACROSS architecture [1]. In this context, the entire system
is “alive” as long as the remaining working cores can still provide expected service. The
component-level reliability is typically given as reliability functions and the design goal is
to optimize system MTTF (cf. [14]). In reliability analysis, permanent and transient faults
are typically considered separately, since their physical failure mechanisms and impact on
the system are significantly different. In our approach, we target on considering both type of
faults in a unified manner, since it improves the system performance as shown in [16]. One
obvious way to achieve this is to integrate the existing analysis in [14] and consider life-
time reliability as one extra optimization goal. However, additional optimization objectives
reduce the optimization efficiency considerably. To overcome this problem, we assume that
the reliability requirements concerning permanent faults are given as constraints. For exam-
ple, the requirement could be that the system must tolerate one permanent fault of any of the
processors. We develop an encoding technique that guarantees these constraints during the
optimization process (see Sect. 5).

3.2 Fault tolerance mechanisms

As mentioned before, we focus on using active redundancy to enhance the system reliability.
Software tasks are replicated into multiple copies (replicas). The replicas can be executed
on the same component (temporal redundancy) or distributed to several components (spatial
redundancy). The set of N replicas for a task ti is denoted as R(ti) = {ti,1, . . . , ti,N }. The
availability of replicated software tasks allows for implementation of subsequent voting.
The voter collects inputs from all replicas of a task, including both temporal and spatial
copies, and produces a reliable data for successor tasks. By comparing the redundant results,
the voter may detect or correct errors. In this thesis, we consider a majority voter, which
generates an output if and only if more than half of the inputs have equal value. In this
case, the voter can correct an error, if only less than half of the replicas are faulty. If no
majority is found from the voting inputs, the voter reports an error, which means the error
is detected but not corrected. In rare cases, more than half of the replicas can fail and send
equal but incorrect result to the voter. Since the voter just selects the majority, the error will
escape. We assume that the voter features a timer to detect missing inputs, i.e., if one replica
encounters a fault and fails to send its result to the voter, the available data gathered from
other working replicas will be used for voting.

Another fault-tolerant mechanism that we consider is additional fault detectors embed-
ded into a specific task instance. This could be done in hardware, software or combined [26].

4Another possibility is to consider the entire MPSoC as a fault containment unit and apply active redundancy
in distributed chips. However, this option comes at a much higher hardware cost. Moreover, it does not well
exploit the benefit of the MPSoC platform, e.g., fast on-chip synchronization and communication between
different redundant components.
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Software-implemented fault detection typically involves transformation of the original pro-
gram into an instrumented version, adding the capability to detect transient faults that occur
at runtime of the program [43]. At the tasks’ completion, some check rules are executed
to decide if a fault has occurred. The arithmetic codes [43] and critical variable technique
[35] are examples of this kind. Hardware techniques typically introduce some monitoring
functionality, e.g., fingerprinting mechanism [23], to check if the program is executed as
expected.

Fault detectors implemented at individual task can help to improve the system reliability,
since, up on detecting a fault, the task can take appropriate actions such as safe shut-down
stop error propagation. Reliability analysis becomes more complicated in this case since
the fault detection coverage also becomes one factor that influences the system reliability.
To simplify the problem, most existing approaches that consider embedded fault detection
assume that all faults can be detected using such fault detectors [19, 20, 42, 52, 55]. In
other words, the fault detection is considered as perfect and all task instances can have a
fail-silent behavior. In this case, only correct outputs will be sent to the successor tasks
and voting becomes trivial. This assumption reduces the problem complexity significantly
but raises some practical concerns (see Sect. 4.2 for details). In this paper, we start with
the same assumption and present our tree-based reliability analysis approach. However, this
assumption is relaxed and the residual error of fault detection will be taken into account in
the second step.

Concerning error-recovery, we assume that the system will roll-back to a safe state and
execute the next scheduled task after a failure caused by transient faults. The timing over-
head of recovery is considered as constant annotated by the user [20]. To recover from
permanent faults, the schedule table on each core is switched to a pre-computed emergency
schedule (see Sect. 5.4) and the system restarts from the beginning of the application’s pe-
riod.

3.3 System models

We consider an application as the functionality of the system as a whole. The application
A consists of a set of independent jobs, each given as a directed acyclic graph. For a job
J = (T , E ), the vertices T = {t0, t1, . . . , tm} represent a set of tasks to be executed and the
edges E = {e0, e1, . . . , el} capture data dependencies between tasks. We assume that the set
of jobs in A share the same period. If jobs originally have different periods, they are first
transformed into larger graphs representing a hyper-period (Least Common Multiple of all
periods) of the application.

Our target architectures are heterogeneous multiprocessor platforms with time-triggered
communication, e.g., the GENESYS [11] architecture. The communication between tasks
is implemented with messages. The message schedule M is described as a set of message
slots {m0,m1, . . . ,mk}. Each message slot is a four-tuple m = (b, f, tsrc, ttgt ), where b is the
start of the message, f is the finish time, tsrc is the source task of the message and ttgt is the
sink. The communication can be protected with dedicated techniques (e.g., error correction
code) and is therefore assumed to be error-free.

3.4 Scheduling models

Timing predictability is highly desirable for safety-related applications. In our approach, we
target on synthesizing time-triggered fault tolerant schedules. We support two scheduling
models, namely hierarchical combination of Time-Triggered and Static Priority scheduling
(TT-SP) and Time-Triggered scheduling with Flexible Slack (TT-FS). The TT-FS scheme is
first proposed in [20] and TT-SP is introduced in [16].
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Fig. 1 Example of TT-SP and
TT-FS

TT-SP In the TT-SP scheme, the available processing elements are globally arbitrated in
time and budgets are statically allocated to tasks. In each time slot, a set of tasks are allocated
and ordered using static priorities. At runtime, the pending task that has the highest priority
acquires the slot for execution. A task is pending if and only if (1) all the required data is
available; (2) the execution is necessary, i.e., the task has not been executed successfully in
previous slots. Figure 1a shows an example of TT-SP schedule. The slot S1 is allocated with
two tasks and t1 has higher priority. In this case, the re-execution of t1 will take place in S1

whenever necessary, e.g., as shown in Fig. 1c where the first instance of t1 fails. Task t2 may
execute in S1 only if the high-priority task t1 finishes before the start of S1 (Fig. 1b). A TT-SP
schedule can be described as a set of non-overlapping slots S = {s0, s1, . . . , sn}, each being
a four-tuple s = (b, f,p,T ), where b is the start time of the slot, f is the finish time, p is
the processor on which the slot is allocated and T is a list of tasks with decreasing priority
assigned to s. The size of a time slot is determined by the longest worst-case execution time
(WCET) of all tasks assigned to it. An important feature of TT-SP is that the start/end time
of each slot is fixed and does not have dependency on the faults occurred.

TT-FS In the TT-FS scheme, two types of time slots are scheduled, namely normal slots
and slack slots. The later is intended to be used for re-execution of instances misbehaving
due to transient faults. Slack slots are often shared by multiple tasks. Figure 1e shows an
example, in which the slack slot S7 is shared by t1, t2 and t3. The slack slots only reserve time
for re-execution but do not have a fixed start time. Instead, they will be utilized whenever
necessary. In Fig. 1f, the first instance of t1 encounters a fault and S7 is used immediately
to re-execute the same task. The normal slots S5 and S6 are delayed in this case. Figure 1g
and 1h are another two scenarios, in which S7 is used to re-execute t2 and t3, respectively.
Naturally, the size of the slack slots must be no smaller than the WCET of any tasks assigned
to it. To describe a TT-FS schedule, the four-tuple s = (b, f,p,T ) needs to be extended with
an additional binary variable denoting if the slot is a slack slot or not.

The analysis and optimization techniques presented in this work support both TT-SP and
TT-FS. For the sake of simplicity, we focus mainly on the TT-SP scheme for the rest of the
paper. Nevertheless, we present the details on how to utilize the same techniques for TT-FS.
It is up to the designer to choose one of the scheduling schemes.



J. Huang et al.

Implementation Both TT-SP and TT-FS are distributed scheduling models. They are based
on pre-computed schedule tables stored statically at each individual core. Since the system
is time-triggered, synchronization between cores is a prerequisite for implementation. The
synchronization protocol is platform-specific. For our target ACROSS architecture [1], this
is done by synchronizing all application cores with the same network clock. We assume the
scheduler is part of the OS that is fault-free.

At runtime, the TT-SP scheduler picks the pending task with highest priority for execu-
tion. Once one replica of a task is finished successfully, the other replicas of the same task
are removed from subsequence time slots for the current iteration to avoid duplicated ex-
ecutions. Another situation that should be avoided is that a task in previous slot becomes
“hanging” due to fault and blocks the execution of subsequence tasks. A hardware watch-
dog can be used for this purpose. The implementation of a TT-FS is a bit more complicated,
since the schedule has to be adapted at runtime depending on the faults occurred. In general,
once a fault occurs, the scheduler has to make emergency response and try to achieve a cor-
rect execution by using the slack slots. Detailed explanation of the implementation with an
example is presented in [21].

4 Reliability analysis

In the proposed framework, the reliability analysis focuses on computing the system-level
reliability under impact of transient faults. Permanent faults are taken into account using an
encoding technique in the optimization procedure (Sect. 5). Computing the system reliabil-
ity of a given design is a very difficult problem, especially when fault-tolerant mechanisms
such as active redundancy are present. Recent work [4] puts special emphasize on the com-
plexity of reliability analysis. The authors distinguish two types of schedules, namely strict
schedules and general schedules. The strict schedules obey a rule that if a task t has a data
dependency on task t ′, all replicas of t ′ should be completed before any replicas of t start.
With this restriction, the execution results (success or faulty) of predecessor tasks will have
no influence on the start time of successor tasks. In this way, the tasks can be considered
independently in reliability analysis and a closed form formula can be derived [12]:

Pr(S, J ) =
∏

t∈J

(
1 − (

1 − Pr(t)
)num(t))

(3)

where Pr(S, J ) is the reliability of job J achieved by schedule S , Pr(t) is the reliability of
task t and num(t) is the number of replicas that task t features. As for the general schedules,
the author prove that the problem is at least as hard as NP-Complete problems [4].

The reliability analysis for TT-SP and TT-FS schedules is even more difficult than the or-
dinary general schedules. First of all, a larger set of fault-tolerant mechanisms are utilized. In
the current work [4, 12] the replicas of each task are always mapped to different processors.
In other words, only the hardware redundancy is used. For TT-SP and TT-FS, concurrent
hardware and software redundancy has to be considered. Second, shared time slots must be
supported. In [4, 12], each slot is used for exactly one task. At the beginning of each slot,
we automatically know which task is going to be executed. For TT-SP and TT-FS sched-
ules, slots can be shared by multiple tasks. The actual utilization of slots depends on the
execution history of previous slots. Figure 2 depicts an example, in which the utilization of
slack slots S2 and S3 depends on the execution result (success or faulty) of previous slots S0

and S1. In particular, the execution results on one processor might also influence the execute
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Fig. 2 Example execution scenarios for TT-SP

sequence on other processors. In the same figure, if the instance t1 succeeds in slot S1 on
processor n2, the message will transfer the correct result to processor n1 and the slot S2 can
be left for t2 (see the execution scenario in Fig. 2c). Otherwise, the slot S2 has to be used for
re-executing t1 (Fig. 2b). The analysis algorithm must also maintain the execution history
to select the correct task for the next slot. New analysis techniques are needed to conquer
the extra complexity. In principle, to obtain the system-level reliability for TT-SP and TT-FS
schedules, we need to carefully investigate which combinations of faults are tolerable by a
certain schedule and which combinations are not. In the next sections, we propose a binary
tree based approach.

We describe a combination of faults occurring in a system by a fault scenario:

Definition 1 (Fault Scenario) A fault scenario is a vector x = {x0, x1, . . . , xn}, which con-
tains for each scheduling slot si a variable xi ∈ {1,0,NA}. It encodes the execution result of
si : xi is 1 if the slot executes some task successfully and 0 if the execution fails; xi is NA
if the slot si is not used, i.e., each task in si .T

5 is either not ready or finished earlier and no
task is actually executed in si .

For the given job J , a fault scenario x is tolerable by a schedule S if J is still exe-
cuted correctly in presence of faults specified in x. The entire set of fault scenarios that are
tolerable by schedule S is called the working set of J , denoted as W(S, J ). The overall
probability that J is correct can be obtained by summarizing the occurrence probability of
all fault scenarios in the working set:

Pr(S, J ) =
∑

x∈W(S,J )

Pr(x) (4)

Before presenting the calculation of the working set, we first introduce some intermediate
notations. Let S(tj ) represent the set of slots to which task tj is assigned, i.e., S(tj ) = {s ∈
S|tj ∈ s.T }. The boolean request variable ri,j evaluates to true if the task tj requests to
execute in slot si and false otherwise. The boolean utilization variable ui,j is true if the
slot si is actually used to execute task tj and false otherwise. For the case of static priority

5The notation s.X denotes the element X in the tuple s in the entire paper.
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scheduling, ui,j computes to:

ui,j = ri,j ∧
( ∧

tl∈si .T ∧
priority(tl )>priority(tj )

¬ri,l

)
(5)

that is, si is utilized by task tj only if tj has the highest priority among all tasks requesting
the slot. An execution request is sent only if the following conditions are fulfilled:

ri,j = isReady ∧ notPrev ∧ notOther (6)

The first term isReady requires the task tj to be ready, i.e., all predecessor tasks have been
finished successfully. The other two terms check the necessity of executing tj . The term
notPrev is computed as:

notPrev =
∧

sk∈S(tj )∧sk .p=si .p

∧sk .f ≤si .b

¬(uk,j ∧ xk = 1) (7)

It is true if tj has not been successfully finished on the same processor. The term notOther
checks if the task has been executed successfully on other processors and a message is
scheduled to convey the result to the local processor:

notOther =
∧

sk∈S(tj )∧sk .p �=si .p

∧sk .f ≤si .b

¬(
(uk,j ∧ xk = 1) ∧

(∃m ∈ M : m.tsrc = tj ∧ m.f ≤ si .b ∧ m.b ≥ sk.f )
)

The values of variables ri,j and ui,j can be calculated in an iterative manner. Starting
from the earliest scheduling slot, we iteratively consider each s ∈ S . For a specific slot, we
compute the variables from the task with highest priority to the task with lowest priority.

As mentioned before, we assume perfect fault detector at this point. Hence, a task is
successful if at least one instance of it is executed without faults:

success(tj ,x) =
∨

sk∈S(tj )

(uk,j ∧ xk = 1)

For a given schedule, we can construct a function ϕJ : {0,1}|x| → {0,1}, which takes a fault
scenario x and returns 1 if the job J is still correct under impact of x and 0 otherwise. Since
the entire job is correct only if all of its tasks are correct, the function is given as:

ϕJ (x) =
∧

tj ∈T

success(tj ,x) (8)

With the help of function ϕ, the working set W(S, J ) = {x|ϕJ (x) = 1} can be obtained
by a Binary Tree Analysis (BTA). The procedure is demonstrated using an example shown
in Fig. 3. We consider the scheduling slots according to the order of occurrence, i.e., the
slots with earlier starting time are selected first (e.g., from S0 to S5 in Fig. 3). Slots with
equal start time can be considered in arbitrary order. The ith level in the tree is associated
with the ith slot and the edges leaving a node in the ith level represent the execution result
of that slot. Left branches (solid lines in Fig. 3) represent the case that the slot executes some



A framework for reliability-aware design exploration

Fig. 3 An example of binary tree analysis

task correctly. Right branches (dashed lines in Fig. 3) represent a slot with failed execution.
Note that a slot might be unused when all tasks in s.T are either not ready or finished earlier.
In this case we skip this level and spawn children in the next level (see node n1 in Fig. 3).
By constructing the tree in this way, each node will have a unique path to the start node
representing a unique fault scenario. A node at depth m represents a fault scenario in which
the first m variables are determined and the rest are considered to be NA. The total depth D

of the tree equals the number of scheduling slots: D = |x| = |S|.
Each node in the tree is associated with its own request/utilization variables. For a specific

node n, we compute those variables using (5) to (6) based on the values of request/utilization
variables associated with the nodes on the path from n to the start node. This procedure
actually computes which task is going to be executed in a slot based on the execution results
of previous slots.

With the request/utilization variables, a fault scenario x can be evaluated using (8), and
the corresponding node is assigned to one of the states: unknown, faulty or successful.
A node is faulty iff, given the current faults specified in x, there exists no possibility to
execute the job successfully in the remaining slots. A node is successful iff the entire job
is already finished using the successful slots specified in x, i.e., the remaining slots are not
needed. The faulty and successful nodes will not spawn further branches. If a node is neither
identified as faulty nor successful, the analysis continues with its children. The tree analysis
is complete if all nodes at the maximum depth D was visited or no more unknown node
exists. Afterwards, the set of successful nodes are used as the working set. The analysis
process above can be implemented recursively as outlined in Algorithms 1.

The occurrence probability of a successful node x can be computed as:

Pr(x) =
∏

xi∈x∧xi=1

Pr(si) ·
∏

xi∈x∧xi=0

(
1 − Pr(si)

)
(9)

where Pr(si) is the success probability of the task executed in slot si . The task-level er-
ror probability Pr(si) are computed using fault model, e.g., the Poisson model described
in Sect. 3.3. With the task-level reliability and the working set, we can obtain the system
reliability using Eq. (4).

4.1 Complexity and approximation

The complexity of processing a node during BTA is linear with respect to the number of
tasks assigned to the corresponding slot (variables r and u need to be computed for each
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Algorithm 1 analysis(n): binary tree analysis with starting node n
//compute request and utilization variable using 5 and 6
computeRUVariables(n);
l ← createLeftBranch(n)
if checkLeftBranch()=successful then

addToWorkingSet(l)
else

analysis(l)
end if
r ← createRightBranch(n)
if checkRightBranch() �= faulty then

analysis(r)
end if

task). However, this number is typically very small and does not grow significantly when
the system becomes more complex. We therefore assume the complexity of visiting a node
to be constant. In this case, the complexity of the entire analysis is determined by the number
of nodes visited. The worst case scenario occurs when all the nodes in depth smaller than
|S| are in the unknown state. The complexity is in O(2|S|+1) in this case.

As the analysis has a worst case exponential complexity, it is important to find approxi-
mations that improve the scalability. An observation from Eq. (9) is that the fault scenarios
that specify more faulty slots have much lower occurrence probability, because the failure
rate of a task is typically very low. Moreover, a fault scenario that specifies more faults is
more likely to be a faulty node. Hence, an approximation of the system reliability would
be to visit only nodes with at most d faulty slots and to assume all nodes specifying more
than d faults as non-tolerable. Since the reliability is obtained using (4), ignoring possibly
tolerable nodes is a safe underestimation of system reliability (see proof below). From the
tree point of view, this corresponds to eliminating all nodes with more than d right branches
on their paths to the root node.

With the above estimation, the complexity of BTA is reduced to be polynomial in |S|
(see [16] for the proof). Note that what we analyze in [16] is the worst-case complexity
of BTA. During our experiments, we observe that the portion of terminating nodes (mostly
faulty nodes) increases significantly with higher d and the actual number of visited nodes is
much smaller. As an example of runtime, the average execution time of BTA on the mpeg2
application (|S| ≈ 35, measured on a 3 GHz CPU) is 754 ms for d = 3 and 3405 ms for
d = 5. Thus the runtime of BTA is acceptable for an offline optimization process.

Correctness proof of the approximation in BTA We prove the correctness of the approxi-
mation in BTA by showing that the approximation is pessimistic underestimation of system
reliability. The design decisions made based on the BTA result are therefore safe.

Lemma 1 Eliminating nodes during binary tree analysis is a safe underestimation of system
reliability.

Proof The system reliability is computed by accumulating the occurrence probability of all
nodes in the working set (see Eq. (4)). By eliminating a node during BTA, we consider the
node as faulty without checking even if it is possibly successful. The occurrence probability
of this node will not be added to the system reliability. In this case, the computed system
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reliability will be less or equal than the real value. Hence, the BTA result is pessimistic and
safe. �

Theorem 1 Visiting only nodes with at most N (N > 0) faulty slots during BTA is a safe
approximation of system reliability.

Proof We prove it by induction. Start node. The fault scenario represented by a node is
determined by the path from the node itself to the start node. Since the start node has an
empty path, it represents a dummy fault scenario and will not be considered during BTA.
Nodes in the first level. For a node in level l, there is exactly l branches along the path
to the start node. Since l ≤ N , the two nodes in the first level are never eliminated by ap-
proximation. If they represent tolerable fault scenarios, the according probabilities will be
accumulated.

Induction. Assume the BTA is visiting a node A in level L. The number of faults spec-
ified by scenario A (denoted by faults(A)) must be less than or equal to N , otherwise it is
already eliminated. The two child nodes of A is expanded only if A is an unknown node, i.e.,
this branch terminates if A is identified as a successful or a faulty node (cf. Algorithm 1).
The branch to the left child B specifies a successful execution of the slot associated with the
current level. Hence, faults(B) = faults(A) ≤ N and B will not be eliminated. No approx-
imation is made at this point. The branch to right child C specifies a new fault occurring
at the current level and faults(C) = faults(A) + 1. If faults(C) ≤ N , the BTA continues
normally with C and no approximation is performed. If faults(C) > N , node C is directly
considered as faulty and the BTA terminates at this branch even though the children of C

could possibly be successful. Nevertheless, eliminating possible successful node is a safe
underestimation of the system reliability according to Lemma 1. Hence, for either of the
children of the current node A, the approximation, if it takes place, is safe. �

4.2 Designing fault-tolerant systems using imperfect fault detectors

Up to now, we present the analysis approach under the assumption that all transient faults
are detected at the end of the task execution. This assumption simplifies the problem but is
problematic in practice. On the one hand, a perfect detector might not exist or is difficult
to implement, making the algorithms developed under this assumption less useful. On the
other hand, even if implementable, perfect detectors typically come with high resource and
timing overheads. In recent work [29, 43] it has been shown that the time needed for high-
coverage fault detection may become much longer than the execution time of the task itself
(e.g., the timing overhead could be 400 % using techniques proposed in [29]).

The problem can be considered from a different angle. In the fault-tolerance commu-
nity, researchers have develop various fault detection techniques that achieves certain fault
detection coverage and comes with certain overhead [29, 43]. It is critical to select which
fault detector is to be implemented for each task. By making the assumption of perfect fault
detection, a biased design decision is made, which selects the most expensive fault detector
for every task. Other design alternatives with partial fault detectors are ignored. Moreover,
since fault detection causes timing overhead, selecting better fault detector reduces the op-
portunity for spatial/temporal replication. Clearly, a tradeoff analysis is needed to find the
optimal setup.

Taking imperfect fault detection into account, the execution of a task instance may result
in three scenarios: (1) it executes successfully, (2) a transient fault occurs and is detected
and (3) a transient fault occurs and is not detected. Detectable and undetectable faults have
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Fig. 4 Voting scenario analysis

different influence on the system reliability. If a fault is detected, fail-silent behavior can be
achieved. In this case, the faulty instance produces no output and the correct outputs from
other instances will not be affected. As the counterpart, an undetected fault leads to the case
that a wrong output is delivered to the subsequent tasks without warning. If a subsequent task
receives different inputs from the replicated tasks, it has no knowledge at this point about
which of the input is correct. In practice, voting is typically used to handle this dilemma.
Since faults are considered as rare events, the majority among the set of inputs is considered
to be correct.

We assume a majority voting mechanism is implemented for each task that has replicas
available. The voter generates an output if and only if a dominating result (i.e., a majority)
is found. The overall execution of a task, considering all its instances, could again result in
the following 3 scenarios: (1) the task executes successfully (SUC): it experiences no fault
or only some faults that are later corrected by the voter; (2) Detected Unrecoverable Faults
(DUF): the voter fails to find a dominating result and thus produces no output; and (3) Silent
Data Corruption (SDC): multiple faults occur and the incorrect outputs mask the correct
one. Both DUF and SDC are unwanted behavior that negatively influences the system reli-
ability.

The BTA approach has to be extended to consider imperfect fault detection. On the one
hand, the fault scenarios has to be extended to model three states.6 That is, the variable xl

that describe the execution result of slot l has three possible values: xl is 1 if the slot executes
some task correctly; xl is 0 if the slot fails silent (a fault occurs and is detected) and xl is −1
if the slot produces an incorrect output (i.e., a fault occurs and is not detected). On the other
hand, voting has to be supported. Since the voter has to collect the inputs from all replicas to
generate an output, the schedules that the framework generates are always strict schedules
[4, 12]. In this case, the tasks in a job can be considered independently in the reliability
analysis. The details of the extended analysis is presented in [17].

Figure 4 depicts an example of the voting scenario analysis of the task t1, which features
three replicas. If the fault scenario is x = {1,1,−1},7 the incorrect output of t1,3 is masked
and the overall result is SUC. In the scenario x = {1,0,0}, both t1,2 and t1,3 produce no
result, and the only output from t1,1 will be taken. Hence, the overall result is also SUC.
In the scenario x = {1,0,−1}, a correct and an incorrect output are sent to the voter. The
voter cannot identify the correct input since no majority is found. In this case, no output is
generated and the overall result is DUF. In the last example scenario x = {−1,1,−1}, two
incorrect outputs are sent to the voter. Note that the fault scenarios model only the qualitative

6In this case, the tree that is built is not anymore a binary tree. However, we just keep the name BTA for
simplicity.
7Since tasks are considered independently, only three slots are relevant for analyzing t1.
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result (0, 1, or −1), but the voting is performed based on the real value of the tasks’ outputs.
Hence, if two outputs are incorrect, two cases might happen: (1) the two incorrect outputs
are equal and mask the single correct one, resulting a SDC; (2) the two incorrect outputs are
unequal and the voter does not see a dominating value, resulting in a DUF. To stay on the
safe side, we have to assume the first case (SDC), because the probabilities of the two cases
are very difficult to be quantified, even if possible.8

The BTA approach is used to analyze the voting scenario for each task. Afterwards, the
system-level reliability, considering both DUF and SDC, is computed [17]. One thing worth
mentioning is that, since reliability analysis of strict schedules is much easier, the extended
BTA has linear complexity in the number of tasks.

5 Optimization procedure

Guided by analysis results, we considered how to find the optimal task schedule. We adopt
the Multi-Objective Evolutionary Algorithm (MOEA) as the optimization engine. To use
MOEA, the candidate solutions must be encoded into a special data structure called chro-
mosome. The set of chromosome maintained by the optimizer is called the population. In
each iteration, the optimizer selects a subset of solutions from the population, which are
used as parents to produce offspring (new solutions). This procedure is done by applying
crossover and/or mutation operators. The new solutions are evaluated by fitness functions
and high quality solutions will replace low quality ones in the population. This process re-
peats until a candidate with sufficient quality is found or a maximum number of iterations is
reached. Figure 5 shows an overview of MOEA.

To describe a TT-SP or TT-FS schedule, the information about each slot is needed, includ-
ing the start/finish time and task assignments. A direct encoding of such a schedule generates
a very large chromosome, resulting in a huge search space and low optimization efficiency.
To cope with this problem, we utilize a two-step encoding process inspired from [27]. The
main idea is, instead of encoding the entire schedule, we only put partial information, namely
the mapping and redundancy configuration, into the chromosome. A scheduler is used to
rebuild the schedule from the chromosome, which is then used for fitness evaluation, e.g.,
reliability analysis. For the rest of this section, we present the encoding techniques for TT-SP

Fig. 5 Workflow of EA-based
optimization

8The probabilities are highly influenced by the application characteristic, the output data type, common
caused errors, etc.
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Fig. 6 Encoding and
reconstruction of schedule

schedules. Section 5.2 discusses necessary changes in the approach to support TT-FS sched-
ules.

Using this approach, the chromosome contains one gene per task. Each gene is a pair
g = (i,L), where i is the integer index of the task and L is a list of integer values denoting
the PEs task i is mapped to. An example is shown in Fig. 6. Multiple mappings of the same
task onto the same PE are interpreted as re-execution slots (task 2 and 3 in Fig. 6); multiple
mappings of the same task onto different PEs are interpreted as spatial replications (task 1
in Fig. 6).

5.1 Schedule reconstruction

Reconstruction of the schedule from the chromosome is the same problem as scheduling
the tasks with known mapping and redundancy configuration. The reconstructed schedule is
sent to the BTA to evaluate the reliability for current solution. The selection of scheduler is a
user decision and has no influence on the correctness of analysis. For example, the user may
implement a scheduler that only generates strict schedules or another one that also generates
general schedules. The BTA is generic and supports both types.

The scheduling procedure that we propose consists of three main steps. First, for each
mapping entry of a task t , we instantiate a scheduling slot with length equal to the execution
time of t . The set of slots is scheduled using a list scheduler. The priority is computed based
on two criteria: (1) a task belonging to a job with earlier deadline has higher priority (job-
level EDF); (2) for tasks in the same job, the one that has a longer critical path to the sink
is assigned a higher priority. Using such an approach, data dependencies are automatically
regarded. Second, bus scheduling is performed for each message (Fig. 6b). In this paper, we
adopt the transparent recovery approach [22], which requires that a fault occurring on one
PE is masked to other PEs. This approach has several advantages such as fault-containment
and improved traceability. According to transparent recovery, the message should be sched-
uled after possible re-executions so that faults occurring at the sender are not visible to the
receiver, e.g., if the task t2 in Fig. 6 sends a message to other tasks, the message should be
placed at time T2. Tasks may be postponed due to dependency on messages. In the last step,
we perform slack sharing (Fig. 6c) using a greedy approach. A slot is shared with all tasks
that (1) may become ready before the start time of this slot; (2) has an execution time not
greater than the slot size.

An advantage of the two-step encoding is that many application specific constraints can
be easily translated into rules on the chromosome. An example would be separation con-
straints, e.g., two critical tasks are required to be strictly isolated in space. This can be
guaranteed by adding a constraint that the mapping entries of the two tasks do not collide.
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Fig. 7 Example of message placement for TT-FS schedules

5.2 Encoding of TT-FS schedules

The encoding scheme needs slight modifications to handle TT-FS schedules. We use the
integer 0 to denote slack slots and integers larger than 0 to denote regular slots. Figure 7
shows an example. Two tasks t1 and t2 are allocated on processor 1 and one slack slot is
scheduled. To reconstruct the schedule from chromosome, the same list scheduler described
in Sect. 5.1 can be used to generate an initial schedule. The slack slots are placed right after
the regular slots of the same tasks, e.g., S3 is located directly after S2. We introduce a greedy
slack sharing approach that works as follows. First, the schedule is divided into several
segments. The segments are separated by one or several consecutive slack slots. Then each
slack slot is allowed to be shared by all tasks in the segment just before itself. As an example,
the regular slot S1 and S2 in Fig. 7 belong to the segment separated by slack slots S0 and S3.
Hence S3 is shared by task t1 and t2. The size of slack slots is set to the largest execution
time of all tasks sharing the slot.

For the TT-FS Schedules, special care needs to be taken on the message placement step.
This is because normal slots might be delayed due to out-of-order execution of slack slots.
The message scheduling has to take this issue into account and make sure that faults occurred
on one processor are masked to other processors even if the task is delayed. This can be
explained using an example. Assume t2 in Fig. 7b is going to send some message to other
processors and we want to mask a single fault that occurs on processor 1. Figure 7c shows
the execution scenario that t2 encounters a fault. Based on the idea of transparent recovery,
the message m originated from t2 should be placed no sooner than the second instance of
t2 to guarantee a correct output message. However, the message should be scheduled at an
even later time (m′ in the figure), since the worst-case scenario happens when t1 encounters
a fault as shown in Fig. 7d. In other words, if the message is placed at m, a single fault
on t1 cannot be tolerated and the system reliability decreases. Thus, our scheduler always
analyzes the worst-case scenario and places the messages accordingly.

5.3 Encoding of design using imperfect fault detectors

To take imperfect fault detection into account, the coding of the problem needs to be ex-
tended. For each tasks instance, an additional attribute is needed to model the selection of
the fault detector. Each task instance is now encoded as a pair (p, d), where p is the pro-
cessor that will execute the instance and d is the index of the fault detector to implement.
Figure 8 illustrates an example, in which tasks 1 and 3 are replicated 2 times and task 2
is replicated 3 times. The lower part of the figure depicts the corresponding schedule that
the chromosome represents. The reconstruction of the schedule from the chromosome can
be done using a simple greedy heuristic. The resulted schedules are always strict schedules
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Fig. 8 Example of encoding
scheme

[4, 12] according to the proposed voting setup.9 We consider all tasks in the application in
topological order. For each task, the replicas specified in the chromosome are instantiated
and scheduled greedily at the earliest possible time. Output messages are scheduled at the
end of execution. If the current task has data dependency on previous tasks, a voter is in-
serted. The failure rate of the voter is added to the failure rate of the current task. Other
relevant details of the optimization approach are presented in [17].

5.4 Tolerating permanent faults using virtual mapping

The analysis and optimization approach presented so far focuses only on transient faults.
However, many safety-related applications also have requirement on permanent fault toler-
ance. Recall that, to tolerate a permanent defect of some processor p, we need to guarantee
that each task mapped to p either has another running instance (spatial replication) or can
be migrated to a slack slot on another processor. Thus, a straightforward way to tolerate a
single permanent fault is to ensure that each task at least one spatial replication. This can be
done by adding a constraint on the chromosomes. The drawback is however low resource
efficiency and high hardware cost due to large amount of spatial redundancy.

A more cost-efficient alternative to handle permanent faults is task migration. To design
such a system, one of the most important goals is to minimize the overhead of migration.
The ideal case is that the system recovers from faults with only minor re-configuration. Since
attaining the optimal task migration decision is a highly complex task, recent work [25]
proposes to compute the task re-mappings statically offline and store them in tables. The pre-
computed configurations are applied at runtime if a permanent fault is detected. We adopt a
similar approach and synthesize static schedules that can be adapted with minor changes to
handle failure of processors. In case of static time-triggered scheduling, we observe that the
migration cost is highly influenced by the data dependencies. Consider the example depicted
in Fig. 10, where we are going to migrate the task X to one of the possible locations S1 to S3.
The tasks A and B are communicating with X via messages. If X is re-mapped to S1, which
is earlier than the original message M1, the predecessor task A and the message M1 need
to be shifted forward due to data dependency. In consequence, other tasks communicating
with A need further adaptation and overall migration cost could be high. A similar situation

9If two tasks have data dependency, all instances of the source task send the output to the voter (therefore
execute before the voting) and all instances of the target task read the voter result as input (therefore execute
after the voting). This guarantees the schedule to be strict.
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Fig. 9 Example of virtual
mapping

Fig. 10 Influence of data
dependency on task migration

occurs if X is migrated to S3, which is later than the original message M2. In this case
the successor tasks need to be shifted backwards. Instead, if X is moved to S2, the rest
of the schedule does not have to change. An indication from this example is that, while
building schedules to tolerate transient faults, we should keep permanent faults in mind and
try to make such low-overhead migrations feasible. For the given example, we should try to
schedule a slack slot between t1 and t2.

To solve this problem, we propose a virtual mapping technique. The idea of virtual map-
ping is to trace potential places for task migrations already at the time when the schedule is
constructed from the chromosome. A virtual mapping of task t to p is represented in our en-
coding scheme using a negative integer −p, which implies that p is the target of migration
of task t . For example, the chromosome shown in Fig. 9a specifies two entries 1 and −2 for
task A, which means A is executed on processor n1 during normal execution and it should
be migrated to n2 if n1 fails. When constructing the schedule, we instantiate for a virtual
mapping also a slot of the size equal to the execution time of A (slot V A in Fig. 9b). This
slot is the place where A will be migrated to. Note that the virtual mapping slots are also
scheduled using the same heuristic presented in Sect. 5 so that data dependencies are also
regarded. This is essential to achieve a low-overhead task migration as shown in Fig. 10.
Nevertheless, during normal execution, this slot is not left empty but used as a slack slot for
other tasks mapped onto the same processor. For example, in Fig. 9c, the slot V A is actually
used for task C. This technique reclaims the time reserved for task migration and uses it
to improve the transient fault tolerance in normal execution. The efficiency of resource uti-
lization is therefore improved. Note that virtual mapping slots may be combined with other
slack slots scheduled on the same processor to reduce the length of the schedule. For exam-
ple the slot V C is combined with B1 and slot V D is combined with B2. The combination
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is only possible if two rules are obeyed: (1) the normal slack slot is no smaller than the
virtual mapping slot; (2) no data dependency is violated. These two rules guarantee that the
task migration is still valid after combination. Afterwards, the corresponding slack slots are
marked as new migration targets (Fig. 9c).

Note that we assume a use scenario that task migration is only considered as an emer-
gency response of the system when permanent faults occur. The goal is to guarantees contin-
uous service of the system, possibly with degraded quality due to lack of resources, before
a maintenance (e.g., replace the failed hardware) can be carried out. In this case, we do not
consider the reliability concerning transient faults after the migration.

There are two main advantages of using virtual mapping. The first is easy implementa-
tion, since the optimization process remains unchanged and no further objective is necessary.
Tolerance of permanent faults is achieved by adding simple constraints to the chromosome.
For example, if it is required to tolerate a defect of processor p, we just need to add the
constraint saying that tasks that are mapped only to p must have a virtual mapping. The
second advantage is low migration effort. Using the proposed approach, the places for task
migrations to handle certain hardware defects are already found and scheduled statically.
To carry out the task migration, the scheduling slots do not need to change. Only a simple
update of the priority table of virtual mapping slots needs to be done, e.g., during normal
execution, task A can already be mapped to V A and be set to lowest priority to allow other
tasks to acquire the slot in normal execution. When migration is needed, we just set A to
the highest priority in the slot. Since the binary of task A is already loaded to the target of
migration, timely recovery can be achieved.

6 Experimental results

We implemented the analysis and optimization algorithm in JAVA using the opt4j li-
brary [28]. We assume that the target platform consists of two types of PEs, namely a RISC
processor and a DSP. The failure probability of each task on a certain PE is randomly gener-
ated between 1 × 10−5 and 1 × 10−7 (the failure probabilities are in the typical value range
for soft error rates [6]). We restrict each task to have at most 2 spatial replicas and 2 re-
execution slots. For the metric of reliability, we use the System Failure Probability (SFP)
per hour in logarithmic scale in the experiments, i.e., the lower the value, the higher the
reliability is. As the applications we use two sets of Task Graphs (TGs). The first is a set of
random TGs with 5 to 15 tasks generated synthetically using TGFF.10 The execution time
of each task on the RISC/DSP is generated randomly between 100 and 1000. The second is
an mpeg2 decoder example from [47] that consists of 13 tasks.

The goal of the first set of experiments is to evaluate the accuracy and runtime of the
reliability analysis. Several instances of the BTA with different approximation factors are
evaluated. The approximation is achieved by bounding the maximum considered faults (MF)
as introduced in Sect. 4.1. Figure 11 presents the results averaged over 100 test runs. The
tests are carried out on random schedules from 10 TGs. As it can be seen, the execution
time increases rapidly as MF becomes larger. The run time of BTA with MF = 5 is around
16x higher than the case with MF = 3. As for the accuracy, all analysis with MF larger
than 1 bounds the average relative error to less than 10 %. The BTA with MF = 3 achieves a
very good tradeoff between runtime (around 3 seconds) and accuracy (99.3 %) and becomes

10TGFF http://ziyang.eecs.umich.edu/~dickrp/tgff/.
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Fig. 11 Evaluation of BTA with
approximation

a good choice in practice. Actually, the BTA should be used in most cases with relatively
small MF. Since the occurrence probabilities of transient faults are typically very low (e.g.,
at the magnitude of 10−5 [3]), fault scenarios with a large number of faults happen very
rarely. The scheduler should focus on covering all the fault scenarios with high probabilities
instead of tolerating rare cases. For example, if a single-fault scenario with probability 10−5

is not tolerable, it becomes the system bottleneck. Even if all other fault scenarios can be
tolerated, the maximum achievable reliability is limited to 1–10−5.

Note that using a lower MF value results in more pessimistic result and higher underes-
timation of system reliability, since a larger number of nodes are eliminated and considered
as non-tolerable (see Sect. 4). The solution found using a coarse analysis is safe due to pes-
simism. However, it may happen that no feasible solution is found even if some exists. The
approximation factor should be selected in a way that the accuracy of analysis is sufficient
to reach the same accuracy of applications’ reliability goal. The accuracy of the analysis can
be roughly estimated as follows. Assume the transient fault probability of tasks are at the
magnitude of 10−5, the occurrence probabilities of single-fault scenarios are at the magni-
tude of 10−5 and the probability of 2-fault scenarios are at the magnitude of 10−10. If we
consider MF = 2, the analysis will drop all fault scenario with more than 2 faults, and the
reliability is determined by the portion of tolerable single-fault and 2-fault scenarios. Since
the BTA accumulates the occurrence probability of tolerable scenario to obtain the system-
level reliability, the accuracy of analysis is also 10−10. Hence if the reliability goal is at a
higher accuracy, e.g., 10−11, a high MF should be considered. Also, using different approx-
imation factors in the design process might be helpful. E.g., the coarse analysis can be used
to obtain some fast results and more accurate analysis can be used for final decision making
and verification.

6.1 Design space exploration case study

An important step during embedded system design is design space exploration. The designer
has to address problems such as what is the amount and the type of PEs needed to meet all
application requirements. To illustrate this step, we consider the mpeg2 application and run
the optimization procedure with several platform configurations consisting of 2 to 6 PEs.
The execution time of tasks is specified according to [47]. The deadline of the application is
set to two times the critical path of the TG to allow some slack for reliability improvement.
Only transient faults are considered for the moment. The MOEA is configured with two
objectives. The first one is timing overhead. It is defined as:

penalty(S) =
{−1 iff l ≤ d

l − d otherwise
(10)
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Fig. 12 Pareto optimal solutions
under different platform
configurations

where l is the finish time of the job in schedule S and d is the deadline. The idea is that, if
the deadline is met, we set the penalty to a constant −1 and if not, we set the penalty to the
difference between the finish time and the deadline. In this way the optimizer will prefer so-
lutions that meet the timing constraints and optimize other objectives. The second objective
is reliability using the SFP as a metric. Figure 12 shows the Pareto optimal solutions found
by the optimization. It can be seen that the Pareto fronts obtained with more PEs dominate
those obtained with less PEs in most cases, i.e., with more hardware resources, the appli-
cation can be finished with shorter time and higher reliability. This is due to the increased
opportunity for spatial redundancy.

For each platform, we are interested in the solution that achieves maximum reliability
while meeting the deadline. These solutions are marked with 1 to 3 in Fig. 12. As it can
be seen, the 2RISC + 2DSP platform is the minimal one to achieve SFP of 10−6 and the
3RISC + 3DSP platform is necessary to achieve SFP of 10−9. Those results are useful for
the designer to make decisions in the early design phase. In [16], more details of this case
study is presented.

6.2 Comparison of TT-SP and TT-FS

Qualitative comparison The TT-SP and TT-FS schemes can be compared in several as-
pects:

– Resource efficiency. Both TT-SP and TT-FS allow sharing of time slots by multiple tasks
and are therefore more efficient than traditional techniques with dedicated redundancy
for each task, e.g., [12]. For example, the schedule in Fig. 1a and 1e are able to tolerate
a single fault of any of the tasks t1, t2, t3. Without using the slot-sharing technique, we
would have to replicate all three tasks once, in order to achieve the same level of fault-
tolerance. However, much more resources are needed in this case. If we compare TT-
SP and TT-FS, the later achieves generally higher resource efficiency. This is because
only the slack slots are shared and must have their sizes set to the largest WCET of all
tasks assigned to them. Again in same example, the schedule in Fig. 1a has the length
|t1| + max(|t1| + |t2|) + max(|t2| + |t3|) + |t3|, whereas the schedule in Fig. 1e has the
length |t2| + |t2| + |t3| + max(|t1| + |t2| + |t3|). It can be easily verified that the length
of Fig. 1e is no larger than that of Fig. 1a. Nevertheless, the TT-SP scheme can also
outperform TT-FS in certain circumstances (see the discussion of Fig. 14).

– Predictability. The TT-SP scheme exhibits higher predictability in sense that the start time
of all slots are fixed and known. In Fig. 1, the scheduling points, where the runtime sched-
uler has to be called, are marked. As it can be seen, the scheduling points of TT-SP is fixed
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Fig. 13 Comparing TT-SP and
TT-FS using mpeg2

in time and do not depends on the occurred faults. In contrast, the scheduling points vary
for different fault scenario in case of TT-FS.

– Scheduler Complexity and Overhead. The implementation of a TT-SP scheduler is
straightforward. At each scheduling point, we just pick the pending task that has the high-
est priority for execution. The implementation is more complicated for TT-FS. Depending
on the faults that occurred previously, the schedule has to be adapted at runtime and the
new scheduling points need to be determined. In Fig. 1f for example, the slot S5 and S6

have to be delayed due to the re-execution of t1 using S7. In this case, the complexity in
scheduler implementation is higher, resulting in generally higher scheduling overhead.

Experimental comparison To evaluate the performance of TT-SP and TT-FS, we extend the
optimizer with an additional optimization objective, namely resource consumption. We vary
the reliability goal of the mpeg2 application from SFP 10−5 up to SFP 10−9 and check the
minimum amount of resources to achieve the desired reliability level. The timing constraints
remain the same. The 2RISC + 2DSP platform is considered as the target architecture. For
the fitness of timing and reliability, the same technique as in Eq. (10) is applied, i.e., the
penalty is set to −1 if the timing/reliability requirements are fulfilled and a positive value
otherwise. The resource utilization is the total processor time a schedule occupies. Clearly,
all objectives need to be minimized.

Three approaches are compared, namely the TT-SP scheme, the TT-FS scheme and the
traditional approach without slack sharing (NoSharing). NoSharing is a similar approach as
the existing work [12]. However, the result is obtained using our optimization framework
with three objectives instead of the bicriteria heuristic proposed in [12]. Figure 13 compares
the minimum resources needed to meet both timing and reliability requirements. Clearly,
TT-SP and TT-FS out-perform NoSharing significantly by allowing recovery slack to be
shared by multiple tasks. As the reliability requirement becomes higher, more redundancy
needs to be added and the benefit of slack sharing also increases. When the SFP goal is
10−8, 25.7 % more resources are consumed by NoSharing. Moreover, NoSharing fails to
provide any feasible solution11 when the SFP goal is set to 10−9. What is a bit unexpected is
that TT-SP exhibits better performance than TT-FS for the mpeg2 application. After detailed
analysis of the schedules, we find out that this is because the tasks of mpeg2 have a large
variation on failure probabilities. This implies that more replicas should be scheduled for
tasks with high failure rates. However, the slack slots in TT-FS implicitly treat all tasks in
the same way. We explain this issue using a simple example depicted in Fig. 14.

11When the approach fails to find a solution, the corresponding point is missing in the figure.
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Fig. 14 An example for
comparing TT-SP and TT-FS

Fig. 15 Comparing TT-SP and
TT-FS using random TG

Consider that three tasks t1 to t3 are allocated on processor 1 and task t2 has a higher
failure rate. TT-FS allocates one shared slack slot for all three tasks and an extra replica for
t2 (Fig. 14a). In this way, the schedule tolerates any single fault on t1 to t3 and also two
consecutive faults on t2. Since t2 has the largest execution time, the size of the slack slot
is set to |t2|. The overall length of schedule is then |t1| + 3 ∗ |t2| + |t3|. Figure 14b shows
the optimal TT-SP schedule that utilizes the same amount of resources. Three replicas are
allocated for t2 and then shared with t1 and t3. Thanks to the sharing of three slots, the
schedule in Fig. 14b tolerates a larger set of fault scenarios (actually, it tolerates two faults
on any of the tasks) and therefore achieves higher system-level reliability. In other word, the
TT-SP schedule shows better performance in this scenario.

We did the same experiment on a randomly generated Task Graph (TG), whose tasks
have small variation on failure rates. Figure 15 summarizes the results. As it can be seen,
the TT-FS approach consumes less resources to reach the same reliability level. For this
example, the resource saving archived by slack sharing is larger than the case of mpeg2,
e.g., 75.7 % for SFP 10−8. This is because the deadline of the TG is relatively loose and the
possibility to use re-execution slots is higher.

6.3 The case with permanent faults

In the next step, the consideration of permanent faults is added and two approaches are
compared:

– The step-wise approach in which permanent faults are handled first using spatial repli-
cations and then, on top of that, transient faults are handled using temporal and spatial
redundancy.
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Fig. 16 Performance
comparison of step-wise and
unified approaches

Fig. 17 Example of Pareto
optimal results

– The proposed unified approach, in which permanent faults and transient faults are consid-
ered together using the virtual mapping technique.

As a reference, we also compare them with a case in which only requirements on tran-
sient fault tolerance are added (No-PF). We are interested in how much overhead is needed
to fulfill the additional requirement concerning permanent faults. We again use three opti-
mization objectives, namely schedule length, reliability and resource utilization. We assume
that it is required to tolerate a single defect on any of the processors. Figure 16 compares the
solution that meets both timing and reliability requirements with minimum resources tested
on 10 random TGs. The resource consumption is normalized with respect to the reference
(No-PF). For the step-wise approach, 47 % more resources are needed on average to handle
the permanent faults. The unified approach reduces the resource overhead to 33 %, i.e., 14 %
resource saving is achieved. Figure 17 gives a closer view of the Pareto optimal results for
one example TG. As it can be seen, the solutions found using the unified approach dominate
those found by the step-wise approach. For some jobs, e.g., T G3, the additional resources
needed to tolerate permanent faults are large. The reason is, those jobs exhibit limited paral-
lelism and the optimizer tends to schedule a large part of the job onto the same processor, so
that transient faults can be handled efficiently using re-execution slots. In this case, a large
part of the job needs to be replicated/migrated if a defect occurs. As the opposite case, the
mpeg2 application is easy parallelizable and has a relatively tight deadline, which guides
the optimizer to a distributed implementation even if permanent faults are not considered.
In this case, the additional resources needed are marginal (2 % using the unified approach),
since only some minor modifications are needed to guarantee feasibility of task migrations.
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Fig. 18 The resource
consumption objective

6.4 The case with imperfect fault detection

We use the same mpeg2 decoder example to evaluate the extended approach that considers
imperfect fault detection. Two approaches are compared: (1) the proposed approach that ex-
plores the optimal utilization of fault detectors (ExploreDetector); (2) existing approaches
that utilize the perfect fault detector only. We use the MOEA optimizer to compute the Pareto
optimal results considering three objectives. The first two are reliability objectives, one for
the amount of detectable faults (DUF) and one for the amount of undetectable faults (SDC).
The metric that we use in this experiment is Failure In Time (FIT). One unit FIT speci-
fies one failure in a billion hours. The conversion from failure probabilities computed in
Sect. 4 to FIT is straightforward. In the third objective, we intend to encode the design goal
of minimizing resource consumption while meeting the deadline. The objective function is
defined as follows. Let B be the deadline of the application and N be the number of pro-
cessors available in the execution platform. The available time budget within the deadline is
Ĉ = NB . For a given schedule S, we use C− to denote the fraction of resource consumption
that is within the deadline and C+ to denote the part above the deadline. Figure 18 depicts
an example. The objective function is defined as:

penalty =
{

C iff C+ = 0
Ĉ + C+ otherwise

(11)

By constructing the objective function as above, each schedule that violates the deadline
(C+ > 0) has a higher penalty value than any schedule that meets the deadline. For two
schedules that meet the deadline, the one that has less resource consumption will be pre-
ferred. Clearly, all three objectives are to be minimized.

Figure 19 shows the results using an example platform that consists of 2 RISCs and 2
DSPs. The dots in the figure show the results projected into a 2D plane, with the vertical
axis being the FIT of SDC and the horizontal axis being the FIT of DUF. The Pareto front
considering only the two reliability objectives is marked using a solid line. The triangle
symbols in Fig. 19 show the results of the PerfectDetector approach. Clearly, the solutions
found by ExploreDetector is of much higher quality than those found by PerfectDetector.
The gap in terms of FIT is several orders of magnitude in this experiment. Moreover, the
ExploreDetector approach provides a much wider spectrum of solutions, allowing the de-
signers to carefully evaluate the tradeoff between the two classes of faults and select the
implementation that fits the application requirements.

We mark some representative implementation alternatives in Fig. 19. A is the best so-
lution in terms of reliability found by the PerfectDetector approach; B is a solution found
by ExploreDetector which is close to and dominates A; C to F belong to the Pareto opti-
mal solutions found by ExploreDetector. Table 1 compares these implementations in several
aspects, e.g., the average number of replications for each task, the average fault detection
coverage over all task instances and the resource consumption. It can be seen that implemen-
tation A has the lowest number of replications, since a lot of resources are already consumed
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Fig. 19 2D Projection of
Optimization Results

Table 1 Comparing representative implementation alternatives

Solution DUF FIT (log.) SDC FIT (log.) Avg. rep. Avg. cov. (%) Resource (time unit)

A 5.06 −0.23 3.25 99.9 114.0

B 3.24 −0.93 3.67 63.0 74.2

C −3.25 7.15 3.50 84.4 55.9

D −2.49 2.93 3.83 74.9 65.5

E −1.04 2.30 3.92 83.0 150.6

F 0 −3.62 3.92 89.3 189.5

Table 2 Execution time of optimization approach

Application (num. tasks) 200 round 500 round 1000 round 1500 round

mpeg2 (13 tasks) 29.0 76.4 120.8 198.3

TG1 (50 tasks) 78.3 179.0 395.1 583.0

TG2 (100 tasks) 195.9 442.2 777.0 1692.0

by fault detection. The solution B has higher quality than A concerning all three objectives.
Using fault detectors with average coverage of 63 %, it achieves much higher reliability than
A and saves 35 % resources. The implementation F achieves higher reliability than A as
well. By spending 65 % more resources, it reduces the FIT of DUF by 5 orders of magni-
tude and the FIT of SDC by more than 3 orders of magnitude. In [17], extended discussion
of this case study is presented.

To evaluate the scalability of the approach, we measure the run time (in seconds) of the
flow on a Windows machine with 3 GHz CPU. The MOEA is configured to run for 200,
500, 1000 and 1500 rounds. Table 2 presents the results. For a small TG (e.g., mpeg2), the
analysis and optimization procedure takes only a few minutes to execute for 1500 iterations.
As expected, the execution time grows linearly with the number of iterations. It is also
worth mentioning that the execution time also increases roughly linearly with the size of
TG. This is because the reliability analysis, as most computational intensive operation, has
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linear complexity in the number of tasks. For a syntactic TG12 with 100 tasks, the 1000-
iteration EA takes about 13 minutes. In general, the runtime is acceptable for an off-line
design space exploration procedure.

7 Conclusion and outlook

The paper presents a framework for reliability-aware mapping and scheduling of real-time
tasks onto MPSoC based platforms. Spatial and temporal redundancy is utilized to meet the
reliability goal and we focus on finding the optimal configuration of redundancy. A relia-
bility analysis is proposed to evaluate the system-level reliability in the presence of active
redundancy. Guided by the analysis results, an optimization approach is used for automated
design space exploration. The proposed approach takes application-specific constraints into
account and provides recommended design alternatives, including key design parameters
such as task-to-processor mapping, task/message scheduling, and which/how fault-tolerant
techniques should be utilized. We also integrate consideration of permanent faults and sup-
ports fault-tolerant system design using imperfect fault detectors.

For the next step, we are interested in integrating the framework into a model-based
development environment. The optimization process will then take a set of input models and
produce a set of transformed models that fulfill certain reliability requirements. Moreover,
heuristics algorithms with higher scalability are desirable for fault-tolerant task mapping
and scheduling. Another extension of the current work could be to consider the impact of
fault-tolerance mechanisms on energy consumption.
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