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Abstract. We present a semi-automatic design flow from Simulink models to
prototypes of mixed hardware/software implementations of these models. Our work
consists of three key contributions: (1) transformation of a functional model given
in MATLAB/Simulink to the well-defined synchronous reactive model of computa-
tion (SR MoC), (2) an automatic SystemC code generation from Simulink models
using the SR MoC and (3) a semi-automatic prototype generator for heterogeneous
hardware/software systems implementing the chaotic iteration scheduling for SR
models.

1 Introduction
Simulink [17] is a well established modeling approach in many application domains and is today
the de-facto standard for model-based design in the automotive area. Simulink’s dominant role
can be seen in the area of algorithm optimization. Furthermore, using Real Time Workshop [16],
it is possible to automatically generate C-Code for single processor systems or VHDL RTL
code for hardware implementations. However, there is currently neither support to generate
mixed hardware/software systems from Simulink models nor to model architectural effects like
resource contention in Simulink.

On the other hand, mixed hardware/software implementations become prominent in nearly
all domains of embedded systems. Here, SystemC [9] can be seen today as one of the best suited
languages to model architectural effects such as cost, performance, or power consumption as
well as allowing a seamless design flow to hardware/software implementations.

In this paper, we will combine the strengths of Simulink and SystemC, and present a semi-
automatic design flow from Simulink to hardware/software implementations. An overview of
this design flow is shown in Figure 1. The contributions are (1) mapping of discrete Simulink
models to the well known synchronous reactive model of computation (SR MoC) [7], (2) an
automatic SystemC code generator from Simulink models using the results from (1), and (3) a
semi-automatic prototype generator for mixed hardware/software systems by implementing the
so called chaotic iteration scheduling for SR systems.
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Figure 1: Functional Simulink models are mapped to SystemC models using the SR model of
computation. Using architecture and mapping information, the SR model is trans-
formed to a mixed hardware/software prototype implemented on an FPGA.

The paper is structured as follows: An overview on related work in given in Section 2. Then,
we summarize some details on MATLAB/Simulink in Section 3 and we present the execution
semantics for the synchronous reactive model of computation in Section 4. In Section 5, we
present the mapping of Simulink models to SR models, and we show how to implement mixed
hardware/software designs from SR models in Section 6.

2 Related Work

Huang et al. [12] presented a case study of a Simulink-based MPSoC design flow. An ini-
tial functional Simulink model is composed to a combined algorithm and architecture model
(CAAM), which is derived by hand using hierarchical grouping of functional blocks. Here, the
hierarchical structure represents the partitioning into CPU subsystems and thread subsystems
as well as inter- and intra subsystem communication blocks. Afterwards, the Simulink CAAM
model may be implemented at different abstraction levels (Virtual Architecture, Transaction-
accurate Model and Virtual Prototype) using a Multithreaded Code generator. A very similar
approach is reported by Atat and Zergainoh [2]. The functional Simulink model is refined to
a Simulink transactional model. Using tool support, the transactional model is transformed to
the more detailed Macroarchitecture Model or the even more detailed Microarchitecture Model.
Simulation allows for verification at each abstraction level. In contrast to our work, partitioning
into mixed hardware/software systems is done within the Simulink model, by grouping func-
tional blocks and inserting special interface blocks. Our proposed design flow maps Simulink
models to the well-defined SR MoC. The mixed hardware/software implementation and a self-
scheduling scheme are derived from that model of computation.

Caspi et al. [6] proposed a layered approach quite similar to our own, while translating
Simulink models to SCADE/Lustre [8], a synchronous language, and afterwards implement-
ing it on a time triggered architecture. Their focus lies on designing safety critical software for
the automotive and avionic industry. This is achieved by using SCADE/Lustre, which features a
level-A certified automatic software code generator. Our approach also uses a synchronous in-
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termediate representation for Simulink models in order to create prototype implementations. In
contrast, our design flow is not limited to distributed software architecture, but supports mixed
hardware/software implementations, too.

Baleani et al. [3] presented formal transformations between MATLAB/Simulink and ASCET
using the synchronous reactive model of computation as intermediate layer. In particular, Belani
et al. presented transformations for ASCET to SR, SR to ASCET, as well as, SR to Simulink
and Simulink to SR. Our approach also uses a similar transformation from Simulink to the well-
defined SR MoC, in order to derive mixed hardware/software prototype implementations from
SR and thus from Simulink.

An approach to the transformation of Simulink models to the System Property Intervals lan-
guage is reported by Jersak et al. [13]. This approach transforms the time-driven model of
computation into a data-driven model, by introducing virtual FIFO-queues for synchronization
between different rates. We propose to use the synchronous reactive model of computation [7]
which is more suited to represent the reactive nature of Simulink models. Beyond, our design
flow supports mixed hardware/software prototype implementations.

Stefanov et al. [15] presented a design flow for implementing MATLAB code on a target plat-
form utilizing a microprocessor and an FPGA. A nested loop program specified in MATLAB
code is transformed to a Kahn Process Network, which can be mapped to the target platform.
Our approach also targets mixed hardware/software implementations, but uses Simulink models
instead of nested loop MATLAB programs as input for the design flow.

Another platform-based design flow for optimized hardware/software FPGA implementation
is reported in [11]. A SystemC-based language for modeling data-flow is used as input for
automatic design space exploration. Optimized results from exploration may be used to create
FPGA prototypes automatically. The results of this work could be extended in order to set up a
similar platform-based design flow using Simulink models or SR models as input.

In our work, we focus on (1) mapping a Simulink functional model to the well-defined SR
MoC, (2) automatically generating SystemC code from the Simulink models using an SR MoC
implemented in SystemC and (3) generating hardware/software prototypes. Thus, our approach
paves the way for an automated design flow without need for error-prone rewriting or redesign-
ing of the initial functional model.

3 MATLAB/Simulink
MATLAB/Simulink is a toolbox for MATLAB, developed by MathWorks [17], that can be used
to graphically model and simulate hierarchical systems. Another toolbox for MATLAB is the
Real Time Workshop, which offers a code generator, to generate highly optimized C-Code from
a Simulink model. MATLAB/Simulink provides an interactive block-diagram based graphical
environment. Libraries offer a broad variety of predefined blocks that can be used along with
user-defined functions. These can either be described by embedded MATLAB code or as so
called S-Functions [17]. Data-flow between the blocks is realized using directed connections
represented by arrows. Blocks are evaluated at a certain rate, the sample rate, which can be set
globally or for each block individually.

Figure 2 presents an example of a Simulink model consisting of seven blocks. We assume
each block has the same sample rate in this example. Hence, each block can be evaluated one
after another at each sample time. Here the MATLAB/Simulink simulation would compute the
output value of the SRC block from the value of the environmental input SRC-IN. Only when
the SRC block has been evaluated completely, the computation of block T1 and afterwards of the
block Substract starts. In this case the feedback loop is broken by the Memory block, because
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Figure 2: An example of a Simulink model. A SRC block receives data from the environment.
The blocks T1 and T2 prepare and process the data from the SRC block, respectively.
Blocks SNK and LED edit the results from block T2 for different kinds of outputs to
the environment.

the Substract block can use the output of the Memory block for computation, before the input of
the Memory block is known. If the block Subtract has been executed, the evaluation of block T2
starts. Note that the SNK and the LED block as well as the state update for the Memory block
depend on the results from block T2 and have no cross dependencies. Therefore, they could be
evaluated at the same time in the Simulink model, right after block T2.

MATLAB/Simulink is often used to simulate and verify systems in early stages of a design,
because it allows for rapid design, simulation and generation of real-time C-Code. The option
of hierarchical model development simplifies the design and reuse of systems.

4 The Synchronous Reactive Model

Modeling of reactive systems often relies on the synchrony hypothesis [4], with the ideal as-
sumption of a system producing outputs synchronously to changes of the inputs. In order to
fulfill this assumption, execution of a reactive system needs to be infinitely fast. Several exam-
ples of synchronous languages exist, such as Esterel [5], LUSTRE [10], Quartz [14] or SR [7].

The synchronous reactive (SR) model of computation is presented in [7]. There, a block-
diagram language for describing synchronous software systems is used. An SR system is com-
posed of blocks as depicted in Figure 3. Each block owns a set of inputs I and a set of out-
puts O. Channels interconnect an output with possibly several inputs using multicast semantics,
depicted by arrows. Dangling channels represent interactions with the environment. Blocks can
have a state, while outputs are functions of this state and the inputs or combinatorial functions
of the inputs. SR uses a logical model of time by means of a sequence of instants. In SR, a
channel can either contain a certain value or be undefined, while undefined is represented by the
⊥ value.

The execution of an SR system is now given by the computation of a series of instants. Execu-
tion of an instant requires computing the fixed point for all channels. Blocks may be executed
several times per instant if the SR system contains combinatorial feedback loops. Otherwise
fixed point calculation reduces to causal computation, e. g., block execution in topological or-
der. In the context of instantaneous feedback, Edwards suggest the chaotic iteration schedul-
ing [7] for synchronous models: All channel connected to outputs are set to undefined, only
environmental input channels may carry a certain value. Initially a block execution order is
selected randomly. The entire SR system is executed repeatedly using this order, until the fixed
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Figure 3: An example of a synchronous reactive system. Due to the synchrony hypothesis, the
SR system reacts infinitely fast to changes of the inputs from the environment.

point is reached. A fixed point is found, when the next execution of the system leads to the
same result as the prior execution. Edwards also suggest optimized static schedules especially
for the simulation of SR models, i. e., single processor schedules. Note that one possible fixed
point may be to evaluate each output to undefined, what may happen in case of feedback loops,
e. g., a feedback from the output to the input of a block computing the identity function results
in the obvious solution undefined for the output.

The fact that each block may execute several times within one instant leads to two different
types of blocks: strict blocks and non-strict blocks.1 Strict blocks can compute their outputs
only if all of the inputs are defined. Non-strict blocks may compute parts of the outputs if
only parts of the inputs are defined. A typical example for a non-strict block is the Boolean
AND function. If any of the inputs is false, the output evaluates to false, as well. This kind of
“short-circuit” evaluation may be used to break combinatorial feedback loops, where otherwise
each output has to be evaluated to undefined as not enough inputs are defined. A Moore finite
state machine is a non-strict block, as the outputs depend only on the actual state and can
be computed independently from the inputs. Note that state updates are only allowed once
per instant for non-strict actors. Therefore, we divide the functionality of non-strict blocks
into two functions go() and tick() as suggested by Edwards [7]. The go() function is
used to compute outputs, while state updates are implemented in the tick() function. As a
consequence, the go() function can be executed several times per instant in order to generate
defined outputs, while the tick() function is called at the end of an instant, carrying out the
internal state update.

5 Mapping Simulink to SystemC

By transforming Simulink models to SystemC code we combine the strength of both languages.
MATLAB/Simulink is a state-of-the-art tool for functional modeling, simulation, testing, and
algorithm optimization. SystemC supports modeling and simulation of complex heterogenous
embedded systems at different abstraction levels. Beyond, SystemC is often used to set up
test-benches and to couple different simulation environments for co-simulation.

The proposed method to generate SystemC code from Simulink models is based on the Real-
Time-Workshop (RTW) [16] toolbox. RTW is able to generate highly optimized C code from
Simulink models, while code generation can be customized by the Target Language Compiler
(TLC) using so called .tlc files (refer to [16]). Real Time Workshop works by creating a .rtw file,
which is an XML type description of the entire model. This file contains all information about
the system, including blocks, parameters and connections and is used to generate C code. Note
that we refer to Simulink blocks and SystemC modules as blocks and modules, respectively.

1Chaotic iteration works identical for both, strict and non-strict blocks.

143



5.1 Code generation

We created a framework that automatically generates a SystemC module for each Simulink
block, while using the RTW code generator to define the functionality. By mainly using Target
Language Compiler directives, we can use most of the inherent flexibility, e. g., the automatic
generation of code for user-specific blocks.

The SystemC modules created by our customized Target Language Compiler have a static
template which is then augmented with functional C code, generated by RTW. Each module
declares input and output ports and uses constructor code for initialization according to the
given block’s functionality. For discrete Simulink models, blocks may have internal discrete
states (DSTATES), e. g., a memory block is able to store the last input. Blocks with discrete
states may be used to break combinatorial feedback loops that otherwise could not be supported
for C code generation. In this case, two functions update() and output() are created
by the original RTW. By calling first the output() function writing the output, and later, if
sufficient data is available, the update() function, feedback-loops are broken. Obviously, this
behavior represents a Moore finite state machine, where outputs only depends on the actual state
and may be produced independently from inputs. We cope with discrete state blocks by using
non-strict modules as described in Section 4. Using the two functions go() and tick(),
the non-strict behavior allows modeling modules, representing such Moore machines. Here,
go() and tick() functions represent the output() and update() functions used for
writing outputs depending on the internal state and updating the internal state depending on the
inputs, respectively. Note that the go() function may be called several times per instant, but
is guaranteed to produce the very same output, because state update occurs only at end of an
instant by calling the tick() function once (monotonic behavior). Therefore, the input and
the output signals are decoupled and feedback loops are executed in the same manner as in the
original Simulink model.

5.2 Supported Simulink features

Currently, we only support discrete Simulink models. Therefore, we only support the fixed step,
discrete state solver, while Simulink offers a couple of different types of solvers for simulation.
In particular, we do not support any continuous blocks in the model. Using continuous solvers
would make the model-of-computation ambiguous and therefore not appropriate for designing
mixed hardware/software systems. Moreover, we do not support multidimensional or complex
signals.

All blocks that are stateless, e. g. mathematical operations or any type of source, as well as
all blocks from the discrete library, e. g. a Discrete Transfer Fcn, will translate to a working
SystemC model. We support user-defined functions representing analytical functions (e. g. y =
x2 + sinx) by means of the simple Fcn block. Other kinds of user-defined functions are not
implemented yet.

In Simulink, it is possible to have blocks running at different sample rates in the same model.
For code generation using RTW, they must be separated by so called Rate Transitions. A Rate
Transition in MATLAB/Simulink holds the signal from the predecessor block until it changes,
similar to a register. So, at whatever rate the successor is running, it always gets a valid input
signal. Naturally, the SR model of computation does not support execution at different rates, so
we assume the entire SR model is executed at a minimum rate given by the greatest common
divisor of all rates. To achieve the individual rate of blocks, we use counters to guard the
execution of the functionality inside modules.
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6 Generation of Mixed Hardware/Software Prototypes

The generation of an FPGA-based prototype allows for early estimations of mixed hardware/-
software implementations, in terms of power, performance, etc. Yet, the mapping steps de-
scribed in the following are not automated. But they provide a general approach to create mixed
hardware/software implementations from SR models, not limited to a certain application. By
automating these mapping steps, we could easily set up an automatic platform-based design
flow. Furthermore, optimized commercial high-level tools could be integrated to automate the
implementation of individual SystemC modules.

The implementation of SR models as mixed hardware/software systems requires the imple-
mentation of each block as a hardware module or a software function. Additionally, channels
between blocks need to be mapped accordingly to a communication infrastructure supporting
mixed hardware/software designs. In particular, we distinguish four different kinds of channel
implementations to exchange data between blocks in hardware and software: We have chan-
nels for: (1) software to software, (2) hardware to hardware, (3) hardware to software and (4)
software to hardware communication. As all channels in an SR model may carry the undefined
symbol ⊥, there is the need to represent this undefined symbol for all kinds of channel imple-
mentations. For this purpose, we introduce an additional Boolean signal associated with each
channel, indicating if the value stored in this channel is defined or undefined. Thus, a software
to software channel consists of a pair of variables, the data and the control variable. The hard-
ware implementation of a channel needs a vector of signals, representing the Boolean control
value and the data value. The hardware/software interface implementation combines both kinds
of channel implementations via memory mapped registers assigned to the processor bus.

One way to generate a mixed hardware/software implementation from a given synchronous
specification can be achieved by implementing clusters of the specification as hardware accel-
erators wrapped by corresponding software drivers. For this purpose, a synchronous system
has to meet the following requirements: (1) A cluster evocation can be executed in a limited
number of clock cycles. (2) The worst case execution time (WCET), i. e., the number of clock
cycles until all outputs of the cluster are computed and set to defined, is known a priori or can
be computed at compile-time. (3) Each cluster behaves strict, requiring all inputs to be defined
before any output can be computed. (4) All outputs of the hardware cluster are guaranteed to
become defined or undefined independently from the value of these cluster’s inputs.2 If these
requirements are fulfilled, each evocation of a hardware cluster can be treated like a function
called from a software wrapper, by writing all inputs to the cluster, awaiting the WCET and
reading the results, subsequently.3 In this case a simple single processor software scheduling
approach can be used to schedule the entire system.

A more general approach to the implementation of a synchronous system as a mixed hard-
ware/software system uses the chaotic iteration scheduling. This kind of scheduling can be
combined with a high-level synthesis approach for single blocks easily. Beside the enhanced
flexibility, chaotic iteration scheduling may decrease execution times in the average case in
contrast to WCET-based scheduling. Such a mixed hardware/software system derived from the
SR application given in Figure 3 is depicted in Figure 4. This implementation is more flexible
and allows for concurrent execution of hardware blocks, in parallel to the software blocks. But
this flexibility requires more control overhead, as hardware blocks can compute in parallel and
need to be synchronized. Determining the end of an instant, i. e., the entire system reaction,

2Inputs that are guaranteed to be undefined don’t need any computation.
3In the extreme case that the WCET is smaller than the latency between writing the last input and reading the first

output via the bus, no additional waiting operations in software are required.
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Figure 4: A synchronous reactive system implemented as a mixed hardware/software proto-
type. A software scheduler and a hardware controller ensure deterministic execution
of the entire distributed application. Left hand side shows schematic view and right
hand side shows block diagram captured from Xilinx Platform Studio [18].

synchronous to the inputs, is now a distributed issue. We solve this problem by generating a
hardware controller which is polled periodically from a software scheduler. This way we can
construct a self-scheduled mixed hardware/software system in a similar manner to chaotic it-
eration. The scheduler iterates over the software blocks wrapped by software functions. Each
function returns if any output was updated and set to defined successfully. If so, the values
from output variables are written to the hardware signals, using a memory-mapped hardware/-
software interface by the scheduler. Each hardware block checks self-reliantly for sufficient
defined inputs in order to generate defined outputs. During computation, a block sets an outgo-
ing active signal to true and otherwise to false, e. g., a0 in Figure 4. The hardware controller
generates a global active signal by computing the logical OR on all incoming active
signals. That way, the global active signal tells us if any hardware block is executed. If
the global active signal becomes true, an update signal is set to true, indicating that
any hardware block may have updated output signals. The software scheduler polls and resets
the update signal and the global active signal. Thus, the software scheduler notices
if software or hardware needs any update via the hardware/software interfaces. Any update
of an output variable in software is forwarded to the hardware signal by the scheduler. If any
output in hardware was updated (signal update is set) and the hardware is not longer active
(global active is not set), then the hardware signals need to be forwarded to the software
variables via the hardware to software interface. Otherwise, if there are no updates, no activity
in hardware and no software functions produces any update, execution of an instant has reached
a fixed point, i. e., the synchronous reaction of the entire system is fixed. Any other case means
hardware blocks need more execution time or software blocks need further execution iterations.
Finally, each block can implement an internal state update and each channel is set to undefined
in order to start the execution of the next instant. In software, this requires calling a tick()
function for each block. For hardware, this results in setting the tick signal to true.
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6.1 Environmental Interaction

Execution of synchronous reactive systems needs special care about handling the interaction
with the environment. To guarantee a monotonic behavior of the system, we must prevent the
environment from interfering with the execution of an instant. From the specifications point of
view, the execution of the synchronous system is assumed to be infinitely fast, so each action
from the environment leads to an instantaneous reaction. But from the implementations point of
view, there are computation delays and thus reaction needs some time. To fulfill the synchrony
hypothesis, the system must react faster than new environmental actions occur. A typical im-
plementation (e. g., [1]) to guarantee this constraint uses sampling of the inputs and outputs.
When starting execution of an instant, all environmental inputs are sampled and buffered. After
reaching a fixed point, the outputs to the environment will be updated. Using this decoupling
scheme, we prevent interference of environmental actions and can guarantee monotonic be-
havior. Indeed, to guarantee the synchrony hypothesis, the overall execution time of a mixed
hardware/software system needs to be faster than the environment. Note that any implementa-
tion using either hardware or software needs to react faster than the environment, though.

6.2 Example Implementation

A prototype of the application shown in Figure 2 and Figure 3 is implemented on an FPGA
board with a Xilinx Virtex II Pro (XC2VP30) using the chaotic iteration scheduling approach.
Figure 4 depicts the schematic view and the block diagram captured from Xilinx Platform Stu-
dio of the prototype implementation. The blocks SRC, T1, and SNK are mapped to software,
running on a Xilinx MicroBlaze soft-core processor, while T2 and LED are implemented in
hardware. A software scheduler and a hardware controller are used for controlling and moni-
toring the execution of blocks.

The hardware controller forwards the global active signal and an update signal to
memory mapped registers read from the software scheduler. If requested by the software sched-
uler, the tick signal is set indicating the end of an instant. A set update signal causes the
scheduler to update the hardware to software interfaces. Afterwards, the update signal is reset
by the software scheduler in order to notice any further updates.

The main loop of the software scheduler implements the synchronous reactive execution of
mixed hardware/software systems. A certain fixed point needs (1) updating the software part
via the hardware to software interface, (2) executing the software block in chaotic order, (3)
updating the hardware to software interfaces, and (4) testing if any hardware block is either
still running or has already updated some channels to defined. Steps (1)-(4) are repeated while
any update occurs in software or hardware. Otherwise, all channels are reset to undefined, the
environment is sampled, and the very next fixed point calculation is started.

7 Conclusions

The SR model of computation [7] complements the modeling front-end of our platform-based
design flow [11], supporting the modeling of reactive systems. We presented a basic mechanism
to implement SR models on heterogenous platforms that can be automated and integrated to the
design flow. A transformation step for Simulink models to SR models allows for automatic
implementation of mixed hardware/software designs from functional Simulink models.

In the future, we will integrate the presented mapping steps into a platform-based design
flow [11] enabling also automatic design space exploration of different implementations of
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given Simulink models, including a search for optimized hardware/software architectures and
prototype implementations on FPGA platforms.
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