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Abstract
The general goal of using multi agent networks for
complex problem solving is the maximisation of the
quality of the result to be obtained at minimum cost.
Both the granularity of the agent society and the com-
petence assigned to each individual agent determine
the information flow in the network. The great number
of parameters involved make it difficult for the des-
igner to optimally adapt the structure of the network to
a given class of tasks. In this paper we outline possible
network structures and present an approach for de-
termining a number of important statistical parameters
characterising the network at a relatively abstract
level. The abstraction enables a comparison of differ-
ent network structures. The methods for the analysis
may, however, be readily refined to evaluate a specific
problem. As an example we discuss the use of the
multiagent paradigm for structuring the cooperation of
sensor networks in robotics. Our analysis is supple-
mented by simulation results, which prove a superior-
ity of lateral over pure hierarchical coordination, par-
ticularly under severe environmental conditions, such
as agent failure.

Introduction

There are two main issues to be dealt with when organising
teams of interacting agents [Fox 81]. The first of these is-
sues is the structure of the team and the second issue is the
definition of a control mechanism  for coordinating the
members of the team. Criteria for selecting a structure and
a control mechanism for a given network with a specific
ensemble of sensor agents are both the complexity  (e.g. the
arrival rate of sensing tasks, the amount of knowledge nec-
essary for resolving the problem and for coordinating the a
priori knowledge and the resources) and the uncertainty (of
acquired data, of the behaviour of the sensor agents and of
the behaviour of the environment). The latter determines
the number of agents necessary for completing the task.

A. Team Structure
A structure is specified by defining capabilities of the team
members and by assigning responsibilities to them. This
implies that certain agents may specialise in particular tasks
such as sensing; others work on different problems (e.g.

pre- or postprocessing data, establishing communication
paths or coordinating subordinate agents).

This differentiation of capabilities and responsibilities,
however, is valid only for hierarchical structures, whereas
in the case of lateral  structures the agents may be locally
disparate but have equal rights and duties (as far as equal
duties are possible; for agents interacting with an external
environment this is not normally the case). In a simple
hierarchy , there exist a number of agents on a lower level,
which are coordinated by an agent on an upper level. The
agents on the lower level are all specialised to unique
classes of tasks or they may have universal capabilities. In
either case they are subordinated in responsibility to the
upper level agent.

In an extended hierarchy   (such as proposed in [Iyengar
92]) there is more than one level of coordinating agents.
Specialised agents may coexist with non-specialised agents
in one network. If there are non-specialised agents on the
same level, then there is a potential for these agents to co-
ordinate themselves by interchanging information directly
without any arbitration by a superior agent, i.e. within one
flat layer. Both hierarchical and flat structures may coexist
in one network: subtrees are structured laterally and organ-
ise their cooperation within their layer of the subtree auto-
nomously after receiving a certain task from their superior
agent (or an external mandator). Finally, a network in
which there are only lateral dependencies is called a coop-
erative . In such organizations there is no coordinating au-
thority and agents may be members of different collectives
working on different tasks. This structure of overlapping
cooperatives forms the basis of our work because it also
contains hierarchical structures as a subset of possible spec-
ialisations (through the assignment of limited capabilities/
competence to each individual agent).

B. Network Control Mechanism
The control mechanism defines how  and when agents
communicate (interact). From an interaction, a transfer of
control may result, which in turn is preceded by a selection
process. The mechanism for coordinating communication
between the agents may be either static, i.e. communication
channels and hence groups of agents for working on a cer-
tain task are fixed (e.g. [Rao 93]), or it may be dynamic.
The latter means that cooperation between agents is agreed
upon for a limited period of time and vanishes after com-



pletion of the task. During the selection process, an ex-
change of information with different agents may take place
and the decision for or against cooperating with a potential
partner may be taken after evaluating the latter’s offer in
terms of promised result quality, e.g. time of completion
and measurement precision.

A simple static control mechanism is the conservative
selection strategy: An agent which initiates a cooperation
for a certain class of tasks for the first time looks for suit-
able partners and (possibly randomly) selects one of them.
When the same task (or class of tasks) reappears, the agent
selects the same partner again. After some time, all classes
of tasks have caused each agent to “know” each partner for
every task class and the partnerships for cooperation are
fixed. With a dynamic strategy, current partnerships do not
affect future relations. The selection process is repeated
each time a cooperation becomes necessary. A simple dy-
namic strategy is random selection: Of all potential part-
ners for an imminent cooperation one is chosen at random.
If the momentary state of potential partners (e.g. workload)
may be inquired, this information may affect the decision.
An example for a strategy presupposing such knowledge is
shortest queue: The agent with the smallest workload (as
expressed by the length of its task queue) is awarded the
task. With dynamic strategies the effects of sensor failure
are less severe and the addition or removal of agents does
not necessitate a complete re-initialisation of the network.
Such dynamic strategies are obviously better suited for lat-
eral networks in which agents are less specialised than in
hierarchical networks where in certain situations there is
only a limited choice of partners. Note that the selection
strategy may have a drastic effect on the performance of
the network; we shall return to the issue of selecting a suit-
able control strategy for given network structures below.

Lateral and Dynamic Sensor Agent
Coordination

As data fusion methods become more powerful and wide-
spread, there is a natural tendency in the field of manufac-
turing and robotics to design interconnected sensor systems
with an ever increasing number of sensors contributing to
the solution of a given sensing task. It is the purpose of
these sensor networks to acquire information about the en-
vironment which is more comprehensive and more precise
than the contribution from any single sensor. The multitude
of problems to be dealt with turn this application of MAS
into a very attractive area of research.

Each of the sensors is faced with the problem of making
decisions based on its observation of a part of the environ-
ment and on partial a-priori information. Both the need for
transferring information to locally disparate sensors and the
need to associate their data require a mechanism for trans-
porting data of different structure at minimal costs. To
reduce the amount of data to be transferred, only those sen-
sors that are necessary for the solution of a specific sensing
task should be activated. This also makes it possible for the

rest to work in parallel on the solution of other tasks.
Consider a vision system with cameras of overlapping
fields of view (e.g. for distributed vehicle monitoring
[Carver 93]). The quality requirements of the task permit-
ting, it is obviously desirable not to focus all cameras to a
single specific object at one point in time, but to track dif-
ferent objects (possibly using the same sensor data). This is
particularly important when the operations required to re-
focus a sensor are costly (to model this, a “repair delay”
parameter was used in our simulations; see below).

A.  Autonomous Sensor Agents
It may be very useful to fuse information on different as-
pects of one object using a set S1 of sensors observing a
certain spatial area A1, while the information on a different
area A2 produced by the union of a subset of S1  and a sec-
ond set of sensors S2  is processed by other fusion entities.
This suggests another kind of tasks to be accomplished in
the network: the coordination of information processing en-
tities, i.e. agents that do not necessarily comprise a physical
sensor. There are three different interesting classes of the
mapping of physical sensors to sensor agents:

• The 1 → M mapping:  One physical sensor provides in-
formation for M more or less specialised agents. In the
field of Computer Vision the extreme view would be “one
agent per camera pixel;” realistically, teams of agents are
examined, which cooperate on the segmentation of regions
[Demazeau 94].

• The 1 → 1 mapping: Sensors are equipped with local
data (pre-)processing and communication facilities.

• The M → 1 mapping: This is the classical hierarchical
network in which M sensors are controlled by one superior
agent.

Clearly, a mix of the three is also possible, this would result
in an N → M mapping, where N agents at a lower level
interact with M agents at a higher level of a hierarchy. If a
large sensor system is structured according to these
schemes, the high number of nodes enforces a strategy for
sensor coordination to achieve a common goal with mini-
mal cost. This is the reason, therefore, that architectures
must be developed to structure such sensor systems syste-
matically, to organise them efficiently and to ensure a cer-
tain degree of fault tolerance by avoiding central con-
trollers or coordinators (as was demanded in [Iyengar 90]);
see [Henderson 84] for early work on the centralised ap-
proach. It will be shown below that a lateral reconfigurable
structure offers significant advantages over hierarchical or-
ganizations as the complexity of the network increases, typ-
ically as its grows beyond sizes of 15 sensor nodes.

B. Lateral Networks of Autonomous Sensor-Agents
We assume that the network of sensor agents receives a
sensing task from an external mandator. The sensor agents
then successively agree to form a collective. All of its
members are capable of observing the same object feature
(or complete object) and were assigned the competence to



do so. In principle, each sensor may become a member of
any conceivable collective, i.e. a member of whichever col-
lective promises the completion of a certain sensing task. It
is assumed that the network forms a grid of K  nodes. To es-
tablish contact between any two sensor agents of a collec-
tive and to coordinate their activities, a bidding scheme
similar to the Contract Net Protocol introduced in [Davis
83] is utilised (see also [Parunak 89, Ramamritham 89]). In
our context, the bidding scheme is applied to the lateral al-
location of sensor agents for object identification and local-
isation tasks. Not only does this scheme enable the dy-
namic allocation of sensor agents within an individual co-
operative, but it can also assign a sensor agent to different
cooperatives thus coordinating the activities of overlapping
cooperatives. The main benefits of contracting by negotia-
tion in this context are:

a) It enables a sensor network to flexibly adapt to inde-
terminate environmental and agent specific conditions gov-
erning its performance;

b) It also leads to the sequential coordination of only the
minimum amount of resources required to solve a task ac-
cording to given quality constraints.

c) The sensor agents not participating in the processing
of a task of a particular collective remain free to employ
their resources in other collectives.

d) Due to the lateral relations between sensor agents, sen-
sory results from multiple, possibly disparate sources can
be accumulated and integrated.

By contrast, in the hierarchical case a managing agent co-
ordinates only a subset of network capacity for a specific
set of tasks. Coordination is efficient only in such a subset
because otherwise too many intermediate nodes may be in-
volved, which inhibits tasks from spreading out over the
entire network. The relevance of this property increases as
the complexity and uncertainty in the network environment
grow.

In a concrete implementation and for simulation purp-
oses the status of an agent is described by values express-
ing its current workload (and sensory precision/variance).
The workload is the number of tasks the sensor has suc-
cessfully bidden for but not yet processed. Due to the gen-
erally sporadic time of arrival of individual tasks and the
indeterminate amount of time required for their processing,
this is an appropriate way of pragmatically measuring the
workload of a sensor agent. A task description is composed
of administrative information, the conditions constraining
the cooperative processing of the task as given by a manda-
tor and results generated by sensor agents which have al-
ready processed that task. The administrative information
consists of a unique task identifier and the communication
address of the mandator, both supplied by the agent. The
external constraints are composed of a value defining the
task processing time limit and the desired quality factors
for the object identification and localisation. To facilitate
contracting by negotiation among sensor agents, appropri-

ate message types must be defined. In our simulation envi-
ronment five message types are used:

• A request for bids-message describing a task to be pro-
cessed cooperatively. It initiates a negotiation and selection
phase.

• A bid-message by which an interested sensor agent of-
fers its capacity to process a task.

• An award -message by which an initiating sensor agent
transfers task information to the selected bidder.

• A request for interest-message by which a sensor agent
offers to mandators further processing of a newly arrived
task.

• A result-message by which a sensor agent currently allo-
cated to a given task returns the available results to a
mandator when either the quality requirements for this task
have been met or its time limit has expired.

The format of the message types underlying our  simulation
was specified so as to meet the requirements of a typical
system used in robotics to fuse uncertain geometric data
acquired from more than one sensor (see [Knoll 93] for
details).
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Fig. 1: Multiple agents form a team to process a single specific
task. Agent 1 was awarded the task originally, but turned out not
to be capable of meeting the requirements.

Fig. 1 shows how a collective of team size KS = 4 agents is
assembled if the first agent that was awarded the task turns
out to have been too optimistic, i..e. it cannot meet the re-
quirements. It is important to note that, although prefer-
ences for choosing particular collectives may exist, the
structure of the team is not set a priori.

Evaluating the Performance of Organization
Schemes and Selection Strategies

We now turn to the interesting question of how well the ar-
chitectures perform under several different conditions. The
performance of the agent organization is assessed by
steady-state simulation, which models an agent network as
a set of interconnected service centres equipped with
queueing facilities (fig. 2). Each agent is modelled as con-
sisting of two sequentially related service centres, i.e. its
local computation component or sensor component (sp)
and its coordination component (cp), which controls the in-
teraction between agents. In the context of sensor networks



agents without a physical sensor (coordinating agents) lack
the sensing component.
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Fig. 2: An MAS as a set of interconnected queues

A. Simulation Model
The sensor component of an agent is represented as an
M/M/1-queue, i.e. a service centre with exponentially dis-
tributed inter-arrival times of new tasks and exponentially
distributed service time. The coordination component is
represented as an M/D/1-queue, i.e. with exponentially dis-
tributed inter-arrival times and constant service time.
 For the purposes of our simulation, a task arriving at an
agent is first processed by its sensor component and then
by its coordination component. In particular, it is assumed
that an external mandator was already located for each
newly arriving task. The rate of newly arriving tasks (e.g.
due to object movement) λ i at a sensor agent i with i = 1,...,
K is the external arrival rate  and is assumed to be identical
for all agents. Thus, the total external arrival rate is given
by λ = λiK. A task processed by a sensor agent i  is routed to
a sensor agent j  of the corresponding collective of KS
agents (which are competent to work on the task) with
probability qij where i, j = 1,…,KS. The task exits the net-
work when it was successfully completed with probability

q qi ij
j

Ks

0
1

1= −
=
∑  with i  = 1, …, K

The probabilities  qij  are the network routing probabilities.
The tasks arriving at agent i from other agents j  (because of
contracting) are a fraction of the total rate of tasks γj  leav-
ing sensor agent j  with j = 1, …, KS. The rate of traffic
flowing into agent i is called the internal arrival rate  of
agent i  and is given by

γ j ji
j

K

q
s

=
∑

1

 with i  = 1, …, K

Due to the flow balance assumption for queueing systems
tasks must leave a sensor agent at the same rate at which
they arrive there. A fraction qij  of the set of tasks arriving
at agent i is directed from sensor agent i to sensor agent j

with the rate γiqij . Furthermore, a fraction qji  of tasks is di-
rected from sensor agent j  to sensor agent i  with the rate
γjqji . Consequently, the total traffic rate γi at a sensor agent
i is given by the network traffic equations  (see fig. 3):

γ λ γi i j ji
j

K

q i K
s

= + = …
=
∑

1

1, ,

The external arrival of tasks is assumed to be a stationary
Poisson process. However, the internal arrival rate is not
necessarily such a process: in the case of a dynamic selec-
tion strategy (such as selection by smallest workload) ar-
rival rates depend on system history. Moreover, the proba-
bility qji  of a task arriving from sensor agent j  at sensor
agent i is a function of the number of sensor agents which
have already processed this task. Further performance
evaluation is carried out by means of simulation because
the non-Poisson characteristics of the processes signifi-
cantly complicate an analytical approach.

i
•• ••

i

q1i1γ
λ

2i2 i
γ

i
γ

i0i qγ

i1i

i2i

iT
ra

ff
ic

 f
ro

m
 a

ll 
ot

he
r 

no
de

s 
of

 th
e 

co
lle

ct
iv

e

Arrival of 
external traffic

T
ra

ff
ic

 to
 a

ll 
ot

he
r 

no
de

s 
of

 th
e 

co
lle

ct
iv

e 
re

m
ai

ni
ng

 in
 th

e 
ne

tw
or

k

Traffic leaving the 
network

iKs KsiKs

qγ

qγ

qγ

qγ

qγ

Fig. 3: Task traffic at sensor agent i

The coordination component of an agent decides by means
of an evaluation function whether a task processed by the
sensor component can be successfully completed. As no
further assumptions on the nature of sensor data evaluation
were made, the process of KS agents transferring a given
task and accepting it for completion or rejecting it, is
viewed as a Bernoulli experiment. After each transfer the
task is accepted by the new agent with probability b and re-
jected with probability 1 – b. The probability of the kth

agent accepting the task for completion is then given by

P(k) = (1 – b)k–1b

The corresponding geometric probability distribution is
given by

F(k) = 1 – (1 – b)k

This function determines the probability qi0 of a task exit-
ing the network as successfully completed by sensor agent i
after passing k  agents including i (k ≥ 1) with E[k] = 1/b.
Additionally, qi0 is set to 1, should the set processing dead-
line have expired at the time a task arrives. Based on these
assumptions, hierarchical and lateral structures were com-
pared in performance. For appropriate performance com-
parison an extended hierarchy was used which consists of
two additional layers of sensor agents (manager-agents)
with the original grid of K  agents constituting the lowest



level. Each agent at the middle level coordinates exactly
one row of the lowest agent grid. The middle level agents
are coordinated by a single manager-agent at the top level
(fig. 4). At the middle and top level a task is processed only
by the coordination component of a manager-agent.
Specifically, a sensor agent at the middle level coordinates
only a subset of the collectives defined by its subordinate
agents. The main simulation output parameter of interest
and hence the measure of organization performance used
for comparison is the percentage V of tasks successfully
completed within a given deadline. The following variables
were among the simulation input parameters, which were
introduced to determine the behaviour of the modelled or-
ganization and, consequently, the value of V: The network
size  K defining the number of sensor agents in the network;
a relative processing deadline d within which tasks should
be completed; a failure probability f which determines
whether a sensor agent fails at a specific point in time; a
repair delay r after which failed sensor agents return into
the system and a completion  probability b  determining the
mean number of sensor agents required to successfully
complete a task.

: Neighborhood relations
: Control relations

Top level

Middle level

Lower level

Fig. 4: Hierarchical network used in the comparison

B. Simulation Results – Structures
As a measure of difficulty of the task, the coefficient b was
varied, a decrease in b resulting in an increase in E[k], the
mean number of sensor agents necessary to successfully
complete a task. The node failure probability f and repair
delay r  as well as the network size K are viewed as mea-
sures of complexity. Additionally, the coordination compo-
nent service time cp  was varied to represent an increasing
complexity in reaching coordination decisions as opposed
to the sensor component service time sp . For reasons of
simplicity the arrival rate λi at nodes i  was assumed to be
identical for all nodes and is called p.

Figs. I…II depict the effect of increasing the network
size K while the other parameters remain fixed, except for
the failure probability f , which was 0.01 and 0.05, respec-
tively. In addition, organization performance ( fl denotes a
lateral and hi a hierarchical organization) is shown for dif-
ferent degrees of task uncertainty b. In the case of low
failure probability f  (fig. I), the superiority of lateral over

hierarchical organization is evident because even with
small network sizes the lateral organization provides a
higher percentage V of tasks completed successfully within
the deadline d. This advantage increases with growing net-
work size K  and uncertainty b. Particularly, it is shown that
for a large network (K = 49) an increase in uncertainty
leads to significantly less degraded performance when
compared to the hierarchical organization. In this case, with
b decreased from 0.5 to 0.33 (and hence E[k ] increased
from 2 to 3) the lateral organization suffers from a perfor-
mance degradation of ca. 5% (as given by the parameter V),
whereas the hierarchical organization performance de-
grades by approximately 20% under identical conditions. A
further increase in complexity (high failure probability f =
0.05; fig. II) yields an important result: initially, i.e. with
small network sizes, the hierarchical organization exhibits a
better performance than the lateral organization. However,
as K  increases, a break-even point is reached, at which the
lateral organization performance exceeds that of the hierar-
chical organization. Moreover, as uncertainty increases,
this break-even point occurs at decreasing network sizes.
At first sight, this fact may look contradictory to our argu-
mentation; note, however, that the difference in perfor-
mance in the two organization types grows with increasing
difficulty as the network size increases.

The results displayed in figs. I…II are supported by figs.
III…IV, which show the organization performance as a
function of the repair delay r with high failure probability f
fixed at 0.05. The repair delay corresponds, for example, to
the time it takes to re-focus a sensor if the current focus
turns out to be inadequate. The probability f indicates how
frequently this happens. Initially, with a small network (K
= 9) and short repair delay, lateral organization is at an ad-
vantage over hierarchical organization. Soon, however,
with increasing repair delay, lateral organization perfor-
mance degrades significantly below hierarchical organiza-
tion performance (fig. III). This situation is completely dif-
ferent in the case of a large network (K= 49; fig. IV): Here,
even with very long repair delays r, the lateral organization
significantly outperforms the hierarchical organization. It is
also clearly visible that the difference in organization per-
formance increases with growing uncertainty. This sensitiv-
ity of the hierarchical organization to increased network
size is explained by the bottleneck effect affecting manag-
ing agents (see also [Knoll 93]).

A different measure of complexity is the amount of time
required by a coordination component to reach a coordina-
tion decision. It was considered for varying circumstances
and the corresponding results are displayed in fig. V. The
network size has no significant effect on lateral organiza-
tion performance, but very much on hierarchical organiza-
tion performance. Here, another interesting feature of hier-
archical organization performance was encountered: As cp
is increased (and sp  correspondingly decreased), lateral or-
ganization performance remains relatively stable, rising
from nearly 100% to a full 100% of successfully completed
tasks. This is largely due to the growing influence of the
constant service time cp and, correspondingly, the dimin-



ishing influence of the exponentially distributed service
time sp . This is a relevant setting for networks that consist
of a large number of coordinators (that do not have a sens-
ing component). However, besides being sensitive to in-
creased network size due to bottleneck potential, hierarchi-
cal organization performance rises sharply with increased
service time cp . It reaches an optimum in the vicinity of the
lateral organization performance, and declines just about as
sharply as it has risen before reaching the optimum. The re-
sults displayed in fig. V suggest that, in contrast to the ro-
bustness of lateral organization performance, a hierarchical
organization is highly sensitive to the relation of sp  to cp
service times. Thus, a hierarchical organization is only jus-
tifiable if this relation results in optimal or near-optimal
performance. It seems to be increasingly difficult to estab-
lish the according range of service time values guarantee-
ing such performance with increasing network sizes. The
right-hand sides of the performance plots of the hierarchi-
cal organization are again explained by the bottleneck
characteristic of managing agents which is directly ampli-
fied by increasing cp. The left hand-sides, however, are not
so easy to explain: With decreasing cp service times, tasks
may flow increasingly faster through the hierarchy, leading
to saturation effects in the collective subsets coordinated by
the middle level managers. This presumption is supported
by fig. VI, which displays the mean task population of hi-
erarchical organizations with cp service times correspond-
ing to those shown in fig. V. This saturation effect within
the collective subsets diminishes with increasing service
time cp until the performance reaches the optimum, and is
afterwards converted to the bottleneck effect mentioned
above. The performance increase occurring with increasing
service time cp is explained by the fact that the traffic origi-
nally (with very low cp) leading to neighbourhood satura-
tion is increasingly delayed at the corresponding middle
level manager. This increase in delay has an advantageous
effect on hierarchical organization performance until it
reaches the point where the bottleneck effect induced by
that delay outweighs this advantage.

C. Simulation Results –  Selection Strategies
As mentioned above, besides the network structure the
other important distinguishing feature determining the
throughput is the selection strategy by which mandating
agents choose their cooperation partner. Three different
such strategies were compared: conservative cnsvt , random
rndm and shortest queue shtq. A further parameter m was
introduced to model communication delays inherent to real
world communication subsystems and the time it takes to
transmit request-for-bids, bidding and award messages. A
second (even more important) additional parameter Δ rep-
resents updating intervals if the current load information of
individual agents is sampled by the communication system
only at specific points in time. Figs. VII a…c show the
absolute task throughput X for the three strategies as a
function of the node arrival rate p with the paramter d
(admissible deadline) for a system with negligible com-
munication delay m and continuously available load infor-

mation (Δ = 0). The conservative strategy, though simple
and requiring only minimum overhead, performs particu-
larly badly in the medium load range p ≥ 0.4. Even very
late deadlines (d = 15.0) cannot be kept because the net-
work is already in some saturation. The random strategy
performs slightly better but cannot compete with the per-
formance of selection by shortest queue in this setting. In
the case of shtq  the rate of successfully accomplished tasks
is roughly equal to the rate of incoming tasks λ = p.K as in-
dicated by the dashed line in fig. VIIc. This implies that the
mean delay time in the agent queues vanishes, i.e. this rep-
resents the theoretical maximum.

Fig. VIII shows the effects of a finite updating interval
Δ > 0. The status information the initiator has available on
the load of its potential cooperation partners is on average
Δ/2 time intervals old. Selections are always based on
obsolete information. The network designer must therefore
know how old this information may become before a sig-
nificant degradation of throughput is observed. In Fig. VIII
the percentage V is shown depending on Δ and the size K.
It is surprising at the first glance and important to note that
for large values of Δ the performance of shtq falls below
that of rndm.  The use of a load-depending strategy is no
longer justifiable if it must be based on unreliable informa-
tion. The comparison between shtq  and rndm in further
simulations revealed that the sensitivity of output parame-
ters to a large V decreases as the load increases so that it
may still be advantageous to use shtq . This, however, can
only be studied in detail when the crucial parameters are
known for a given application.

Conclusions

The subject of a statistical analysis of agent coordination
and control may currently appear esoteric, but it will soon
turn out to be quite relevant as the complexity of these
systems continues to increase and the prevailing ad hoc
approaches will no longer provide adequate solutions. This
does not imply, however, that systems with a smaller num-
ber of agents, such as sensor systems on current mobile
robots, could not profit from a well-structured organization
and coordination of their agent system. It was outlined that
lateral control in distributed sensor networks is feasible
through a corresponding cooperation protocol motivated by
considering models from organization theory. Furthermore,
simulation studies have revealed not only a general quanti-
tative superiority of lateral over pure hierarchical control
structures, but also an increased sensitivity of hierarchical
organizations to growing complexity and uncertainty when
compared to lateral organizations. However, a clear dist-
inction in performance between lateral and hierarchical
organization will not be possible without detailed and com-
prehensive experimenting by simulation and real multi-
agent systems. In fact, the simulation results presented here
indicate that issues of complexity and uncertainty are
closely coupled and can not be studied in isolation.
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Fig. I. Effect of network size K on V  with varying
uncertainty (completion probability) b . Low failure
probability f  and long repair delay r.
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Fig. II. Effect of network size K  on V with varying
uncertainty (completion probability) b . High failure
probability f  and long repair delay r.
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Fig. III. Effect of repair delay r   (“re-focus delay”) on V
with varying uncertainty (completion probability) b. High
failure probability f and small network size K .
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Fig. IV. Effect of repair delay r  on V  with varying
uncertainty (completion probability) b . High failure
probability f  and large network size K.
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Conservative strategy. Dashed line: Max. poss. throughput
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Fig. VIIb. Absolute number of successfully processed tasks.
Random Selection strategy.
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Fig. VIIc. Absolute number of successfully processed tasks.
Selection by shortest queue
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