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Abstract

Background Transferring non-trivial human manipulation skills to robot
systems is a challenging task. There have been a number of attempts to design
research systems for skill transfer, but the level of the complexity of the actual
skills transferable to the robot was rather limited, and delicate operations
requiring a high dexterity and long action sequences with many sub-operations
were impossible to transfer.

Methods A novel approach to human–machine skill transfer for multi-arm
robot systems is presented. The methodology capitalizes on the metaphor of
‘scaffolded learning’, which has gained widespread acceptance in psychology.
The main idea is to formalize the superior knowledge of a teacher in a certain
way to generate support for a trainee. In our case, the scaffolding is constituted
by abstract patterns, which facilitate the structuring and segmentation of
information during ‘learning by demonstration’. The actual skill generalization
is then based on simulating fluid dynamics.

Results The approach has been successfully evaluated in the medical domain
for the delicate task of automated knot-tying for suturing with standard
surgical instruments and a realistic minimally invasive robotic surgery system.
Copyright © 2012 John Wiley & Sons, Ltd.
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Introduction

Medical robots are well on their way to becoming as important to the surgical
process as industrial robots have become to manufacturing over the last
30 years. The surgeon is enabled by them to overcome several major barriers
and limitations; the use of robotic systems will eventually lead to the successful
performance of surgical procedures that would not have otherwise been feasi-
ble. The following are included by such barriers: (1) scaling of motion and
precise manipulability [e.g. intrauterine fetal operations (1)], (2) access to
hard to reach structures [e.g. by snake-like instruments for the emerging area
of natural orifice transluminal endoscopic surgery (2)], (3) distance and team-
work during remote operations and (4) dexterity and speed by automated
(sub-) sequences, which might enhance the surgeon’s skills.

The latter issue of demonstrating the viability of selectively automated sur-
gery for advanced interventional procedures is addressed by the overarching
goal of the research work. From the surgeons’ point of view,they will be
allowed to move up in the ‘hierarchy of controllers’ by more ‘intelligence’
and adaptivity on the part of the robot. They will be freed by this development
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from performing tiring, tedious, low-level manual opera-
tions. However, despite the obvious advantages of
automation, the surgeons will still remain in complete
control – he or she will always be in command of the robot
system. Clearly, this kind of situated behaviour intelli-
gence can only be achieved when the robot system has
access to all of the relevant parameters and background
information necessary to perform an action partially or
fully automatically. This is true both for (1) the relation
between the situs and the robot (e.g. movement
sequences and forces to be applied, expected results after
a manipulation step and general knowledge about the
organ being treated) and (2) the relation between the
surgeon and the robot (e.g. what are the intentions of
the surgeons, how do they express at what level of granu-
larity they want to interact with the robot system and how
can their hand movements be translated into movements
of the instruments and the arms). In other words,
advanced robots will only be realized if a new generation
of surgical robots becomes an integral part of the
‘information acquisition ! planning ! navigation/
execution’ loop with on-line access to all relevant
information.

Moreover, these robots must be highly flexible with
respect to the set of tasks they can perform, and they must
be capable of continuously adapting to specific tasks as
well as environmental conditions. The most complex of
these operations is the task of knot-tying within the sutur-
ing process, which is the reason why we chose it to be our
reference task (see the following text). Before detailing
the methodological approach for the skill transfer in more
detail, the concept of selective automation will be
introduced. The key concept here is to break down a
complex process into a sequence of tasks that can be per-
formed with robots – either under classical master–slave
control, partially autonomously or fully autonomously.
With master–slave control, a given task is performed
under direct control of the operator, that is, the robots
follow the commands of the operator in a 1:1 fashion,
but the operator has to make every decision on his own
– down to the level of individual movements of robot
segments. At the other extreme, in the case of full
autonomy, a high-level command is issued by the
operator, and how to best perform the task at hand is
then autonomously decided by the robot system
by using the information it has available about the envi-
ronment – without any further intervention on the part
of the operator; this is the classical ‘sense ! plan ! act’
loop. With partial autonomy, the operator is potentially
involved in every aspect of the task execution. In this
scenario, interference and re-instruction of the robot are
possible at any time. All parameters can be set at the
operator’s discretion (e.g. the forces and velocities to be
used and the starting points for movements).

Let it be imagined that the surgeon wants to tie a surgi-
cal knot (our reference task), which would be defined as
one task. Then, in the full autonomous mode, it would
suffice to simply tell the robot where to tie the knot, and
all the rest would be left to the system to decide and

execute. In partial autonomous mode, however, the knot
would still be tied by the surgeon by moving the robots
with joysticks, but certain movements would automati-
cally be executed by the system (e.g. pulling the surgical
thread after the knot structure was set up to achieve the
right strain), and the surgeon would be prevented from
performing movements into forbidden areas or with
forces that are too strong.

In the next section, the methodology we have devel-
oped will be discussed for the whole chain of demonstrat-
ing selective automation for surgical interventions, in
particular, the methods for task execution and skill trans-
fer. We will start with a description of the task we were
using as our benchmark example. There are quite a
number of possible elementary tasks in surgery that
would lend themselves to demonstrating the power of
our approach, including cutting, holding, grasping and
pulling out, and so on. However, the most complex in
terms of required dexterity, precision, involvement of
multiple manipulators, variability of desired outcomes as
well as parameters to be measured and to be adapted is
probably the task of tying a knot within the suturing
process. Because of its complexity, this was chosen as
our model task – if we can handle this specific task, it is
expected to also handle all the other tasks that are
normally needed in a typical operation process.

In this context, the term ‘elementary’ refers to tasks
that comprise a separable and complete individual
operation (e.g. one full knot). These individual sub-
operations can be ‘chained’ together with other operations
of the same kind (i.e. a sequence of knots forming a
suture) or of a different kind (e.g. three cuts followed by
a resection). It is noted that this task may also serve as
an example of programming by demonstration (PbD) in
other fields of robotics.

The principle of knot-tying in surgery is illustrated in
the sequence of pictures in Figure 1, which shows the
standard, textbook way of tying a common knot: first,
the thread is grasped by the surgeon with his left hand
(A), holding a pair of scissors in his right hand. Then,
the thread is wound around the joint of the scissors a
couple of times and grasps the other end of the thread
with the scissors (B). Finally, he retracts the scissors (C).
In a second (optional) step another single-winding knot
is tied onto the first one. We observe that (1) this proce-
dure is optimized for two effectors (i.e., the surgeon’s
hands) and that (2) the thread tension varies consid-
erably during the procedure. Moreover, surgeons develop
a delicate feeling for the forces they need to exert in all
phases of this procedure.

So far, there has been only little research performed on
the topic of automating the task of a surgical knot or other
complex medical procedures of similar manipulation
structure. A generalized version of a learned knot has
been proposed by Kang in his PhD thesis (5). In his
project, the task is performed with special knot-tying
instruments (we are using general multi-purpose instru-
ments). Robotic setups for knot-tying were proposed by
Hynes et al. (6) and Wakamatsu et al. (7), but the task
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was not evaluated under realistic circumstances (i.e.
small-scale knot performed under the restrictions of
trocar kinematics and with original suture material).
There is also some research on analysing the knot-tying
task itself, focusing rather on surgical evaluation instead
of automation (8,9).

The goal of the work described in the sequel is to show
how a procedure of this complexity can be transferred to a
robot system with minimal effort for an ‘end user’ and
how this system can then execute the individual steps of
the procedure.

Materials and methods

First, the telepresent system that was used for the experi-
ments will be briefly described. For more details, we refer
to (36). The slave manipulator of the system consists of
four robots (cf. Figure 2). The robots can either be
equipped with an endoscopic stereo camera or with mini-
mally invasive instruments (3) on the basis of the ‘daVinci’
surgical instruments by Intuitive Surgical, Inc. (1266 Kifer
Road, Building 101, Sunnyvale, CA). Optionally, one of
the robots can be equipped with a stereoscopic endoscope
instead of an instrument. The master console consists of two
haptic displays [‘Phantom’ by Sensable Devices (Sensable,
181 Ballardvale Street, Wilmington, MA)] and a three-
dimensional (3D) display, which is based on two polarized
LCD screens and a semi-reflective mirror. As an additional
input modality, foot switches are placed on the foot well of
the console. With the switches, it is possible to hand over
the control to different robotic arms. The so-called trocar
kinematics is implemented by the control software of
the system, that is, all instruments will move about a
fixed fulcrum after insertion into the body or a ribcage
mockup (4). In addition, translational forces applied to the
instruments are measured by strain gauge sensors and are
fed back to the operator through the haptic devices.

As a preview to the more detailed descriptions of experi-
mental procedures described in the results section, the indi-
vidual steps of the knot-tying procedure as performed by
the system in automatic mode with three instruments is
shown in Figure 3. After piercing the needle into the
tissue by a human assistant, the needle with the thread is
pulled out of the tissue with the left gripper (1) and wound
about the right gripper (2). During this procedure, the loose

end of the thread is strained by a third gripper, which oper-
ates force controlled. Now, the right gripper will be moved
toward the loose end (3). To prevent damage to the thread,
this movement has to be imitated by the left gripper. Finally,
the end of the thread is pulled through the loop around the
right gripper to complete the knot (4).

Skill transfer

A common method for transferring human skills to a robot
is ‘PbD’. A good, more general overview that also empha-
sizes the importance of robot learning by demonstration,
observation and imitation is given in a special issue of
the transactions on system, man and cybernetics – part B
(31). In this context, a PbD framework that allows for
the extraction of relevant features of a given task and its
generalization in different contexts for a humanoid robot
is presented by Calinon et al. (32). A probability estima-
tion is utilized to evaluate the relevance of the detected

Figure 2. Hardware setup: four ceiling-mounted robots with
surgical instruments, either a stereoscopic endoscope or differ-
ent surgical microgrippers. The minimally invasive instruments
are augmented with force sensors. In-output is accomplished at
a master console, comprising two force feedback devices

A B C

Figure 1. Manual knot-tying task: subsequent steps of forming a surgical knot by a surgeon with the help of classical surgical
instruments

386 A. Knoll et al.

Copyright © 2012 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2012; 8: 384–397.
DOI: 10.1002/rcs



feature and a Gaussian mixture model to apply the task
to a new environment. An architecture for PbD in (35)
has been proposed by Zöllner et al. User demonstra-
tions are decomposed into meaningful primitives,
which are called ‘elementary operation’ in their work.
A priori knowledge is included by means of defining
a parameter space for each object. The generation of
a hierarchy of subtasks ending up at basic primitives
is induced by each action. Subtasks are arranged in a
precedence graph, which is derived from previous
demonstrations of the user. To decide whether a
certain action can be applied, sets of pre-conditions
and post-conditions are defined for each action. Given
such a pre-condition, the corresponding precedence
graph is serialized by the system, yielding miscella-
neous alternatives for an execution plan.

In the following section, a special type of PbD is
presented to transfer the manual skills of a surgeon to
the robot system. First, the trajectories commanded by
human operators with all geometric parameters, force
sensor readings and effector commands were recorded.
Then, this recorded procedure must be broken down into
individual elementary actions. The latter are then trans-
formed into chainable action primitives (cf. Figure 4).
The following terms are defined: A task is a certain,
well-defined description of how to solve a problem. A
demonstration is an instance of this task performed by a
human user. A skill is the instantiation of a task on a
robotic system. Finally, primitives are meaningful, non-
overlapping subsequences of a skill.

In this terminology, to derive a robotic skill from user
demonstrations, we proceed as follows:

1. Smoothing and event detection to find starting points of
movement primitives.

2. Decomposition of the complete trajectory into mean-
ingful primitives.

3. Feature extraction by means of template matching.
4. Generalization and task instantiation of skills by means

of viscous flow simulation.

These steps will be detailed in the following
subsections.

Smoothing and event detection
To observe knot-tying trajectories, a human surgeon
worked with our experimental system in teleoperation
mode, and performed the knot procedure using two

1 2

43

Figure 3. Automatic tying of a knot: four phases of an automatic tying procedure performed with three instruments

Figure 4. Movement primitives: each trajectory can be decom-
posed into a sequence of temporally non-overlapping primitives
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hands. While the surgeon was tying the knot, the move-
ments of the Phantom devices as well as other parameters
such as forces were recorded, while the movements were
directly executed by the two robot arms with their
instruments.

The recordings typically started in a situation as shown
in Figure 3(1), that is, the needle was anchored to the
tissue. The results of these experiments were stored in a
repository with numerous recordings of the trajectories
of the left and right hand movements. It is shown in
Figure 5 that the data acquired from user demonstrations
were quite noisy. Moreover, the tremor of the surgeon
(the subject performing the motion) is clearly shown.
Smoothing this input data can be of some help, but
information that is relevant in a given situation will also
be typically deleted by naïve linear low pass filtering.
For example, the correct picking up of the thread is
represented by the ‘edge’ of the trajectory reaching out
far to the left in Figure 5. If this edge peak were changed
(even if the amplitude was reduced by just a millimetre),
the thread would be missed by the robot performing the
pickup operation later.

Therefore, before cleaning the data, the parts of the
recorded data that are essential for the definition of the
action primitives and those parts that can be smoothed
out because they merely represent noise under the given
task context must be extracted. This ‘intelligent’ smooth-
ing has been implemented by spline approximation, with
the constituting parts of the trajectory (such as the pickup
edge) being selected as breakpoints.

To identify these breakpoints, however, additional cues
are needed – this cannot be performed by looking at the
spatial coordinates of the trajectory alone. Although in
principle a number of additional modalities can be consid-
ered to provide more information (e.g. effector torque,
optical analysis of distance between tissue and instrument
tip and oral comments by the surgeon performing the
operation), we mainly rely on the temporal dependencies
within the trajectory and the state of the gripper. This
methodology is based on research on the psychology of
user interfaces: if a user moves the mouse pointer across
the screen too fast, it is not possible to perform precise

interactions with the user interface because the focus
window of the eye is unable to achieve full focus and
concentrate on the task (10). Furthermore, this observa-
tion is supported by Accot–Zhai’s steering law (11), an
enhancement of the well-known Fitts’ law (12) for
movements on constricted trajectories. In its original
form, it is expressed as

TC ¼ aþ b
Z
C

ds
W sð Þ (1)

where a and b are constants depending on the nature of
the experiment and W(s) is the width of the curved path
C, at a certain location s. For clarification, this can be
differentiated and rearranged to yield

ds
dT

¼ W sð Þ
b

(2)

As can be seen from equation (2), the speed of the user
moving on the trajectory is proportional to the width of
the path. In other words, if the subject has to navigate
on a narrowly constricted trajectory (i.e. performing a
precise movement), it will take more time than an uncon-
fined environment.

This is exactly the phenomenon on which we have
based our algorithm to define interaction events without
loss of critical features.

Decomposition
After smoothing the trajectory and transforming it into
a spline representation, the next step is to decompose
it into meaningful primitives exploiting the detected
events as delimiters. As mentioned earlier, the decom-
position of manipulation tasks into sensorimotor
actions or motion primitives is a standard methodology
to reduce complexity (13,14).

However, in our case, the selection of meaningful
primitives is quite intricate because demonstrations are
not normalized. Different demonstrations (by different
humans) may be skewed, translated or rotated, and primi-
tives may appear with totally different parameterizations.
Therefore, procedures intended for normalized data
cannot be used [e.g. (15,16)].

Instead, a special kind of a situated dialogue is utilized,
where skills have to be demonstrated within the working
domain and without requiring extrinsic knowledge.
Systems based on situated dialogues between humans
and machines have already proven effective in learning
tasks (17,18). In our case, human–machine interaction is
divided into two consecutive components: (1) an abstract
description of the task and (2) its refinement through
specific demonstrations. This strategy can be understood
as a dialogue structure (Figure 7). A situated dialogue
between a teacher and a trainee for the case of surgical
knot-tying is shown in the left part of Figure 7. The first
step is giving an abstract description of the very task that
will be taught. This step is not situated because it is inde-
pendent of the actual working environment. It can better
be seen as a conceptual explanation, for example, like a
person describing a procedure in general terms over the

Figure 5. Knot-tying trajectory: visualization of a typical
recorded trajectory of the left gripper during knot-tying, as
commanded by a human surgeon
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telephone. Consequently, a skill will not be exclusively
performed by the trainee on the basis of this description.
The description rather serves as a pattern to draw atten-
tion to certain features and to distinguish which parts of
the succeeding demonstrations will be important and
which ones can be neglected. This is an important step
towards learning based on a small number of user demon-
strations (ideally just one). After giving this abstract
description, the skill is concretized by the teacher by
presenting instances in the application environment.
Those will be used by the trainee to build an execution
plan from the abstract description. This methodology is
a specialty of situated learning and is called ‘scaffolding’,
which traces back to the work of Vygotsky in the
1930s (19). The term scaffolding was first coined by Wood

(20) and refers to the teacher giving assistance with
respect to certain aspects of a task, which are beyond
the capability of the trainee.

In our architecture, scaffolding is used to structure
complex tasks by means of abstract patterns. This
information cannot be derived by the system exclusively
on the basis of user demonstrations, but it has to be
communicated verbally (or in another modality) before
the skill can be learned.

For this scaffolded learning scheme, the user has to
specify a generalized version of the skill by means of a
so-called task template (see Figure 8). No specific infor-
mation (such as geometric features or forces) about the
skill is contained but a sequence of basic actions is
constituted by a task template . These actions are called
tasklets, which define the atoms of the scaffolding
scheme. Each tasklet starts and ends with a certain event
(e.g. the turning point of the trajectory). In the previous
section, how these events can be automatically detected
in the demonstrated trajectories has been shown.

Once all of these events are identified, the optimal
correspondence between the observed sequence of events
and the task’s sequence of events (as constituted by the
task template) must be elaborated by pattern matching.
After that procedure, the user’s demonstration of a skill
can be decomposed into a non-overlapping sequence of
concrete primitives (Figure 4), which correspond to the
abstract tasklets of the task. Only the relevant features
of the primitives (defined in the corresponding tasklet,
such as the start and end points) will be stored to gener-
ate a generic description of the skill, which can then be
instantiated in a new environment [see (21)].

For our specific task of knot-tying, the following tasklets
were pre-defined: linear movement, force controlled
movement, two-dimensional (2D) movement and mutu-
ally synchronized movement of the two arms.

As mentioned earlier, tasklets do not contain any
specific information such as starting points and absolute
forces. These are provided by processing the information
found in the concrete demonstrations. For example, it is
stated only by the definition of the tasklet “2D movement”
that a movement, which can be embedded into a 2D plane,
can be found at that point in the task template. No geomet-
ric information about what these movements actually look
like (for the 2D tasklet it could be a simple line but also a
spiral winding motion in the plane) is contained by the
tasklets. This information is only extracted when the task-
let is matched up with the corresponding primitive of the
user demonstration. Clearly, any given trajectory can be
decomposed into a sequence of 2D sections, which are
instantiations of re-defined tasklets: every trajectory can
be broken down into lines. However, the primitives are
not desired to become too simple, that is, theymust at least
represent recurring actions with clearly discernible pre-
conditions and post-conditions.

An important observation in this context is that the
coarse movements of the distal extremities of humans
(fingers, hands, feet) are typically constrained to two
dimensions, even when they produce the most complex

Figure 6. Spline approximation: Significant events are selected
from the recorded trajectory (cones on left image). These points
serve as breakpoints for a spline approximation of the trajectory
(right image). Note that human tremor is suppressed, while all
significant edges are preserved
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behaviours: playing the piano or the guitar on a 2D
keyboard or fingerboard and walking or even stair climb-
ing can be normalized to two dimensions. These observa-
tions are also supported by recent research on learning
sensorimotor behaviours (22,23). Therefore, the trajectory
of any skill S is represented in the following way:

S ¼ X0∪T1P1∪X1∪T2P2∪ . . . ∪TnPn∪Xn ¼ ∪
n

i¼1
TiPi (3)

Pi ¼ p0∘ . . .∘pn�1∘ei (4)

Pi∩Pj ¼ ∅ 8i; j 2 n; i 6¼ j (5)

where Pi is a 2D primitive, which implements a tasklet and
is placed at its correct position by a rigid transformation
Ti. Between the primitives, chunk sections Xi may occur,
which have no relevance for the task and can be replaced
by a direct connection of consecutive primitives.

To find a decomposition that is compliant with the pre-
defined task, we have to check whether the skill is an
instance of the corresponding task. This means we need
to check whether the skill can be decomposed into a series
of primitives complying with the sequence of tasklets.
Equation (4) means that each primitive is a sequence of
points delimited by a designated point pn, at which a
significant event (ei) occurs (i.e. pn= ei). The test of
whether primitives are instances of a certain task is
performed by examining the events mentioned earlier.
Besides using the events for resampling and smoothing
the trajectory (with a high resolution in the cones of
Figure 6), the event points are also important cues for
selecting significant primitives. As initially mentioned,
more events are detected in the concrete trajectory than
are defined in the abstract task in the first scaffolding step
(see Figure 10). Therefore, it is not possible to perform an

unsupervised decomposition of the skill’s trajectory
exclusively on the basis of events – the information
provided in the first scaffolding step is instrumental in
decomposing the trajectory. For example, in the case of
the knot-tying task, the first significant event is a
movement cluster, depicted by a green circle in Figure 10.
Therefore, this primitive is delimited by the beginning of
the trajectory on the one side and by the first movement
cluster event we come across when analysing the trajec-
tory from left to right on the time line (cf. Figures 9 and
10). All other events occurring before this movement
cluster (which we expected from the definition of the task
template in the first step of the scaffolding) will be
skipped. Let it be noted that the primitive starts at the
beginning of the demonstration, although there is a time
lag at the beginning of the first track in Figure 9. These
pauses will be inserted in a subsequent step: after the
instantiation of the tasklets, they are synchronized to be
in line with the temporal specification of the task.

This procedure is repeated until all detected events are
processed. This part of the algorithm is depicted in the
last row of Figure 13. If the algorithm is unable to find

Situated Dialogue

„I will show you
how to tie a surgical knot“

Initialize new skill:
„Surgical knot“

„What is a surgical knot?“

Sequence of actions:

1. pull out thread with
right hand,

2. open gripper,
3. appropriately place

left hand,
4. start winding…

„How do I make a surgical knot?“

Teacher demonstrates
the surgical knot 
(possibly several times)

Extract specific information
(geometry, time, force …) from

demonstrations

Symbolic Representation

Construct abstractabstract patternpattern for
surgical knot

Right hand:

a) Linear movement until
gripper closes

b) 2D primitive until turning
point reached

c) Linear movement until max.
force reached

Trainee:Teacher:

Figure 7. Scaffolding scheme as a situated dialogue between user and machine

Skill
(Demonstration)

Primitive+ Tasklet+

Task template
(abstract pattern)

constructiondecomposition

generalization

application

Reality Model

Figure 8. Terminology of our scaffolding skill transfer framework
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instantiations of all tasklets in the task template, the
corresponding trajectory is rejected for not being a valid
demonstration of the skill. Otherwise, the significant
features (such as forces or the geometry of the trajectory)
will be extracted from the detected primitives (¼̂ instantia-

tions of tasklets) in the next step.

Feature extraction
An applicable solution is produced by the learning
procedure earlier, even after one single demonstration
(‘one-shot learning’). Once the primitives are derived
from the trajectory and assigned to the corresponding
tasklets defined in the first scaffolding step, the relevant
information of the primitives can be extracted and stored
in the knowledge base of the system.

This knowledge base consists of a general and a specific
part. Information about the execution of primitives, which
can be utilized in every task, is contained by the general
part. For example, a trajectory generator is comprised by
the general knowledge base to implement the straight line
movements of linear motion primitives. Another example
is the fluid simulation for the instantiation of 2D primi-
tives (see the following text). This part of the knowledge
base is fixed and will not be changed by user interactions.
The only situation that requires a change of the general
knowledge base is the addition of new tasklets. During
normal operation, only the task-specific part of the
knowledge base can be changed by the user. This com-
prises the definition of the task (in our case, the
knot-tying task depicted in Figure 9) is comprised by
this as well as extracted information from the demonstra-
tions, which is necessary to carry out the task in real-
world environments. The corresponding task-dependent
information is extracted via selective data reduction.
There is a special method of extracting data from
primitives for each type of tasklet.

Two-dimensional movement. So far, the primitives, which
are instantiations of this tasklet, are simply sequences

of points in 3D space. As mentioned earlier, they are inter-
polation points of a spline representation of the trajectory.
The central part of this approach is a plane-
fitting function, which calculates an optimal plane for a
given set of 3D points (i.e. the primitive). Optimality is
defined by means of the minimum least squares method.
The regression problem is stated as follows:

2Dzi ¼ axi þ byi þ c;

di ¼ zi � 2Dzi; min
Xn
i¼0

d2i

 ! (6)

where (xi, yi, zi) is the ith point of the corresponding
primitive. Let it be noted that we are not using normal
distances here, but directional distances, which are easier
to obtain and provide reasonable results in our application
domain.

The minimization is performed by linear regression.
The return values of the function are the parameters of
the planes a, b and c and the sum of squared distances.
If the mean squared error exceeds a certain threshold
(i.e. the points do not fit well on a 2D plane), the whole
demonstration will be rejected for not being an instance
of the pre-defined task. Otherwise, the plane parameters
and the interpolation points of the spline are stored in
the task-specific knowledge base for later instantiation of
the task.

Linear movement. If a linear motion primitive was
detected in the demonstration, it suffices to store the start
and end point of the underlying trajectory. All other
points in between can be omitted.
Force-controlled movement. As for the linear motion, the
start and end point of the primitive is stored in the
task-specific knowledge base. In addition, the maximum
force vector is stored during the movement. This will be
used later to control the instantiation of this tasklet.

Synchronized movement. As mentioned earlier, the
synchronized movement tasklet can only exist if at least

Figure 10. Original trajectory (left) and automatically detected events (right)

lin

F

F

1:

2:

3:

Timeline:

2D 2D

Sync lin

lin

F lin
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lin

Figure 9. Knot-tying task as a sequence of tasklets. (lin, linear motion, 2D, two-dimensional primitive, F, force primitive)
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two independent trajectories have been recorded (e.g. left
and right hand). Its purpose is to synchronize the move-
ment section of one trajectory with the 2D movement
occurring in another one [e.g. loop generation in
Figure 3(2)]. The points of the corresponding 2D
primitive of one trajectory are mapped onto the points
of the synchronized movement primitive of another. The
following transformation has been applied to describe
this mapping:

x1⋯ xn
y1⋯ yn
z1⋯ zn
1⋯ 1

0
BB@

1
CCA ¼ A

2Dx1⋯ 2D xn
2Dy1⋯ 2D yn
2Dz1⋯ 2D zn
1⋯ 1

0
BB@

1
CCA (7)

To calculate transformation A, each point in the
trajectory of the referenced 2D primitive has to corre-
spond to a point in the synchronized movement primitive.
Therefore, the number of points n used for this procedure
has to match for both primitives. Finding the transfor-
mation is formulated as the following singular value
decomposition problem [cf. (24)]:

C ¼ 1
n

Xn
i¼1

!pi � p�
� � !2Dpi � 2Dp

�� �T
!svd C ¼ USVT (8)

where�p ¼ 1
n

Xn
i¼1

!
pi; 2Dp
�¼ 1

n

Xn
i¼1

!2Dpi (9)

!pi is the ith point of the currently processed primitive,

whereas
!2Dpi is the ith point of the 2D primitive it is

synchronized with. Let it be noted that both primitives
are stored as splines, and therefore, both can be
resampled with an equal number of n points. The eigenva-
lues s1, s2 and s3 of matrix CTC are contained by diagonal
of S. The eigenvectors of CCT and CTC are contained by
U and V, respectively. According to (24), the scaling factor

f, the 2D rotation matrix R and the translation vector
!
t,

which can be used to map 2Dpi onto pi, can be determined:

f ¼ s1 þ s2 � s3
s2P

where s2P

¼ 1
n

Xn
i¼1

!2Dpi � 2Dp
�� �2

(10)

R ¼ UVT (11)

!
t ¼ �pi � f �R2Dpi

�
(12)

Let it be noted that the sign of s3 depends on the
determinant of C, when calculating f (in addition, the sign
of the last row in U has to be adapted accordingly, when
calculating R).

Generalization and task instantiation
Up to this point on our way from scaffolding to task
instantiation, spline representations of the tasklets have
been derived from user demonstrations. This is sufficient

for reproducing a certain skill from equation (3) if all Ti
are known. However, the direct application of splines may
have some major shortcomings. The most important of
these is that any shifting of the breakpoints, which may be-
come necessary when adapting to a new environment, can
lead to poor trajectories (25). Moreover, it is difficult to
store temporal features such as velocity with splines
because the dependency between the interpolation param-
eter and the arc length is non-linear. Therefore, for the
instantiation of the primitives, the use of the dynamical
systems known from fluid dynamics has been proposed.

So far, there has been only little research on dynamical
systems for storage and generation of motion primitives.
Dynamical systems were employed by Ijspeert (26) as gen-
erators for motion patterns to mimic locomotion of animals.
A related approach was proposed by Okada (27). Attractors
of dynamical systems were used to generate and stabilize
walking movements of a humanoid robot. Both approaches
operate on the joint level of motion generation, whereas our
method generates trajectories in Cartesian space. Recently,
there has also been research performed on analysing
trajectories by means of dynamical systems. A method was
proposed by Dixon (28) for segmenting primitives on the
basis of linear dynamical systems. Although this can be used
to segment and store motion patterns, the expressive power
of the derived primitives is limited, and therefore they
cannot be used for generalization.

Time-invariant dynamical systems, which lead to
straightforward and stable solutions for movements in
joint space, are used by each of the aforementioned
approaches. However, by contrast, our goal is to provide
trajectory generation in Cartesian space for rather
complex motions (e.g. self-crossing trajectories). There-
fore, a time-dependent system that can reproduce
complex trajectories is needed. Such systems are applied
in fluid dynamics, where they are used to simulate physi-
cal effects, for example, in a wind tunnel. Streamlines
occurring in these environments are trajectories of
particles in a fluid.

To the best of our knowledge, there has been no
attempt to utilize this form of trajectory generation for
robotic applications. For our approach, a dynamical
system based on Navier–Stokes equations has been
chosen. The behaviour of a viscous, incompressible fluid
exposed to friction and external forces is described by
these equations. The derivation of the equations can be
found in various textbooks on fluid dynamics [e.g. (29)].
For our purposes, a simplified form of the equations with
constant density has been chosen because we restrict our
approach to incompressible flows:

@! u
@t

þ !
u�r

� 	!
uþrp ¼ nΔ

!
uþ!

f (13)

@u
@x

þ @v
@y

þ @w
@z

¼ 0 (14)

r is the Nabla operator, and Δ is the Laplace operator:

Δ=r �r=r 2;
!
u is the velocity of the fluid, n its viscosity

and
!
f are external forces such as gravity. As mentioned
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earlier, the primitives we want to represent with this
dynamical system are already in 2D space. Therefore,
equations 13 and 14 can be instantiated to become [cf.
(30)]:

@u
@t

þ @p
@x

¼ n
@2u
@x2

þ @2u
@y2

� �
� @u2

@x
� @ uvð Þ

@y
þ fx (15)

@v
@t

þ @p
@y

¼ n
@2v
@x2

þ @2v
@y2

� �
� @ uvð Þ

@x
� @v2

@y
þ fy (16)

@u
@x

þ @v
@y

¼ 0 (17)

where u and v are velocities in x and y directions,
respectively.

The equations are evaluated by means of finite differences
within a rectangular area, which is subdivided into a grid of
equally sized cells. Within these cells, the partial derivatives
can be replaced by local difference quotients, for example,
@u
@x

� �
ij↦

uij�ui�1j

d , where d is the length of each cell. A detailed

description of this methodology can be found in (30).
Now, a demonstrated skill can be reproduced by

reassembling the corresponding primitives with equation
3. Therefore, each primitive will be instantiated by a 2D
fluid simulation. This can be achieved by sampling points
from the spline representation of the corresponding
primitive. In this case, equidistant sampling with length
d is applied. There is no direct way to guarantee an arc
length of d for spline S(x) because Δx cannot be
determined from S(x+ Δx)= S(x)+ d. This problem has
been solved pragmatically by a binary search: Let Δx be
an arbitrary initial value and S(x) maps to a coordinate
within the cell with velocities uij and vij. Then, we test
for S(x+ Δx) lying within any adjacent cell. If it still lies
in cell ij, S(x+2Δx) is tried, if it even lies outside an
adjacent cell, S(x+0.5Δx) will be tried and so on (note
that Δx refers to a distance and has nothing to do with
the Laplace operator in equation 13).

Once we have sampled an applicable point Sx from the
trajectory, the speed at this point can be determined with
the help of the original trajectories, which are stored
together with this primitive. Afterwards, the neighbouring
values of uij, vij, ui+1j and vij+1 (see Figure 11) are
interpolated. This means we calculate a preset for these
velocities at time step tn. All other velocities within the grid
are derived from fluid simulation.

To illustrate this approach, think of throwing a
particle into the stream, then it will be attracted to
the trajectory of the underlying primitive. Because we
know the position and orientation of the simulation
grid from equation 3, suitable 3D points can be gener-
ated for a skill. Because the simulation is only
refreshed at discrete points in time (t0< tn< tmax), we
have to interpolate again to obtain positions at arbi-
trary points in time. Fortunately, this works well even
for tiny time steps. Therefore, positions can be sampled
at the frequency of the controller of the robot (approx-
imately 150Hz). Therefore, our robots can be directly
controlled with positions from fluid simulation.

Results
A short video of the system during operation can be found
on the web1 as well as an automated knot-tying sequence.2

• Step 1. Recording of demonstration data with a number
of users.

• Step 2. Automatic extraction of primitives from these
user-provided data sets.

• Step 3. Application of the respective task template to
specific situations.

Overall, the results from these experiments were highly
satisfactory, and the validity of both the methodologies
for learning and for complex trajectory generation in the
presence of obstacles has been fully justified.

The main difficulties were encountered in the applica-
tion phase (Step 3 earlier), and they were due to imper-
fections in our hardware setup, which essentially has a
very low repeatability (because of the compliance of the
robot gantry and the flexible instrument shafts) and a
low overall absolute accuracy because of uncalibrated
robots. Clearly, both can be overcome by compensating
offsets through (incremental) visual servoing, but this is
beyond the scope of this work. Some specific comments
follow, referring to the three steps above.

Recording phase

A sequence of images taken during a user demonstration of
the knot-tying task is shown in Figure 12. After going through
the demonstrations, data were collected for 30 knots.

Extraction phase

With these demonstration data sets, the primitives
were generated according to the methodology described

Figure 11. Fluid simulation: the area of interest is discretized into
equally sized cells. For clarity reasons, only a limited number of
cells that would be too coarse for practical use is shown in this pic-
ture – our practical implementation usually works on a grid of at
least 50�50 cells. Evaluation of velocities is not centred within a
cell but distributed on a staggered grid to assert numeric stability

1www6.in.tum.de/pub/Main/ResearchSfb453/system.avi
2www6.in.tum.de/pub/Main/ResearchSfb453/learned_knot.wmv
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earlier. At the beginning of this generation process, a
number of these demonstration trajectories were
rejected. This was because users did not stick to the
abstract plan provided by the scaffolding framework.
Typically, a technique for knot-tying was employed by
such users, which was not compatible with the
rough pattern defined by the scaffolding framework.
However, after explaining the intended pattern to the
users, the success rate of the demonstrations increased
to almost 100%. By this, it is implied that in the future,
users should be shown the scaffolding pattern in a
cognitively adequate way before the demonstration or
they should be allowed to change the scaffolding
pattern by themselves. Nonetheless, to have a consis-
tent data base for one specific task, all applications
were based on one single task pattern. The resulting

decomposition of a user-demonstrated trajectory is
shown in Figure 13.

Application phase

Out of the 30 demonstrations, 15 were chosen at random to
apply the corresponding skill to a new environment, that is,
a setting inwhichwe shifted the organ (in our case a cadaver
heart) a few centimetres to the side to find out whether a
task template could still be applied. This worked fine as far
as the instantiation of the task template to the new geometry
was concerned. There were, however, a number of adapta-
tions needed to the fluid simulation before acceptable trajec-
tories were generated. The first effect we observed was a
deviation of the particle from the intended path. This was

Figure 12. Subsequent stages of the knot-tying process during one user demonstration

(a) Track 1, primitive 1 (with trajectory) (b) Track 1, primitive 1 (stand-alone)

(e) Track 2, primitive 6 (with trajectory) (f) Track 2, primitive 6 (stand-alone)

Figure 13. Illustration of subsequent steps of the segmentation algorithm
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due to the fact that the speed of the particle was not set
appropriately, and it was not possible to stop the particle
exactly at the right moment. Moreover, a particle that was
travelling too fast was often drawn into a vortex, as depicted
on the left side of Figure 14. This behaviour was easily sup-
pressed by a calibration of the Reynolds number of the fluid
simulation and by exciting the fluid for a longer period in the
same place and by stretching the stirring to a path of points
rather than just a single point. The problem of stopping the
particle at the right time was solved by defining an ‘outflow’

condition at the point where the stirring path ended. To
make the transitions smooth, the outflow is faded in by a
sigmoid function at the end of the stirring. A visualization
of the outflow and the correctly instantiated trajectory is
shown in the area on the right of Figure 14.

Ideally, we would now be able to demonstrate a certain
skill in one location and then apply it to an organ in a differ-
ent location (which is still within theworkspace of the robot
arms). However, the distance offset we can actually achieve
in our setup is relatively small. As mentioned before, this is
due to a number of shortcomings in our experimental sys-
tem: the absolute accuracy of the robot arms is limited to
2mm (depending on the individual robot). In addition,
the exact location of the base point of the robots is not
known exactly. More importantly, in our setup, the copla-
narity of the robots’ bases cannot be guaranteed. The major
drawback with a high precision application, however, is due
to the high elasticity (already �15mm for a small force) of
the instrument shafts. This elasticity, which cannot be
measured during an operation,makes it virtually impossible
to move the tip of the instrument to a desired set point.
Despite these shortcomings, we were able to run the skill
resulting from 15 demonstrations at different points in
the environment, provided there was only a limited
displacement of the desired operation location.

Discussion

A novel approach has been presented for the transfer of
complex sensorimotor human skills to multi-arm robot
systems. Our approach is based on situated learning or

more precisely, the scaffolding, which is an area of
active research in psychology and cognitive sciences about
human communication and teaching.

One of the elements of this approach is that the teacher
and the trainee share the same environment and that the
results can be generalized later to different situations and
environments. Not only do they work in the same environ-
ment but they also have roughly the same sensorimotor
capabilities for the interaction with the environment.
This means that in principle, they can relate to each
other’s mental concepts, affordances and sensorimotor
contingencies – which is a basis for the mutual under-
standing during the scaffolding phases. Although in our
current system, these concepts are static, it can easily be
imagined that they may become dynamic and evolvable
if there are adequate representations of these states on
the robots’ side.

A trainee can only be successfully taught by a trainer if
he is aware of the restricted capabilities of the trainee.
Obviously, tasks that can be easily performed by humans
are major challenges for robots. For example, rotating an
object with the fingers of one hand is easy for adults,
but because of the different kinematics, it is very difficult
to mimic by artificial robot hands, even if they are multi-
fingered. Moreover, there is also typically a lack of sensory
information (e.g. tactile fingertip sensors comparable
with human fingertips) and slow inflexible sensorimotor
feedback loops.

From this point of view, scaffolding also comes in handy
because these deficiencies, if made known to the teacher,
can be integrated into the scaffolding phase – much like
humans teach children in a different way if they know
that they have not (yet) developed certain skills in their
own individual development.

This is the reason, therefore, that the scaffolding
can easily be adapted to a wide spectrum of capability
pairs between teacher and trainee. In other words, this
framework should be powerful enough to significantly
increase the learning rate. On the other hand, it should
be avoided that the trainee is asked too little; he should
be forced to make his own efforts to generalize the
teacher’s demonstrations.

Figure 14. Different results of the fluid simulation for instantiation of the same tasklet when the speed of the particles are changed.
Left: trajectory with particles travelling too fast, right: trajectory after speed adjustment
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In the future, this skill transfer methodology will be
extended to domains that are different from surgical knot-
tying. This could be industrial robotic, household robotic
or humanoid robotic scenarios of various kinds. An interest-
ing neighbouring scenario is the handling of limp structures
such ropes, cables and rubber seals. Here, the link to
handling of surgical threads is obvious: the manipulated
objects change their geometrical shape in an unpredictable
way, and it is also difficult for humans to describe (and
programme) the necessary skills – other than by demon-
stration. In this context, it would be highly desirable to
integrate camera images for task-specific visual servoing.
How this can be performed, for example, by verbally
describing the expected image resulting from each step in
the scaffolding is, however, a completely open question.
There are also interesting links between our approach and
the developments in the field of surgical process modelling
(33) and surgical ‘language’ (34). For example, it would be
highly interesting to explore how scaffolds could be con-
structed automatically from such process models and,
conversely, how our methodology might serve as a repre-
sentation for fine-grained descriptions of surgical inter-
ventions. These could then also be used for surgeons to
discuss and compare individual aspects of interventions.
Finally, in the upcoming ‘pro-sumer market’, that is, the
production of small quantities of parts produced by the
consumer at home, one could think of robot systems that
assemble 3D printed parts. Clearly, this might be performed
fully automatically if there are programmes written for
controlling the assembly sequence. Alternatively, one could
think of a more interactive process with the consumer
instructing the robot system assembling products from a
more generic set of parts. The construction processes would
have to be adapted to a previously unknown or partly
known shape of the product. In such a scenario, both the
skill transfer and the fluid-based adaption of trajectories
can be applied.
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