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Abstract— Direct physical human-robot interaction has be-
come a central part in the research field of robotics today. To use
the advantages of the potential for humans and robots to work
together as a team in industrial settings, the most important
issues are safety for the human and an easy way to describe
tasks for the robot. In this work, we present an approach
of a hierarchical structured control of industrial robots for
joint-action scenarios. Multiple atomic tasks including dynamic
collision avoidance, operational position, and posture can be
combined in an arbitrary order respecting constraints of higher
priority tasks. The controller flow is based on the theory of
orthogonal projection using nullspaces and constraint least-
square optimization. To proof the approach, we present three
collaboration scenarios between a human and an industrial
robot.

I. INTRODUCTION

Currently, interaction of human and robot is mainly re-
duced to a master-slave scheme with a human tele-operating
the robot or programing it off-line. To ensure safety, the
workspaces of humans and robots are strictly separated in
time or space in the industry. But while direct physical in-
teraction with stunning new hard- and software developments
[1], [2] and joint-action of humans and robots are emerging
fast in the research field of robotics [3], [4], [5], [6], [7], [8],
most of the robots used in these scenarios are self-made or
lightweight to guarantee safety through mechanical methods.
However, standard industrial robots used in the industry
often have unknown dynamic parameters, the control is
often only possible on position- or velocity-level, and due
to their masses and their high velocities the risk of injuries
is very high [9]. Therefore, these robots cannot fulfill crucial
requirements needed for safe direct physical interaction.

Although industrial norms are changing and allow direct
cooperation of human and industrial robot (ISO 10218-
1), the demands on the robots include a speed limit of
250 mm/s at the tool center point (TCP), limits on the
dynamically received power of 80 W, and limited force
on the tool center point of 150 N. With these limitations,
an efficient collaboration with current industrial robots is
not possible, although the applications of such collaborative
human-industrial robot teams cover a magnitude of tasks
needed in the industry—including support in carrying heavy
objects, virtual rails, or robot assistance in hybrid assembly
scenarios as depicted in Fig. 1.

In the latter scenario, human and industrial robot assemble
a product cooperatively. To keep the collaboration fast and
efficient, robot and human need to share the same workspace.
This enables physical support of the worker or direct han-
dover of parts and tools from the robot to the human and

Fig. 1. Hybrid assembly: collaboration scenario of a human and an
industrial robot. The markers on the upper, lower arm, and the palm are
used to estimate the pose of the human co-worker.

vice versa. But of course, safety for the human counterpart
needs to be a central part in this kind of scenarios to take
advantages of the potential for humans and robots to work
together as a team in industrial settings.

Therefore, robots need to have different hierarchical high-
level abilities that can be used according to the current
situation to solve a given task jointly by a human and a robot.
This can be solved using atomic action primitives (tasks) that
can be joined to high-level actions.

In this paper, we propose an approach of a hierarchical
structured control of industrial robots in joint-action scenar-
ios. In this way, it is possible to combine multiple (sub-)tasks
in an arbitrary order respecting constraints of higher priority
tasks. A collision avoidance task can be easily set to have
high priority in situations where a direct physical contact
might be possible and has to be prevented. Although we only
had a standard position controlled industrial robot available
in our setup, a combination of the presented methodology
along with a lightweight robot and its reactivity in case
of actual collisions [10], [11] would enable an even more
efficient way for human-robot collaboration.

The remainder of this work is organized as follows:
Section II explains single robot tasks, including posture, op-
erational position, and collision avoidance control, which can
be stacked in a hierarchical way. Section III presents in detail
three concrete applications of human-robot collaboration in
an assembly scenario.



II. ROBOT TASKS

According to [12], actions consist of several atomic tasks
that are arranged in a task-oriented way. An encoding of
priorities in the task-stacking hierarchy is of importance,
because it needs to be prevented that contrary tasks interfere
with each other and lead to uncontrollable or unwanted
behavior of the robot.

Based on the syntax of [13], an action A can be formulated
as a composition of tasks Tk with a projection rule /k that
ensures the behavior of the task:

A = 〈T 〉n0 = Tn /n Tn−1 /n−1 . . . /1 T0. (1)

As most industrial robots—including the one used in our
experiments—are only controllable on the position- or
velocity-level, we transform the task descriptions in terms
of joint velocities (q̇):

q̇
Action

= q̇
Tn
/n q̇Tn−1

/n−1 . . . /1 q̇T0
. (2)

According to the defined control structure, we need to take
care of only a few points for each task: compute the velocity
to solve the single task, set the constraints according to
the current situation or use static constraints, and finally
transform the lower priority task velocity into a safe subspace
respecting the active constraints. For the latter we are using
nullspaces with orthogonal projectors as in [12], [14] in the
posture and the operational position task and a constraint
least-square optimization for the collision avoidance task.
With these projectors we are able to decouple the tasks from
each other (see Figure 2).

A. Respecting Hardware Limits

An important issue that needs to be respected are the
limitations of joint angles, velocities and accelerations. The
resulting velocity q̇—as well as intermediate results—needs
to be in a certain bounding region l ≤ q̇ ≤ u, that does not
violate these limits. Therefore, we adaptively re-compute the
bounding limits in every time step according to

li = max(q̇min
i , q̇lowerJL

i , q̇AL
i ) (3)

for the lower boundary and

ui = min(q̇max
i , q̇upperJL

i , q̇DL
i ) (4)

for the upper boundary. The values for q̇max
i and q̇min

i are the
maximum and minimum velocity for joint i as defined by
the manufacturer of the robot.

q̇lowerJL
i =

qmin
i − qi(t)

∆t
(5)

is the velocity that is needed to reach the lower joint limit
of joint i in the next time step t+ 1 and

q̇upperJL
i =

qmax
i − qi(t)

∆t
(6)

is the velocity to reach the upper joint limits respectively.
These velocities converge to zero as the joint angle is
approaching the joint limit.

Task 1 Task 2 ... Task N

priority level

constraints ... constraints

velocity task 1
constraint velocity

velocity task 2
...
...

constraint velocity
velocity task N

+ + +

Output

Fig. 2. Actions are defined through task compositions. The associated
constraints are respected through projections into corresponding subspaces,
with execution priorities ranging from lowest (left) to highest (right).

To respect that the acceleration and the deceleration abili-
ties of the motors of the robot are also limited, the maximum
possible velocities of the joints need to be constraint. There-
fore, we approximate this factor with

q̇AL
i = q̈acc

i
·∆t+ q̇i(t− 1) (7)

for the acceleration and

q̇DL
i = q̈dec

i
·∆t+ q̇i(t− 1) (8)

for the deceleration of the joints.
With the limit information for each joint, a limit method

C(q̇) can be defined that scales the velocity vector to respect
all above mentioned limits without changing the trajectory
of the motion:

C(q̇) = s(l, u) · q̇. (9)

B. Task: Joint Position (Posture)

The goal of the posture task is to drive the robot to a cer-
tain joint configuration q

goal
. Using the Posture-controller,

it is possible to give the robot a specific—e.g., “human
friendly” or upright—posture.

The velocity for this task is calculated by

q̇
po

= C

(
q

goal
− q(t)

∆t

)
. (10)

To constrain certain degrees of freedom in joint space, that
cannot be influenced by lower priority tasks, a n×n matrix
Spo is used to select them, with n being the number of joints.
This means the guaranteed velocity can be expressed as

q̇∗
po

= S · q̇
po
. (11)

Using the projector NPo of the selected constraints, we get
as output for the projection of an input velocity q̇

in
:

q̇∗ = q̇∗
po

+Npo · q̇in
(12)

with
Npo = I − Spo. (13)

C. Task: Operational Position

The operational position task drives the tool center point
of the robot to a defined goal position and orientation xgoal

in Cartesian coordinates according to:

ẋ =
xgoal − x(t)

∆t
. (14)

After the velocity in Cartesian space is calculated, con-
straints can be set using a diagonal selection 6 × 6 matrix



Fig. 3. Computing the repelling forces of an obstacle: The red lines
illustrate the minimum distances of an obstacle to the body parts of the
robot in a given joint configuration. If a distance is below a chosen security
threshold (transparent bubble), the distance is used to compute virtual forces
on the robot using potential fields.

SOp to select the degrees of freedom (in Cartesian space) that
should not be influenced by lower priority tasks. Transformed
into limited joint velocities using a singularity robust pseudo-
inverse J†e of the Jacobian Je of the end-effector, we get

q̇∗
op

= C(J†e ·Sop · ẋop). (15)

Using the nullspace Nop of the selected constraints, we get
as output for the orthogonal projection of an input velocity
q̇

in
:

q̇∗ = q̇∗
op

+Nop · q̇in
(16)

with
Nop = I − J†eSopJe. (17)

D. Task: Collision Avoidance

Collisions need to be avoided for static (i.e., the work-
bench) and dynamic environment (i.e., the human and mov-
ing obstacles). In this task, the avoidance is done in a
reactive way with dynamically updated collision scenes that
is interfaceable with a variety of sensors.

The main challenge that arises here, is that the planned
motion and the avoidance motion must be handled in a way
where they do not interfere with each other. Therefore, we
fuse potential field methodology to repel the robot from
the obstacle with a constraint least-square optimization, that
restricts the motion of the robot to safe orthogonal subspaces
of the collision avoidance.

1) Virtual forces: To compute the velocity that repels the
robot from surrounding obstacles, we need to compute the
minimum distances of all objects in the environment model
(including self-collision) to all body parts of the robot. Fig.
3 depicts the body parts of the used robot in different colors
along with an example of the minimum distances di (red
lines) from an obstacle to a given joint configuration.

Opposite to simplified and only approximated models of
manipulators (e.g., used in the skeleton algorithm presented

in [15]), we measure the distances of arbitrary shapes to
a convex version of the real CAD-model of the robot in
order to reach a high precision of the virtual forces. With
an efficient implementation of the GJK algorithm [16], we
compute these distances faster than the update rate of the
robot controller.

After calculating the minimum distance vectors vx,i in
Cartesian space (i.e. the direction of the applied virtual
force), we need to transform them to velocities in joint space
and find the overall motion of the robot to avoid the collision.
This is done according to

q̇ =
I∑
i

q̇
i

=
I∑
i

JT
Pr(i) ·Urep,i(q) · vx,i(q), (18)

with I being the number of bodies of the robot, the current
joint configuration of the robot q, the Jacobian of the
minimum distance point on the robot JPr(i) and the repelling
potential function Urep,i:

Urep,i(q) =

{
1
2ηi

(
1

di(q)
− 1

Q∗

)2

if di(q) ≤ Q∗

0 if di(q) > Q∗
,

with Q∗ being the distance at which the potential field
function is applied (see transparent bubble in Fig. 3).

2) Constraint least-square minimization: To ensure that
we project the lower priority task in an orthogonal subspace
of the collision avoidance task, we use the mathematical
framework of quadratic programming [17] to minimize the
quadratic error between optimal velocity of the lower priority
task subject and the constraints of the higher priority task.
The low-priority task execution (q̇

in
) is optimized regard-

ing must have constraints of the higher priority task. The
projection is described according to:

min
q̇

in

‖Je · q̇in
− ẋt‖2, (19)

where ẋt is the ideal linear and angular velocity to solve
the lower priority task subject to the linear constraints of the
form

CT q̇
t
≥ 0 (20)

with the constraint matrix

CT =


q̇T

1
...
q̇T

I

 (21)

and q̇
i

calculated according to (18). This means only those
velocities are valid, that are orthogonal to the direction of
the collision avoidance velocities or point in a direction
that leaves the defined safety region. The output of the
minimization process is then equal to the constrained joint
velocity q̇∗. Quadratic Programming in combination with
collision avoidance on the level of joint acceleration was
used in [18], [19].



III. APPLICATION EXAMPLES

As stated in the introduction, with the presented task-based
hierarchical control structure of the industrial robot we can
solve a magnitude of tasks that can be used in production
scenarios to take advantage of collaboration of human and
robot as a team. In the following sections, we present
three applications used on our demonstration platform JAHIR
(Joint-Action for Humans and Industrial Robots), [20] that
is embedded in a factory setting [21].

In the used setup, the human is standing face to face with
the industrial robot in front of a working table. Both, human
and robot, can access the working table and therefore share
the same workspace. The body of the human standing in front
of the shared working table is secured by an approximated
cylinder (see Fig. 6).

In the following applications, we have used human motion
data and applied it to our dynamic 3D representation for
distance measuring. The motion data was estimated using a
marker-based infra-red tracking system with markers placed
on the palm and on the lower and upper arm (see Fig. 1).

A. Mobile Storage Box

In manual production, the efficiency of the current pro-
duction step depends highly on the availability of parts. If
different parts needed for a certain step are always within
reach, the human can take them efficiently. On the other side,
parts that are pre-assembled and not needed at the moment,
need to be placed somewhere where they can be accessed
easily when required.

In the first application scenario, we use the industrial robot
as a mobile storage box. Parts can be placed in the box and
the robot needs to guarantee they are not falling off. To be
always within reach, the box follows the human hand, but
avoids collision with it and the surrounding environment.
Regarding these requirements, the controllers presented in
Section II are arranged to compose action A1 as follows:

A1 = Torientation / Tavoidance / Tposition / Tposture. (22)

Torientation is the task with the highest priority, which takes
care of keeping the box always in a horizontal orientation.
The operational position controller is used here with the
selection matrix

Sorientation = diag (0, 0, 0, 1, 1, 1) (23)

to fix the orientation of the box. Task Tavoidance avoids
collisions with the surrounding environment and the human
hand. The position task Tposition follows the human hand
through updates of the hand tracking system to the goal
position xgoal, that should be 0.1 m in front and below of
the hand. To keep the position fixed, the selection matrix

Sposition = diag (1, 1, 1, 0, 0, 0) (24)

is used. In the posture task, we defined that the robot should
have an upright joint configuration. Because the posture task
has the lowest priority, we can include all joints in the
velocity calculation.
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Fig. 5. Minimum distances of obstacles and robot bodies. The potential
field is applied for distances that fall below 0.1 m. If a critical minimum
distance of 0.005 m is reached, the robot stops its motion.

The result of this experiment is depicted in Fig. 4. The
robot is carrying a red box with parts in its gripper, so
that the human can grasp out of the box (Fig. 4(a)). To
be able to grasp something, the motion of the robot needs
to be stopped through the avoidance task that measures
the distances. This is done in the controller with a defined
distance, to stop the current motion, if the distance of robot
and obstacle (i.e. hand) is touching or is below. Fig 5
shows the minimum distances of obstacles and robot with the
two security distances Q∗, that enables the virtual repelling
forces, and the security stop line.

B. Direct Line-of-Sight

In our demonstration scenario, a top-mounted camera
directed towards the working table is used to recognize,
inspect and track objects lying on the table. To recognize
objects reliably or to inspect objects according to defects,
the camera needs direct line-of-sight for a certain amount
of time. However, the robot should not be stopped, because
it can fulfill other tasks in the meantime—including picking
up an object at a position and placing it somewhere else or
handing over tools needed for the next assembly steps to the
human.

What needs to be considered here is the issue that the
collision avoidance with the environment has to have a
higher priority than to avoid the crossing of the line-of-
sight of the camera with the robot. Therefore, two collision
avoidance controllers with different collision scenes need to
be specified.

If we describe the action of the robot again according to
our controller scheme, we get action A2:

A2 = Tenvironment /Torient. /Tline-of-sight /Tposition /Tposture. (25)

Tenvironment is the collision avoidance controller without the
line-of-sight as depicted in Fig. 6(c). Torientation is the con-
troller taking care of the orientation of the gripper with
the same selection matrix as in the previous experiment. In
the collision controller Tline of sight, the line-of-sight from the



(a) (b) (c) (d)

Fig. 4. Mobile storage box: The robot has a storage box as tool which follows the human hand in safe distance and avoids collision with the hand and
the surrounding, so that the human can pick up parts or place assembled products in there. (a) real scene; (b), (c) and (d) 3D representation with robot
behavior.

(a) (b) (c) (d)

Fig. 6. Direct line-of-sight: The robot picks up an object at a position and needs to place it on another specified position. A top-down camera is inspecting
another object on the table and needs to have always direct line-of-sight for this task. Therefore, the robot needs to find a way around the line from camera
to object, respecting also the human working in the same workspace. From left to right: (a) real scene; (b) 3D representation; 3D scenes of the collision
avoidance controllers to avoid collisions with the environment (c) and the line-of-sight of the camera (d).

(a) (b) (c) (d)

Fig. 7. Adaptive light source: In this application, the robot has a lamp mounted as tool that is used to illuminate a component lying on the table.
Therefore, the position of the cone of light needs to stay fixed, but collisions with the human need to be avoided. From left to right: (a) real scene; (b) 3D
representation; collision scenes used in the two collision avoidance controllers: (c) collisions with the environment (including the human) and (d) collisions
of the light beam with the human.

camera is approximated by a cylinder from the camera to the
object on the table as depicted in Fig. 6(d). The task Tposition
drives the robot to the goal position. The posture task Tposture
is the same as in the previous experiment.

The images in Fig. 6 show the behavior of the robot
moving from position (0.1 m, 0.2 m, 0.3 m) (Fig. 6(a)) to
the goal position (0.8 m, 0.3 m, 0.1 m). As depicted in Fig.
6(c) and 6(d), the robot gets repelled by the potential field
generated by different collision scenes.

If the human worker is busy fulfilling a complex assembly
step on an object lying on the desk, we can also model
the focus-of-attention of the human employing e.g. 3D face
tracking algorithms as presented in [22]. The line-of-sight
cylinder in this example would range from the human’s head
towards the direction his head is turned and the robot would

avoid crossing the field of view of the human.

C. Adaptive Light Source

In this application example, the robot has a light source
mounted as its tool. With this lamp, an object lying on the
table is to be illuminated. Therefore, the position of the light
cone needs to stay fixed on the selected object, but collisions
with the human need to be avoided. To enable this action,
we describe the wanted action A3 as follows:

A3 = Tposition / Tenvironment / Tposture / Tlight. (26)

The same position task Tposition (with static goal position) has
now the highest priority task, therefore assuring that the cone
of light is directed towards the selected object. Tenvironment is
the avoidance controller with the environment model without



the cone of light, as depicted in Fig. 7(c). Tposture tries to keep
the robot in an upright position, with the constraint that the
first joint should be at 0 degrees and joint 3 (connecting body
3 and 4—see Fig. 3) should form a right angle. The selection
matrix for this task is

Sposture = diag (1, 0, 1, 0, 0, 0) . (27)

The task Tlight to avoid collisions with the light beam
has the lowest priority, because on the one hand it is not
dangerous to cross a light beam with a hand and on the
other side it does not damage the robot. For this controller,
only the light beam and the arm position are modeled in
the collision scene as shown in Fig. 7(d). The real set-up is
depicted in Figure 7(a)) along with the dynamic 3D scene
(Fig. 7(b)) used for visualization.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to define
robot actions in order to control an industrial robot through
a hierarchical task-based control structure. To cope with any
interference of competitive tasks, we employed nullspaces
and constraint least-square optimization to project task ve-
locities in safe subspaces of higher priority tasks. For the
used industrial setup, we presented several examples built
with this control structure. The robot changed its behavior
with a simple rearrangement of basic tasks. The possibility
to arrange atomic tasks, that are able to project into an
orthogonal subspace including a collision avoidance task,
opens new ways of programming robots in the presence of
humans.

To increase the stability of the collision avoidance, more
distances than only the minimum distance can be used to
compute the virtual forces. Additional, more atomic tasks
need to be added to the controller scheme including singu-
larity and joint limit avoidance. To improve the security of
the human, the whole human body pose needs to be estimated
and tracked in adequate speed—at best without the use of
any markers.
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