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Abstract— This paper proposes a way to solve a highly
precise docking problem for a flexible delivery in production
environments. The docking problem is seen as one of the
fundamental problems to enable more flexible automation using
mobile robots. A non-holonomic differential-driven robot with
two conveyor belts is used to deliver boxes with goods to two
docking slots on an assembly belt and unload them precisely. In
order to localize the robot in front of the docking slots, a safety
LIDAR and two “minimal invasive” reflecting markers are used
that are completely light invariant, thus reaching industrial
robustness. This measurement is fused with odometry using
a Kalman filter and a distance weighted way to compute the
reliability of the data streams.

I. INTRODUCTION

Many industrial facilities already have employed exhaus-
tive methods optimizing productivity in their production
labs and construction assemblies [1], [2], [3]. In contrast
to traditional optimization methods, the potential of mobile
service robotics can be seen as a next revolution with respect
to further optimization potentials [4]. This is especially true
in conjunction with the increasing demand for flexibility in
product and supply management, environmental changes or
highly dynamical production flows [5]. As the mobile service
robotics can be one solution for further optimizations, the
overall performance and robustness is still improvable in real
life applications although impressive work was for example
done in [6], [7].

A mobile robot requires robust basic capabilities like self-
localization, navigation, and closed loop control in order
to fulfill given mobility tasks. Besides the overall robust-
ness and reliability of these functionalities, non-functional
requirements must also be met for serious industrial usage
including smoothness of actuator control, speed, and energy
optimizations efficiency, and a safe and predictable behavior
of the mobile robot. Fundamental constraints are typically
given by choosing a mobile platform of holonomic or non-
holonomic type, each with its own advantages and disadvan-
tages.

In this paper, we propose a methodology for solving a
highly precise docking problem. The docking problem is
one of the fundamental problems such as the handover
of goods or the battery charing [8], [9], [10], [11], [12].
Approaches for the docking problem typically use optical,
IR [13], or electromagnetic [14], [15] markers. Opposite to
the docking in charging positions, the presented application
example in this paper requires highly precise approaching.
Here, two conveyor belts mounted on a mobile robot are
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Fig. 1. (a) The differential-driven platform used in this work. It is equipped
with a LIDAR, several cameras and two conveyor belts to load, carry, and
unload boxes on assembly line docking station as depicted in (b).

used to deliver boxes with goods to two docking slots on an
assembly belt. These boxes need to be precisely pushed from
the robot in order to glide into to the docking slot. Using
a non-holonomic differential-driven platform, this approach
needs to be precomputed exactly and the corresponding path-
following needs to be precise as well.

In order to localize the robot in front of the docking slots,
we make use of the already installed safety LIDAR and two
reflecting markers. This way, almost no invasive markers
need to be added and the results are completely light invari-
ant, thus reaching industrial robustness. This measurement
is fused with odometry using a Kalman filter [16] and a
distance weighted way to compute the reliability of the data
streams.

The paper is organized as follows: Sect. II introduces the
differential kinematics of the mobile robot, Sect. III describes
how a given path can be smoothly followed with such a
kinematic, Sect. IV explains the localization and the fusion
method in detail and overviews the results.

II. DIFFERENTIAL-DRIVEN MOBILE PLATFORM

A differential-driven robot—such as the one depicted in
Fig. 1—is controlled via two independently actuated wheels
on a common axis that have a distance of 2b from each other.
The robot can move with the linear velocity u and the angular
velocity ω along the body axes (Fig. 2). With the assumption
that the wheels are perfectly rolling, the kinematic model of



such a robot can be expressed as:

u = 1
2 (vr + vl) (1)

ω = 1
2b (vr − vl) , (2)

where the maximal velocities of the wheels are bound to
certain limit values Vm, e.g., due to hardware limits of the
motors.

Without any other limitation, such a robot can drive on
paths with arbitrary curvatures

κ = 1
b

vr − vl
vr + vl

. (3)

The curvature κ of a planar path is related to the radius rc
of a circle that most closely approximates the path at a given
point (P ):

κ =
1

rc(P )
. (4)

This means, that for counter-rotating motors, the curvature
becomes infinite and the robot turns on the spot.

While the robot is driving on the ground plane in a
two-dimensional space (x and y), the curvature κ is one-
dimensional. Therefore, for arbitrary plane paths that can be
expressed parametrically by (x(t), y(t)), the signed curvature
is given by

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

. (5)

This equation can be reduced to

κ =
ÿ

(1 + ẏ2)
3
2

(6)

=
f ′′(x)

(1 + f ′(x)2)
3
2

, (7)

under the assumption ẋ = 1 and ẍ = 0.
The curvature [17] is the central parameter of robotic

motion when considering maximization of linear velocity and
minimization of snatchyness. However, a smooth behavior
of a mobile robot without hard brakes is desirable due to
multiple issues: From an energy efficiency point of view,
hard brakes should be avoided. Additionally, smooth—and
therefore predictable—behavior of the robot increases safety,
as humans can estimate the trajectory and act accordingly.
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Fig. 2. Differential-driven platforms with a wheelbase of 2b are controlled
by the turning velocities vl and vr of the wheels, resulting in a linear
velocity u and an angular velocity ω

Hence, if we want to apply this strategy, the motor
velocities should always remain positive

vl, vr ∈ [ 0, Vm] , (8)

and the curvature of the reference path needs to stay
bounded [18] to

κ =

[
−1

b
,
1

b

]
. (9)

III. PATH FOLLOWING

If we constrain κ, we will get a smoother path trajec-
tory l ∈ Rp, that can be followed if the robot controller takes
special care of a) the distance between the robot and the path
and b) the angle between the forward velocity vector and the
tangent to the path. Both should be reduced to zero [19] to
follow the path.

Following [20], the path following problem can be ex-
plained in more detail: Let P = (xP , yP ) be an arbitrary
point on the path l and Q = (xQ, yQ) be the center of mass1

of the differential-driven robot. Along the path, a tangential
reference frame {F} is attached at every point with a signed
curvilinear abscissa denoted with s. This tangential reference
system can be referred to as Serret-Frenet frame. Thus, the
position of the robot Q can be described in the inertial
reference frame {I} as

qI =
[
xQ yQ 0

]T
(10)

and in {F} as

qF = r (11)

=
[
s1Q y1Q 0

]T
. (12)

Equivalently, P is given in {I} as

pI =
[
xP yP 0

]T
(13)

and in {F} always as

pF =
[
0 0 0

]T
. (14)

The rotation from {I} to {F} is given by RI,F = R(θc),
parametrized by the angle θc between the inertial frame
{I} and the curvilinear abscissa s. The reverse rotation is
respectively given by RF,I = R−1(θc).

The angular velocity is defined by

ωc = θ̇c (15)
= κr(s)ṡ , (16)

with κr(s) being the curvature of the reference path.
Using these definitions, the velocities of both points Q

and P can be easily expressed in both systems.

ṗF = RI,F ṗI (17)

=
[
ṡ 0 0

]T
(18)

The velocity of point Q in {I} is given by

q̇I =
[
ẋQ ẏQ 0

]T
(19)

= ṗI +RF,I ṙ +RF,I (ωc × r) , (20)

with r being the vector from P to Q.
1for the F5 this is also the center of rotation
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Fig. 3. The mobile robot should follow a given path l. Its position is
expressed in an interial frame I and a Frenet frame F rooted in the tangent
space of the path. If the angle Θm and the distance between robot and path
are reduced to zero, the robot moves on the given path

Now, the velocity of Q in {I} can be expressed in {F}
by multiplying both sides with RI,F

q̇F = RI,F q̇I

= ṗF + ṙ + (ωc × r) , (21)

with ṙ =
[
ṡ1Q ẏ1Q 0

]T
.

Considering the relation

ωc × r =

 0
0

κr(s)ṡ

×
s1Qy1Q

0

 (22)

=

−κr(s)ṡ y1Qκr(s)ṡ s1Q
0

 , (23)

equation (21) can be expressed as

q̇F =

ṡ (1− κr(s) y1Q) + s1Q
y1Q + κr(s)ṡ1Q

0

 (24)

and be solved for

ṡ1Q =
[
cos θc sin θc

] [ẋQ
ẏQ

]
− ṡ (1− κr(s) y1Q) (25)

ẏ1Q =
[
− sin θc cos θc

] [ẋQ
ẏQ

]
− κr(s)ṡ s1Q . (26)

Applying the body-axis speed u (linear velocity), the yaw
angle of the vehicle θm, and the respective angular veloc-
ity ω = ωm = θ̇mtogether with the relationship[

ẋQ
ẏQ

]
= u

[
cos θm
sin θm

]
(27)

and the mathematical rules for θ = θm − θc

cos θ = cos θm cos θc + sin θm sin θc (28)
sin θ = sin θm cos θc + cos θm sin θc , (29)

the kinematic model of the unicycle robot can be expressed
in {F} as

ṡ1Q = −ṡ (1− κr(s) y1Q) + u cos θ (30)
ẏ1Q = −κr(s)ṡ s1Q + u sin θ (31)

θ̇ = ωm − κr(s)ṡ . (32)

Recalling the problem formulation stated previously, a
given path is followed exactly if s1Q, y1Q, and θ are zero.
On the kinematic level, a locally positive-definite Lyapunov
candidate function such as

V1 = 1
2 (s

2
1Q + y21Q) +

1
γ (θ − δ(y1Q, u))

2 (33)

can be applied [19] to proof the stability of the system, where
it is assumed that
• limt→∞ u(t) 6= 0
• δ(0, u) = 0
• y1Q u sin δ(y1Q, u) ≤ 0,∀y ∀u .

By choosing

θ̇ = δ̇ − γ y1Q u
sin θ − sin δ

θ − δ
− k2(θ − δ) (34)

ṡ = u cos θ + k1 s1Q , (35)

with k1 > 0 and k2 > 0 being non-negative constants, the
time derivative follows

V̇1 = −k1 s21Q − 1
γ (θ − δ)

2 + y1Q u sin δ ≤ 0 (36)

and guarantees that all state variables remain bounded [20].
The function δ has the purpose of shaping the transient
convergence of the state to zero and can be chosen according
to specific design demands.

Now, (1), (2), (32), and (35) can be merged together,
resulting in

vr = u+ b (κr ṡ+ θ̇) (37)

vl = u− b (κr ṡ+ θ̇) . (38)

A further combination of these equations with (3) results
in the closed loop curvature of the robot

κcl =
κr ṡ+ θ̇

u
, (39)

for which can be shown [18] that

lim
t→∞

κcl = κr (40)

if the path-following error tends to zero. Please refer to Fig. 4
for an example where the closed loop curvature converges
to the reference curvature as the robot follows the path.

Keeping this in mind, the proposed strategy for keeping
the robot on a given path becomes

u =

{
1
2Vm , if V1 ≥ ε

1
1+b |κr(s)|Vm , if V1 < ε

(41)



Fig. 4. Example path where the closed loop curvature converges to the
reference curvature as the robot follows the path

for the linear velocity with ε > 0 being a threshold value
regulating the path following error and

ω = θ̇ + κr(s)ṡ (42)

for the angular velocity.

IV. DOCKING PROBLEM

To follow a given path, it is necessary to localize the
robot and to keep track of its position to minimize the path-
following error. We make use of the safety LIDAR that
is already attached to the robot and detect two reflecting
markers (left and right) in the polar coordinate frame of the
LIDAR: P pol

L = (rL, θL), and P pol
R = (rR, θR). Please refer

to Fig. 5 for a schematic view. These two points are projected
to the Cartesian coordinate frame of the robot:

PL = (rL cos θL, rL sin θL) (43)
PR = (rR cos θR, rR sin θR) . (44)

With these points, we can compute

β = cos−1

(
|PM − PR|2 + |PM |2 − |PR|2

2 |PM − PR| |PM |

)
, (45)

which can directly be used to express the angular position
of the robot

α = tan−1
(
PL,x − PR,x
PL,y − PR,y

)
. (46)

The point between these two points in the middle of the
docking slot

PM = 1
2 (PL + PR) (47)

is the center of the coordinate frame in which we want to
estimate the robot’s position. If we use this as center for
a polar coordinate frame, we can interpret β as the angle
and dm = |PM | as the length. This can also be transformed
to a Cartesian coordinate frame which results in

Probot = (dm cosβ, dm sinβ) . (48)

Hence, the final result of the measurement is given by

p̂l = (Probot,x, Probot,y, α)
T (49)

= (x̂l, ŷl, α̂l)
T . (50)

Additionally, the odometry data is initialized with the first
measurement of the LIDAR and then propagated (p̂o =
(x̂o, ŷo, α̂o)

T) using the wheel-diameter and the kinematic
model.

Because the measuring directly returns the position and
orientation of the robot with respect to the goal position, we
can work in this space and comply with the linearity and
Gaussian requirements of a Kalman filter [21]. The robot
dynamics and the measurement model are given by

xt = (x, y, α, ẋ, ẏ, α̇)T (51)
= Ftxt−1 +Btwt (52)

and

zt = (x̂l, ŷl, α̂l, x̂o, ŷo, α̂o)
T (53)

= Htxt +Ctvt . (54)

wt and vt are zero-mean, white Gaussian noise variables,
with covariance matrices Wt,Vt respectively. We are us-
ing a constant velocity model with white noise accelera-
tion (WNA)

Ft =

[
I3×3 I3×3δt
0 I3×3

]
, Bt =

[
1
2B0δt

2

B0δt

]
(55)

and

Ht =

[
I3×3
I3×3

]
(56)

for the measurement Jacobian.
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Fig. 5. Schematic view to geometrically solve the position and angle of
the mobile robot using a LIDAR and two markers
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Fig. 6. Docking of the robot to the right assembly line position. The
purple line is the fusion of the odometry data (green) and the LIDAR
measurements (blue)
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Fig. 7. Docking of the robot to the left assembly line position. The
purple line is the fusion of the odometry data (green) and the LIDAR
measurements (blue)

The overall noise covariance matrices

Qt = BtWtB
T
t (57)

Rt = CtVtC
T
t , (58)

with R being a diagonal matrix, realize the optimal Bayesian
predictor-corrector scheme by

x−t = Ftxt−1 (59)

P−t = FtPt−1F
T
t +Qt (60)

and

xt = x−t +Kt

(
zt −Htx

−
t

)
(61)

Pt = (I −KtHt)P
−
t , (62)

with the Kalman gain

Kt = P−t HT
t

(
HtP

−
t HT

t +Rt

)−1
. (63)

The two modalities used (LIDAR and odometry) show
different behaviors with respect to the distance to the goal:

the odometry delivers smooth results, but if the initialization
or the initial localization was not done properly, the error
will be accumulated with the inherent drift in odometry data
leading to an incorrect behavior. Opposite to that, the LIDAR
localization method measures with a lot of noise, which
reduces as the robot approaches the goal. Therefore, we use
the noise covariance matrix to control the trust in the two
signals by integrating the distance related variable dt in order
to update the matrix

Rt(dt) = diag



1

((1−a)+a (dmax− dt
dmax

)) rl
1

((1−a)+a (dmax− dt
dmax

)) rl
1

((1−a)+a (dmax− dt
dmax

)) rl
1

((1−b)+b dt
dmax

) ro
1

((1−b)+b dt
dmax

) ro
1

((1−b)+b dt
dmax

) ro


, if dt < dmax

(64)
in each time step, with rl and ro being the initial inverse
covariance values, a and b being splitting factor to guarantee
a constant base value, and dmax representing the threshold
when to apply the distance weighting of the matrix. If dt >
dmax, the initial values rl and ro are applied.

As it can be seen in Fig. 6 and Fig. 7, the proposed method
was was successfully applied in order to perform a docking
maneuver. From an initial position in about 1 6m from the
actual goal position, the robot was approaching to the two
delivery positions of the docking station via a computed
fourth-order polynomial trajectory. The robot is moving from
right to left. With a predominance on the smooth odometry
data in the beginning, the more and more accurate LIDAR
measurement gets integrated. Throughout the approach, the
planned path is being followed by the robot. Screenshots
from the docking maneuver are depicted in Fig. 8.

V. CONCLUSIONS

In this paper, we have shown a way to precisely dock to an
assembly line with a non-holonomic differential-driven mo-
bile platform. The platform was equipped with two conveyor
belts in order to carry boxes and unload them to a docking
slot on an assembly line. To drive smoothly, the motion space
was constraint to only positive motor velocities. The path to
approach the goal position was computed using a fourth-
order polynomial equation and followed using Frenet frame
representations. To localize the robot, the safety LIDAR was
used to detect two reflecting markers. This measurement was
fused with a Kalman filter to determine the current position
of the robot, that was used to control the robot on the path.
The two modalities from odometry and the LIDAR were
fused using a distance weighted way in order to compute
the overall measurement noise covariance matrix that was
used to compute the Kalman gain. The results in Sect. IV
showed that a precise docking was possible and the loading
and unloading could be performed successfully.
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Fig. 8. Application scenario – The mobile plattform F5 is approaching a docking station and delivers precicely two boxes.
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[18] G. Indiveri, A. Nüchter, and K. Lingemann, “High speed differential
drive mobile robot path following control with bounded wheel speed
commands,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2007, pp. 2202–2207.

[19] A. Micaelli and C. Samson, “Trajectory tracking for unicycle-type
and two-steering-wheels mobile robots,” INRIA, Research Report RR-
2097, 1993.

[20] D. Soetanto, L. Lapierre, and A. Pascoal, “Adaptive, non-singular path-
following control of dynamic wheeled robots,” in Proceedings of the
IEEE Conference on Decision and Control, vol. 2, 2003, pp. 1765–
1770.

[21] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

http://www.cotesys.org/

	Introduction
	Differential-Driven Mobile Platform
	Path Following
	Docking Problem
	Conclusions
	Acknowledgments
	References

