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Abstract— Knowledge about the static and dynamic situation
is essential for joint workspaces of human and robot. Surveilling
the joint area helps to realize a collaboration and co-existence of
human and robot. Therefore, we propose in this paper a system
that redundantly monitors the workspace to perceive obstacles
within the workspace including the human worker. We use
multiple, distributed range sensors (i.e. Microsoft Kinect) and
de-centrally pre-process the data from the sensors. These data
sets are further processed and segment and cluster unknown
objects. The gained geometric information can then be used in
the robot controller to allow the system to react accordingly.

I. INTRODUCTION

In today’s industrial applications humans and robots are

often strictly separated in space or time to preclude collisions

that may have severe consequences for the human. Both

research and industry are currently struggling to overcome

such limitations, because a large variety of applications

would benefit from a direct cooperation of humans and

robots or the co-existence of humans and robots in the same

workspace.
Due to the missing information about moving objects in

the shared environment it is possible that collisions between

the robot and other objects may occur. If such a collision

affects the human, this may have serious consequences with

usually severe injuries of the human worker. Therefore, when

humans and robots should work together as a team, the safety

of the human worker must be guaranteed all the time. One

possibility to achieve this would be to use safe hardware,

for example the DLR Light Weight Robot [1], that is able

to detect contacts with other objects.
Additionally, without sensory equipment that perceives

the environment, the cooperative teamwork between human

and robot is only possible on a very low level, since the

robot is not able to dynamically adapt to changes in the

human worker’s behavior or the environment. For efficient

collaboration between humans and robots on a peer-to-peer

level, it is necessary to observe the human’s activity and

collect information about the current situation. Based on this

information the system can evaluate the actions of the human

worker to coordinate its own tasks. Therefore, in order to

enable safe and efficient human robot collaboration, the

joint workspace needs to be perceived by several, distributed

sensors like CCD cameras, range sensors or microphones.

The information gained by these sensors builds up an internal

representation of the working environment [2]. With the help

of this environment model it is possible to avoid collisions

between the robot and other objects in the shared space [3].

Aside from that it can be used to plan the next action steps

of the robot according to the current situation, in order to

reach an anticipatory behavior of the robot [4], [5].

The aim of this work is to support collaborative human-

robot scenarios using multiple distributed range sensors

to redundantly surveil the joint workspace. The system

perceives its surroundings via the three dimensional data

sets acquired by range sensors in order to build up an

internal representation of the working environment. The

gained information can then be used to avoid collisions

between the robot and its surroundings. Since the robot is

also acting in this space, we have introduced an adaptive

suppression technique to cross out data points resulting from

the robot. Our approach distributes the workload among

different systems, fuses available views of the environment

and detects unknown objects in the working area.

II. RELATED WORK

The approach presented in [6] uses three color cameras,

each connected to a separate PC. The three PCs work

parallel and determine the position of the human worker

and the robot in the scene. This information (still in 2D)

is then transferred to a fourth computer that creates a three

dimensional model of the scene. Based on this perceived

model of the environment and a geometrical model of the

robot, the system calculates the spatial distance between the

human worker and the robot and intervenes if this distance

is too short. The disadvantage of this approach is that the

extraction of the human worker in the images is based on skin

color detection. Hence, the system can not operate properly

if the worker wears, for example, long clothes or gloves. In

addition to that, the system has no means to identify other

obstacles in the environment.

In [7] a stereo camera system is used to reconstruct the

scene in 3D. Further, 3D models of humans and robots are

used as a basis to extract features of the single elements in the

scene. Based on these features, historical data, and additional

pre-configured rules, the system tries to predict the following

state of elements in the scene. This information is used to

detect potentially dangerous situations which are resolved

by appropriate, pre-defined reactions of the robots. However,

the system can only perceive obstacles that have been defined

and modeled in advance. Thus, this approach can hardly cope

with complex dynamic scenarios and unknown obstacles.



(a) The JAHIR set-up (b) Visualization of the JAHIR set-up
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Fig. 1. Positions of the Kinect sensors in the JAHIR set-up - The Kinect devices 1-3 are installed on the scaffold surrounding the workbench (a).
The devices are also integrated into the three-dimensional simulation of the set-up (b). The view areas of the devices that are of interest for the workspace
surveillance are also highlighted in (b)

To detect all kinds of obstacles, range sensors (including

PMD cameras [8]) are more appropriate, because geometric

information is delivered directly in the three-dimensional

space for each pixel of the depth camera.

A system, that is closely related to ours, is presented

in [9], where also geometric scene data is filtered using

known foreground objects and a suppression technique for

the moving robot. Opposite to the usage of a single PMD

camera with a low pixel resolution, we are using multiple

high resolution Kinect cameras to redundantly cover the

workspace while still remaining at high update rates.

The approach presented in this paper closely related to the

system presented in [10], [11] where the shared workspace

is monitored by multiple stationary color cameras and range

sensors. The sensors are connected to multiple slave comput-

ers that pre-process the raw sensory data, detect object point

clusters, compute convex hulls for each cluster, and syn-

chronously transfer the data to a master computer. The master

server fuses the acquired information and creates a 3D-model

of the surroundings. This way it is possible to calculate the

distance between the robot and any kind of obstacle. Our

approach differs mainly in the following issues: we have

integrated an automatic extrinsic and intrinsic calibration

mechanism so that e.g. slightly moved cameras cause no

problems. Additionally, we can seamlessly add more sensors

and distribute the modules among the distributed computer

structure. Further, due to the use of Kinect devices, we have

a lot more data that needs to be analyzed which increases

the density of the overall measurement.

III. BACKGROUND

In this paper, we use the JAHIR system as platform [12],

[13]. This system has been designed as a generic robotic

system to analyze and show a variety of concepts regarding

collaboration aspects between human and robot. As depicted

in Figure 1 (a), a standard position controlled industrial robot

is placed on a working table. Human and robot can jointly

use a workbench and partly share the same workspace. In

this way, both human and robot have areas where they can

work for their own and on the other side where both partners

can work together. Hence, human and robot are brought

closely together for a diversity of collaborative assembly

applications.

In a shared workspace, collisions need to be avoided for

static (for example the workbench) and dynamic (i.e. moving

obstacles) objects. In order to surveil the entire shared area

of human and robot in any situation, multiple sensing devices

are required that capture the scene from different points

of view. A good and redundant coverage from different

directions is necessary to be able to gain information about

the surrounding even if obstacles are occluded in one or more

cameras.

As depicted in Figure 1, we have used in this paper

three Kinect devices. To reach a good coverage of the work

environment two Kinects are mounted left 1 and right

2 of the worktable, both at a height of 2m on the cage

surrounding the workspace. The third one 3 is fixed to a

crossbar directly above the table in order to perceive the

environment from a bird’s perspective like it is visualized in

Figure 1 (b).

It has turned out that this arrangement of the Kinect

devices is a good choice for surveilling the jointly used

workbench of human and robot, as most of the human’s

work area can be monitored without having occlusions in all

cameras. This arrangement has been chosen heuristically. A

mathematical solution to reach an optimal sensor placement

is e.g. presented in [14].

Since the robot controller has a dynamic internal environ-

ment model with which distances can be computed, it can

avoid collisions in a reactive way as presented in previous

work [3]. Additionally, every sensing or processing unit can

add, update or remove objects in the internal representation

via a defined communication channel. Please refer to [3], [2]

for further details.

IV. APPROACH

The surveillance component is supposed to be flexible,

extendable and distributable. Hence, we have divided it into

several components, that are connected via the network. All

modules can be started distributed on different machines.
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Fig. 2. Extract of the overall system architecture. The Calibration Server

channel enables communication between the Camera Calibration tool and
the centralized Calibration Server. Further, the Point Sensor communicates
with the Calibration Server via this channel to request its calibration
parameters. The acquired point clouds are interchanged between the Point

Sensor modules and the Point cloud processing module via the Point Sensor

channel. The Point cloud processing module broadcasts the detected objects
via the Scene channel. Both the Point Cloud Viewer and the Point Sensor

subscribe to the Robot update channel. The Robot Controller broadcasts the
current joint positions of the robot via this channel

Figure 2 details the information flow between the modules

(Calibration Server, Camera Calibration, Point Sensor, Point

Cloud Viewer, Point Cloud Processing) and the other com-

ponents.

A. Automatic calibration of sensors

A Calibration Server acts as central entity for calculating

and publishing the poses of the cameras in the scenario.

It allows both intrinsic and extrinsic camera calibration for

diverse calibration patterns (e.g. chessboard patterns, circle

patterns, ring patterns, etc.) and different types of cameras.

Supplementary, point clouds from different sensors are reg-

istered to reduce alignment errors caused by inaccuracies

during the calibration process. The transformation between

an initial and the registered point cloud of a sensor is used

to update the sensor’s extrinsic calibration.

Since the RGB and depth image streams provided by the

OpenNI driver are pixel aligned, the Kinect devices can be

easily extrinsically calibrated one of the integrated sensors

(infrared sensor or RGB camera). In the set-up a regular

chessboard pattern is used for extrinsic calibration, where

one corner square contains a red circle to mark the world

origin. At start-up of the camera modules, the camera can

extrinsically calibrate themselves and find automatically their

position within the world. Hence, it is inherently possible to

attach and add more sensors to add more information and

data sources.

B. Local sensor data pre-processing

The pre-processing of the raw sensory data of a single

range sensor is implemented in the Point Sensor module us-

ing OpenCL with an extensive use of the graphics hardware.

The main task here is to detect objects in the surroundings,

which can form obstacles for the robot. At start up of the

system a model of the static environment (background model)

is computed by averaging multiple depth images along with

the average standard deviation for each measurement point to

obtain an estimate for the noise behavior of the sensor. This is

especially of interest if multiple Kinects are used, because the

measurement noise of the depth estimation increases when

the projected patterns of multiple Kinects overlap (see Fig.3

for an example).

(a) One active Kinect (b) Three active Kinects

Fig. 3. Usage of multiple overlapping Kinects - Both point cloud data
sets were acquired by one Kinect. Compared to (a), the point cloud in (b)
contains more measurement noise due to the illumination of the scene with
multiple Kinects

Additionally, using multiple Kinect devices the point cloud

of a single sensor becomes less dense and contains fewer

points. This is shown in Figure 4 where up to three Kinects

are switched on. Despite the drop of about 15% of points

in one sensor, we get approximately 3×200.000 data points

with 3 Kinects switched on, which is quite impressive.

For the determination of the dynamic environment the

system then differentiates whether a point originates from

an unknown object based on the background model and the

average standard deviation. A point di in the depth image

is defined to belong to the static environment if its value is

within the deviation interval backgroundi ± σ̄.

The system uses bounding box tests for the determination
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Fig. 4. Increasing image noise. The graph shows the progression of the
number of acquired points of one Kinect device over time if none, one or
two additional Kinects are turned on and illuminate the scene. One can see
that if two additional sensors are up and running 3 , the number of valid

points is reduced by about 15% compared to the original value 1



Device Empty Robot Human Human and
scene active active Robot active

Left 17.76 4.02 1752.4 1786.1

Right 23.87 16.17 3428.6 2678.1

Top 13.86 8.70 10141.9 8519.4

TABLE I

TRANSMITTED POINTS PER FRAME - THE TABLE SHOWS THE

AVERAGED AMOUNT OF POINTS TRANSMITTED IN DIFFERENT

SCENARIOS

of the dynamic environment. An offline created environment

model contains the bounding boxes of the robot model

and the model of the workbench. The bounding box of

the workbench can be extended in each direction to cope

with sensor noise. Additionally, the robot is also suppressed

by applying bounding box test of the robot bodies. The

bounding boxes of the robot are statically enlarged , because

of protruding wires on the robot’s links. This makes it

possible to remove all points from the acquired point cloud

data set that originate from the robot’s surface or from the

cables. This works fine as long as the robot remains in its

position. If it moves, the bounding boxes of the robot are

updated correctly, but the depth images are lagging behind

due to the depth reconstruction within the Kinect device and

thus not all points can be reliably filtered (see Figure 5).

By applying all filters to remove the known environment,

the number of points that need to be broadcasted for further

processing can be reduced to a minimum. Table I shows

how many points are filtered by a Point Sensor instance,

keeping in mind that the Kinect acquires more than 300.000
points per frame. The point transfer rates show that there is

almost no data traffic if nothing happens in the workspace.

If the human worker is active, the number of points rapidly

increases but stays at a low percentage (about 3%). It is also

notable that fewer points are transmitted if only the robot is

moving due to the dynamically enlarging bounding boxes.

Fig. 5. Camera delay - The robot is moving downwards in the image.
The bounding boxes of the robot are updated correctly in time but they
do not fit with the information gained by the Kinect device as the camera
introduces a short delay. This delay is caused by the internal processing of
the camera

To resolve this problem, a mechanism has been integrated

that dynamically enlarges the bounding boxes of the robot if

it is moving.

C. Global data consolidation and clustering

The Point Cloud Processing module combines and pro-

cesses the point clouds published by several Point Sensors

in the distributed set-up using PCL [15]. On the basis of

the fused point cloud, the object point clusters are extracted

and for each detected object a convex hull is computed.

Afterwards, the current object hulls are broadcasted via the

Scene channel to integrate them into the global environment

model. Additionally a Point Cloud Viewer for displaying both

raw and processed point cloud data has been developed. It

visualizes the point clouds broadcasted by the Point Sensors,

the extracted object point clusters and the convex hulls [16].

The point clouds are sampled down utilizing a fixed width

octree structure. Since the resultant point clouds contain

only the occupied voxel centroids, this approach affects the

accuracy of the entire system: A point, whose distance to the

centroid of its encapsulating cube is maximum, is mapped

to the centroid. The point is shifted by ca. 0.65 cm in this

worst-case situation. Hence, a computed convex hull can be

smaller than the original object. But since the accuracy of the

depth measurement is only about one centimeter, the impact

of this technique on the overall system accuracy is only little.

The clustering method to find connected objects uses ra-

dius searches to group the points into clusters. We have used

a distance threshold of 3 cm as a compromise between object

point clusters being too small, and thus may approximate

only a part of an object, or being too liberal and spacious.

So it is advisable to choose this parameter generously. Note

that if the radius is too small, an obstacle may be split into

two clusters and the resultant convex hulls may not overlap.

In addition to that, an object point cluster must contain at

least 30 points, otherwise it is ignored. A fused point cloud

of all three Kinects in the set-up contains outliers which can

artificially enlarge an object. The minimum cluster size takes

this blur-effect into account. In a test scenario, the system

was able to detect a cardboard box (6×10×4 cm) standing

or lying on the workbench.

The computation of the convex hull for a given point

set approximates the surface of the underlying sampled

object. Since all sampled points are located on or inside the

convex hull, this structure enables efficient collision tests.

The convex hull approach additionally compensates missing

data from object surfaces.

V. EVALUATION

The used system consists of three computers, each having

a INTEL i7-2600 3.4GHz processor, 16GB RAM and a

Nvidia GeForce GTX 560-1GB graphics card. Two of the

Kinects are connected to the first PC, the third one is

connected to the second PC, because each Kinect device

need to be connected to a separate USB controller and the

PCs used have only two. The Point Cloud Processing module

are also executed on the first system. The third PC is used to

control the robot and to broadcast the current joint positions.



A. Data acquisition and pre-processing

The workspace surveillance component perceives the en-

vironment through multiple range sensors. Each Point Sensor

instance publishes the acquired information via the Point

Sensor channel. The performance of a Point Sensor is limited

upwards by the update rate of the used sensing device. The

Kinect device acquires up to 30 frames per second. Since the

computation time for a single frame depends on the amount

of points which are in the inside of the observed area, the

performance of the system (i.e. the frame rate) may vary over

time, depending on the number and volume of the objects

in the scene. In addition to that, as each device captures the

scene from different viewing directions, the performance is

also different for each Point Sensor.
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Fig. 6. Data acquisition - (a): Points per sensor over time. (b): Computed
frame rates per sensor over time. (c): Transfer rates per second over time

The first graph in Figure 6 shows the number of points

per frame and range sensor over time. During the first 18
seconds the workbench is empty and the worker is outside

of the observed area (I). The following sequence (II, sec. 18
to 50) contains a short test if all sensors are up and running.

After that, the worker performs an example assembly task

where the robot fetches required parts and hands them over

to the human worker (III). At about t = 95 s, the worker

fetches a toolbox, searches for the right tool and puts the

box away again.

The frame rates of the Point Sensors are given in the

second graph of Figure 6. The Kinects mounted left and

right on the scaffold have almost constant at about 30
frames per second (Ø 29.9FPS). The frame rate for the

third Kinect varies more over time, but as the average is

at about 29.0FPS, it is also near the maximum attainable

performance. The reason for this deviation is, that the third

Point Sensor needs to publish the point clouds over the

network while the other two communicate directly over a

localhost connection.

The third graph in Figure 6 shows the progress of the

network traffic over time in kilobytes per second. The

network traffic is proportional to the number of published

points. In the example scenario it is always below 10MByte/s

and therefore within the bounds of what is manageable by

modern network cards.

B. Point cloud processing

As described previously, the task of the Point Cloud

Processing module is to combine the most recent point

clouds of the Point Sensors, downsample the merged point

cloud, extract the object point clouds and compute the convex

hull for each cluster. The evaluation presented in this section

is based on the example scenario which was introduced in

the previous part.

As depicted in Figure 7, the large size of the merged

point clouds would make it difficult to reach real time

performance when searching for object point clusters. By

constructing a downsampled version of a point cloud, the

number of points is reduced(first and second graph). The

frame rate of the system (third graph) represents the number

of frames processed by the clustering of the Point Cloud

Processing module. This includes downsampling the point

cloud, extracting object point clusters and computing the

convex hulls.

The performance of the clustering directly depends on the

size of the acquired point clouds. In the presented scenario,

the system was able to publish a new set of detected objects

after 100ms at the latest (i.e. in the case of having the worst

update rates with 10FPS at t = 40 s). In the periods where

the human worker is actively operating in the monitored

space, according to the measurements, there are at least

10.000 points per operating cycle that are processed by

system. If there are more than 40.000 points per frame, the

system’s frame rate collapse to 10 to 15 frames per second,

otherwise it is more or less constant at 30FPS.

The frame rate also depends on the number and size of the

object point clusters. This effect can be seen in the graphs for

example at about t = 148 s: Although the number of points

is comparable with the point cloud size at t = 40 s, the frame

rate is only at around 10FPS. The number of clusters makes

the difference here (4 clusters compared to 2).

In the latter two cases, there is either a lot of activity or

there are big obstacles within the workspace. In these cases,

the robots’ velocity should be reduced. Hence, with a reduced

velocity, the reduced framerate can be compensated.

VI. CONCLUSION

In this paper we have presented an approach for mon-

itoring of the joint workspace in human-industrial robot

collaboration scenarios. The developed system uses multiple,

distributed range sensors (MS Kinect) to perceive unknown

objects and obstacles in the work area of the robot. To
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Fig. 7. Point cloud processing - From top to bottom: Point cloud sizes
over time; Number of processed frames per second; Number of detected
object point clusters over time

ensure efficient and reliable processing of the acquired data

sets, the system is divided into several, decentrally organized

components. Objects detected by the system are broadcasted

without any additional overhead or adaptions and can be used

to control the robot velocity using the distances or to avoid

collisions.

The system finds and segments individual object point

clusters in the acquired point clouds. For each detected object

point cluster, a convex hull is computed which approximates

the shape of the underlying object. The detected objects are

then integrated into the global environment model. With the

help of the integrated filtering methods, the system is able

to distinguish between the static environment, the robot and

other obstacles in the surroundings at high update rates.

Although the evaluation of the system looks promising,

there is still much room for improvements. A major challenge

of the developed system is that the computed convex hulls are

sometimes too large or too small and thus may give only a

rough estimate of an object’s surface. Additionally, the object

geometry might be arbitrarily big in parts of total occlusion

in all cameras. As this problem also affects the approximation

of the human worker, future work should concentrate on this

issue.
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