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Abstract— A test bed is developed for facilitating real time
experiments with mobile robots. The setup consists of a wheeled
mobile robot that moves on a platform, a computer that controls
the robot and an overhead camera that closes the loop between
these devices. Several Matlab routines were created for reducing
the programming burden of designing an experiment. The
environment in which the robot moves can be easily changed
by placing colored convex regions (obstacles) on the platform.
The interface between Matlab and the test bed is ensured by
image processing functions that detect the environment map
and the robot’s position and orientation, and by functions for
moving the robot. Thus, real experiments can be performed
for various planning algorithms for which implementations are
available. The functionality of the provided toolbox is enhanced
by routines that plan the movement of a mobile robot based on
cell decompositions, and a supporting experiment is included.

I. INTRODUCTION

The application range for wheeled mobile robots increased

rapidly over the last decades. Potential application can now

include [1]: service robots for elderly persons, surveillance,

automated guided vehicles for goods transfer, land mine

detection or planet exploration. Any application involves

perception of the environment, localization, map building,

path planning and control.

Planning collision free paths for mobile robots is a sig-

nificant research topic. The goal is to obtain a trajectory

from a start position to a desired one while avoiding the

objects that are part of the environment. Different algorithms

were proposed to solve this type of navigation problems. The

majority of these algorithms are usually tested and validated

through simulation. A very challenging aspect emerges when

their validation in real environments is needed. Multiple

difficulties appear when measurements over approaches per-

formance and experimental results comparison are needed.

Software tools allow users to develop or/and test, through

simulation, navigation algorithms for mobile robots. Unfor-

tunately, most are centered on having a reliable communi-

cation between host and robot, and lack flexibility when

dealing with combined path planning algorithms [2], [3].

An important Matlab toolbox was developed by Corke [4]

and allows the user to simulate real problems rather then

trivial examples. Among the multitude of simulators for

wheeled mobile robots reported in the literature, only a

few are combined with an experimental platform. A soccer

targeted platform is described in [5]. Programs are loaded

and run on the robot, while the low battery autonomy
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robot must be charged repeatedly. In [6] an Internet-operated

test bench (named Teleworkbench) for simulating robotic

experiments is proposed. The architecture is complex, but

the programs must be located in a place reachable by the

Teleworkbench server, thus making it impossible for remote

users to download code. Experimental results for multi-robot

systems are reported in works as [7], [8], but the robotic

platforms and the supporting software tools are dedicated to

specific approaches.

Our work aims to design and build an experimental frame-

work for mobile robots, which can be used to test multiple

types of path planning algorithms developed by remote users.

The framework is composed from an experimental platform

and a navigation Matlab toolbox for wheeled mobile robots.

In order to construct our test bed, both global information

regarding the environment and mobile robot position are

extracted through image processing from data provided by

an eye in the sky type video camera. The representative

path planning methods for static environments are: visibility

graphs, Voronoi diagrams, grids, cell decompositions, po-

tential fields [9], [10]. Each one has advantages and disad-

vantages, and for the current experiments we chose a cell

decomposition method. This approach divides the free space

of the environment into cells, represents the connectivity of

the free space by the adjacency graph of these cells, and

finds a collision-free path by a graph search.

The remainder of the paper is organized as follows. The

design of the experimental platform is revealed in section 2,

and the Matlab navigation toolbox is discussed in section 3.

Experimental results are presented in section 4, conclusion

and future works constitute the topic of section 5.

II. EXPERIMENTAL PLATFORM

We first outline the assumptions we make for all the ex-

periments to be performed, and then we present the platform

structure.

Assumptions:
We consider a mobile robot evolving in a rectangular-

bounded environment where some regions of interest (e.g.
obstacles) exist. The regions are disjoint, and any region has

a convex polygonal shape.

The robot has a differential-wheel driven structure [10], i.e.
the left and the right wheels can spin at different speeds, this

leading to rotations in place, straight movements, or curved

trajectories. The robot control inputs are the wheel speeds,

which can be wirelessly sent to the robot from an external

computer.

Moreover, the size of the robot is small with respect to

environment bounds. As assumed in multiple planning meth-



ods, the robot position and orientation should be available

for closing the control loop. Also, the environment map is

needed, this consisting of positions of the existing regions.

Platform:
For accommodating the above assumptions, a Khepera III

robot is used [11]. This robot is circular, with diameter

of approximately 13 cm, height of 7 cm, and two traction

wheels that are diametrically placed and can be indepen-

dently controlled. It can communicate via Bluetooth with

a computer. Among various commands, the wheel speeds

are sent by the computer, and two PID controllers ensure

that each wheel turns with the desired speed. The robot

has multiple proximity and odometry sensors, and possible

hardware extensions (as a board for autonomous driving, a

gripper), but they are not of interest for this presentation.

For acquiring the robot position, we cover it with a white

disc and we use a fixed overhead camera connected to the

computer that controls the robot. The robot orientation is

found by placing an off-center black dot on the white disc,

towards robot’s front side.

Since we want the robot to be small compared with the size

of the environment, we use a high-definition webcamera with

a wide viewing angle (namely Microsoft LifeCam Studio).

The camera height was chosen such that the acquired image

is clear enough, without distortions or color fading, and

this yielded a platform size of almost 4 by 2.25 m. For

diminishing light reflection, the platform has a black mate

finish. Figure 1 shows the experimental test bed we built.

The regions from the environment can be easily made

from colored paper or cardboard. White regions are not

used for avoiding confusions with the robot, and currently

red, green and blue colors can be correctly detected despite

environmental light variations.

III. MATLAB TOOLBOX

This section briefly presents the software routines we de-

veloped for allowing experimental tests on the described plat-

form. These routines are grouped in a Matlab [12] package,

and their purpose is to provide some general functionality

such that different experimental tests with mobile robots can

be constructed without a programming burden.

Subsection III-A describes the strategies used for recog-

nizing the robot position and orientation, and for moving

the robot towards a specific point (without accounting for

any obstacle). Subsection III-B focuses on detecting the

environment map (vertices of each region). After this in-

terface with the platform is presented, section III-C adds

some functionality that allows a move to target and obstacle

avoidance experiment.

A. Robot position and control

Snapshots from the camera are captured by the computer,

and by inspecting multiple sets of such images we defined

RGB color component ranges for each color we handle.

The small number of region colors yielded a calibration

that is robust with respect to light variations, and thus each

experiment can be performed without any prior calibration.

webcam

platform

robot

Fig. 1. Experimental test bed that consists of a black platform on which
a Khepera III robot moves, and a surveying web camera.

Once a snapshot is captured from the camera, the robot

information is found by following a few simple steps:

(i) White regions are found based on the above mentioned

color component ranges;

(ii) Possible perturbing regions with small area or non-

circular are ignored, leading to a single remaining

region;

(iii) The centroid of the detected region gives the position

of robot’s center in the environment reference frame;

(iv) The white region has a black hole, whose position is

also returned for obtaining the robot orientation.

Based on the robot position, we develop a procedure for

moving a specific point on the robot to a given position

in the environment reference frame. There are two standard

approaches allowing such a movement. The first one rotates

the robot until its orientation is aligned with the direction

towards the target point, and then it moves the robot on a

straight line until its center is close enough to the target. Of

course, a feedback strategy is needed for correcting devia-

tions from the straight line. We use the second approach,

which is inspired by [13], and it allows the off-center black

dot from the robot to be regarded as a fully-actuated robot.

In the following, the black dot is called the reference point,

and its displacement from robot’s center is denoted by ε .

By denoting with u the desired bi-dimensional speed vector

for the reference point (pointing from the reference point to

the target one), by θ the robot’s orientation, and by r the

distance from its center to a wheel, the necessary speeds for

the left and right wheels, vL and vR, are found from (1):



[
vL
vR

]
=

[
1 −r
1 r

]
·
[

1 0

0 ε

]−1

·
[

cosθ −sinθ
sinθ cosθ

]T

·u,
(1)

Expression (1) comes from adapting for differential-wheel

robots the input-output regulation problem solved in [13] for

unicycle-type robots. By restricting magnitude of u such that

‖u‖ ≤ Vmax
ε√

ε2+r2
, the resulted wheel speeds are guaranteed

to be included into a robot-specific interval [−Vmax,Vmax].
Thus, for moving the reference point of the robot towards

the target position, we iteratively capture an image, find

robot’s position and orientation and apply wheel speeds given

by (1). The iterations are stopped when the reference point

is close enough to the target one. The resulted motion is

a straight line segment for the reference point, yielded by

various trajectories for wheels. We mention that an advantage

of this method over the method consisting in robot rotations

and straight movements is its simplicity, since (1) includes

a feedback control based on the actual robot position and

orientation. As a disadvantage, the reduction of the robot to

its fully-actuated reference point is done by increasing the

obstacles slightly more than when the robot is reduced to

its center (more explanations on this procedure are given in

subsection III-C).

B. Environment map

1) Point Features: A point feature is a position that has a

high image gradient in orthogonal directions. This condition

may be fulfilled by single pixel that has a significantly

different intensity to all of its neighbours or by a pixel on

the corner of an object. Since corners are quite distinct they

have a much higher likelihood of being reliably detected in

an image sequence. Many algorithms have been proposed

to detect point features [14]. For our application the Harris

detector [15] was chosen. For this detector a point feature

is considered being a location in the image where the local

autocorrelation function has a distinct peak. Given an image

I(u,v), the autocorrelation matrix is computed from:

A = ∑
u

∑
v

g(u,v)
[

I2
u IuIv

IuIv I2
v

]
(2)

where g is the Gaussian kernel and Iu, Iv are the gradients

on the u and v directions. The main idea for detecting point

features is to analyze the function:

C(A) = det(A)−δ trace2(A), (3)

where δ ∈ R is a tunable sensitivity parameter. In order to

establish the influence of δ let the two eigenvalues (which

in this particular case are also the singular values) of A be

σ1, σ2. Then:

C(A) = σ1σ2 −δ (σ1 +σ2)
2, (4)

and for δ being small, both eigenvalues need to be big

enough to make C(A) pass a threshold, thus only point fea-

tures are detected. Typically the corner strength is computed

for every pixel resulting in a corner strength image. Then

non-local maxima suppression is applied to retain only values

that are greater than their immediate neighbours. A list of

such points is created and sorted into descending corner

strength. A threshold can be applied to only accept corners

above a particular strength, or above a particular fraction of

the strongest corner, or simply the strongest N corners. The

algorithm proved to be robust due to its high reliability in

finding L-junctions and its good temporal stability [15].

2) Region Detection: Information regarding the environ-

ment structure is obtained via a visual sensor. The region

detection algorithm starts with the analysis of the image

acquired by the overhead camera. Point features are extracted

using the technique presented in III-B.1. The resulting set

contains a large number of point features which must be

associated with disjoint regions. These disjoint regions are

obtained after each RGB components is segmented and a

morphological operation over the resulting binary images is

applied.

Once the point features are associated with disjoint re-

gions, the assumption regarding the convex polygonal shape

of the regions is employed. In order to increase the com-

putation performance, a filtering stage is needed. This filter

removes from each disjoint region the point features that do

not modify the convex area of entire set more then a given

threshold (5% was used in our experiments). The remaining

point features are the ones that define the convex shape of

each region.

C. Extended functionality

We intend to include in the developed toolbox multiple

functions that can be useful when solving problems for mo-

bile robots. Until now, routines that allow a motion planning

problem via cell decomposition methods are available. The

classical motion planning problem requires that a target posi-

tion is reached by the robot’s reference point, while obstacles

(regions from environment) are avoided [9], [10]. Among

different approaches proposed for automatically solving such

problems, cell decompositions play an important role.

A cell decomposition is a partition of the free space

(space not covered by obstacles) into convex regions having

the same geometrical shape [16]. For planning the robot, a

graph is constructed from the cell decomposition, where each

node corresponds to a cell, and arcs correspond to adjacency

relations between cells. The start cell is the one containing

the initial position of the reference point, and the destination

one contains the target position. A graph-search algorithm

is employed for finding a sequence of cells to be traveled,

and then the robot trajectory is found by linking the middle

points of line segments shared by successive cells from the

sequence. The initial and final position are linked at the

beginning and the end of the obtained trajectory, and the

result is a collision-free trajectory (composed from connected

line segments) for the reference point. A simple example

is given in Figure 2 for illustrating the main steps of this

method when planning a point robot.

The control of the reference point on each line segment

from the trajectory is done as in section III-A. Although the
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Fig. 2. Main steps for planning a fully-actuated point robot based on cell
decompositions. (a) Environment with two obstacles, free space decomposed
in triangular cells, start position marked with ♦, target position marked
with X; (b) Corresponding adjacency graph and a path linking the start and
the destination nodes; (c) The robot trajectory corresponding to the graph
path (blue); the middle points of line segments shared by adjacent cells are
marked with red.

reference point avoids obstacles, this is not yet guaranteed

for the whole robot. For doing this, the robot must be reduced

to its reference point prior to cell decomposition. This

reduction is done by first over-approximating all possible

rotations of the robot around its reference point with a

convex polygon. Then, this convex polygon is slid along

edges of every obstacle, and the positions spanned by the

reference point define an increased obstacle. Similarly, the

environment bounds are decreased, and the robot is reduced

to its reference point. In our case, all robot rotations around

its reference point yield a disc with radius ε + r, whereas

when the robot movement is done by alternating rotations

in place and straight movements, the disc radius is r. More

details on reducing the robot to a point and on planning the

motion by using cell decompositions can be found in [9],

[10], [17], [18].

We include in our toolbox a method for increasing the

obstacles such that the robot is reduced to a reference point,

some Matlab cell decomposition routines reported in [19]

and a Dijkstra graph search algorithm. Also, we include

a method for imposing arc weights based on the expected

traveled distance between adjacent cells. These functions

can be easily combined for creating a motion planning

experiment for the Khepera III robot, as illustrated in section

IV. We intend to add more functions for planning robots

based on potential functions, on Voronoi diagrams or on

high-level motion specifications expressed in linear temporal

logic formalism.

IV. EXAMPLE

The facile usage of the developed test bed is illustrated

in this section by conducting a motion planning experiment

as explained in section III-C. The motion planning strategy

is based on the following steps, whose implementation is

included in the developed toolbox:

1) Image acquisition;

2) Image preprocessing and point features detection;

3) Disjoint regions detection and point features filter;

4) Robot reduction to reference point;
5) Triangulation (cell decomposition) and trajectory plan-

ner;

6) Trajectory follow based on robot’s position feedback.

Figure 3(a) shows the initial deployment of the Khepera

III robot in an environment cluttered with five obstacles (the

red regions). The user selects with the mouse the target

position for the reference point (marked with “X”). Figure

3(b) shows the outcome of the algorithm that recognizes the

environment map (section III-B): the white robot is ignored,

the background is removed, and the Harris corner detection

yields the yellow points as vertices for every region. By

removing the insignificant yellow points we end up with

the corners marked with asterisks. In Figure 3(c) we depict

the increased obstacles and shrunk environment bounds for

reducing the robot to a point. These increased obstacles were

obtained by over-approximating the robot rotation around its

reference point with an eight-sided regular polygon.

In this environment, a fully-actuated point robot starting

from the initial position marked with star should reach the

final position marked with X. For finding a trajectory, in

this example we use the cell decomposition method, briefly

explained in section III-C. The triangular decomposition

and the found trajectory are illustrated in Figure 3(d). The

obtained trajectory is also represented in Figure 3(e), as

the path that should be followed by the reference point.

This trajectory is formed by line segments connected in the

points marked with blue asterisks, and it is followed by the

reference point by iteratively applying the procedure from

section III-A. Some snapshots taken by the overhead camera
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Fig. 3. Main steps of a motion planning experiment based on cell decompositions. (a) Environment with five obstacles (red), initial position of robot
(white), and target position of the reference point (yellow X). (b) Corner points of each detected region are marked with yellow points, and from these
the important vertices are emphasized with asterisks. (c) The grey area around obstacles and environment bounds mark their modification such that the
robot is reduced to its reference point. (d) Triangular decomposition of the free space obtained after reducing the robot to a fully-actuated point, and the
free-collision trajectory that should be followed. (e) Trajectory of the reference point overlapped on the initial environment snapshot. The trajectory is
followed by iteratively moving the reference point towards the blue asterisks, as in section III-A. (f-h) Some platform images acquired by the overhead
camera during the motion.



during the motion are given in figures 3(f-h), and a movie

of this experiment can be found at [20].

A Matlab script that automatically plans the robot move-

ment and controls it along the found trajectory is included in

the developed toolbox, available for download at [20]. This

script basically combines the routines explained in Section

III, and the running time on a medium-performance laptop

was less than 5 seconds until the trajectory is found. The

robot speed was around 10 cm/s, based on the sampling time

introduced by image acquisition and processing for finding

robot’s position.

V. CONCLUSION

The paper reports an experimental setup that can be used

for testing and illustrating planning algorithms for which a

feedback on robot’s position and orientation is necessary. We

employ a Khepera III robot that is wirelessly controlled by a

computer, and an eye in the sky video camera that provides

images needed for detecting the current robot position. The

environment is cluttered with convex polygonal obstacles,

and it can be easily defined by placing colored papers on the

platform on which the robot moves. Matlab routines were

developed for acquiring and simplifying the environment

map, for finding robot’s position and for moving it to a

desired point. The provided toolbox includes functions that

allow an experiment where the robot has to automatically

reach a target point by avoiding obstacles. The movement

is planned based on reducing the robot to a fully-actuated

point and on finding a collision-free trajectory by using

cell decompositions. A supporting example is presented,

and future work will be conducted towards extending the

toolbox applicability by including multiple routines that may

be useful for planning mobile robots.
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