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Abstract—This paper considers the problem of controlling the
complexity of the state space abstraction of a deterministic
switched affine system, which must satisfy a rich specification,
expressed as an Linear Temporal Logic (LTL) formula. We
propose a probabilistic approach to the state space abstraction
problem that enables a trade-off between complexity and accu-
racy of the abstraction. Instead of a deterministic finite transition
system (DFTS), the state space is abstracted to a Discrete
Time Markov Chain (DTMC) using a regular state space
partition. The transition relations between the discrete states
and the corresponding probabilities are computed based on the
Chebyshev radius of the intersection between one-step reachable
sets and discrete states. The resulting abstraction is complete,
but not minimal, i.e., it introduces some false transitions. In
order to refine the abstraction, Monte Carlo Simulation is used,
which yields a confidence measure for every transition, besides
the assigned probability. Given the product automaton (PA)
between the DTMC and Büchi Automaton (BA) associated with
the LTL formula, a (optimal) path generation algorithm and a
controller synthesis algorithm complete the proposed solution.
The application of the developed methodology to a benchmark
case study from the literature, i.e., airplane fuel balancing,
demonstrates the effectiveness of the approach.

Index Terms—Control System Design, Hybrid Systems

I. INTRODUCTION

Temporal Logic [1] provides a formal way to specify and
verify the correctness of computer programs and digital cir-
cuits. Recently, due to its expressivity, temporal logic has been
used as a specification language also in other areas than the
aforementioned ones - such as robotics [2], [3], system biology
[4], [5] and dynamical systems [6], [7].

In this work, we consider the following problem: given a
deterministic switched affine discrete time system and a linear
temporal logic (LTL) formula φ over a set of linear predicates
in the state space of the system, construct a state space
abstraction with a predefined complexity and a control strategy
such that the system trajectories satisfy the specification. In
this work, the complexity is given by the cardinality of the
finite abstraction.

The classical approach to the above problem consists of two
main steps. Firstly, the dynamics of the system is abstracted
to a finite transition system (FTS) and the LTL formula
is converted to a Büchi automaton, e.g., using tools from

[8]. Then, using e.g., the tool from [6], the satisfying paths
are prescribed by the Product Automaton between the finite
transition system and the Büchi automaton. Observe that
the tool from [6] is not dealing with probabilistic systems, but
with deterministic ones. Secondly, a controller that enables a
(optimal) satisfying path is designed. In what follows we recall
the solutions from the literature to the state space abstraction
problem, to justify our approach.

A state space abstraction method was proposed in [9] based on
the following steps. Firstly, a proposition preserving partition
is devised such that for each discrete state, only one atomic
proposition is true within that state. Secondly, for each dynam-
ical mode within the switched system, an additional abstraction
is performed, based on backward reachability, in order to
obtain a finer partition. After each dynamical mode has one
list with possible transitions between the discrete states, all
partitions are merged and reachability analysis is performed
one more time for the merged partition. A minimal cell volume
is used as a termination criterion for the refinement algorithm.
Finally, a discrete planner for the deterministic transition
system obtained in the first stage is synthesized; then, the
planner is implemented by using a continuous controller that
moves the plant between discrete states using the tool from
[10]. Another method was worked out in [11], where the
aim was to compute a set of initial states such that all the
corresponding trajectories satisfy a given LTL formula. To
this end, a dual automaton is constructed by interchanging the
states and the transitions of the Büchi Automaton. Then, the
feasibility of transitions and states for the dynamical system
is checked and a further partitioning is performed based on
backward and forward reachability analysis. In [12], a deter-
ministic hybrid system is approximated with a Markov Chain
in order to avoid Zeno phenomena (the condition for which,
in a finite time interval, the (hybrid) trajectory jumps between
specific dynamic modes infinitely many times); therein, the
transitions within the Markov chain are corresponding to the
transitions between discrete states of the hybrid system. Other
works, see [13], [14] also report algorithms for constructing
a probabilistic abstraction based on Markov Chains and use
reachability analysis to assign transitions.

In this paper we also use a Markov Chain to abstract a
deterministic hybrid system, as proposed in [12], [13], [14],
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and we also use reachability analysis to assign transitions in
the resulting automaton, as done in [9], [13], [14]. However,
differently from these previous works, we focus on controlling
the complexity of the resulting abstraction. In these previous
approaches, although complexity was implicitly determined by
the imposed termination criterion, such as minimum volume
for [9], there was no possibility to quantify a priori a desired
complexity for the resulting abstraction.

The main challenge considered in this paper is therefore to
develop an abstraction method that can be used for LTL
control and that allows to a priori specify the desired partition
complexity. This feature is particularly useful for dealing with
implementation constraints present in real-life applications.

The proposed approach can be summarized by the following
steps. First, a single state space regular partition is done
for all dynamical modes. In our implementation we used a
cubic partition, but any regular partition can be used. Then,
probabilistic transition relations between each discrete state
are assigned based on the Chebyshev radius of the intersection
between one-step reachable sets and the discrete states. This
results in a transition system defined by a Discrete Time
Markov Chain. Once the transition relation is computed, the
resulting abstraction is verified using Monte Carlo simulation.
If the error introduced by the abstraction, compared with
Monte Carlo simulation, is below a given threshold, or the
partition has reached the specified complexity, the algorithm
will stop. In this way, the complexity of the resulting partition
can be imposed a priori, at the price of a trade off between
accuracy and complexity of the resulting abstraction.

After the state space discretization and the product automaton
are obtained, a path which maximizes the probability of
satisfying the specification is found. Once the path is found, a
polytope-to-polytope controller inspired from [11] is synthe-
sized; in our case, the reachability transitions between the dis-
crete states have some probabilities assigned, so the controller
synthesis problem may be infeasible. To deal with this issue,
we have developed a recovery solution for the control synthesis
problem. Other, more advanced (non-deterministic) methods
for controller synthesis could be employed. However, in this
paper we focus on reducing complexity of the abstraction
and we report a controller synthesis method for illustration
purposes mainly.

Remark I.1 A probabilistic state space abstraction problem
was previously considered also in [15]–[17] within the setting
of stochastic hybrid systems and with a different purpose.
The abstraction to a discrete time Markov chain in [15]–[17]
is done based on the probabilities of the stochastic hybrid
system, while our approach uses the Chebyshev Radius of
the intersection between one-step reachable sets and discrete
states to compute the probabilities between the states within
the resulting Markov chain.

The remainder of the paper is organized as follows. In

Section II we introduce some preliminaries and the prob-
lem formulation. In Section III, we present the solution -
the probabilistic state space abstraction algorithm; the path
generation and the control synthesis algorithms are described
in Section IV. Then, in Section V, an application from the
literature is considered: an aircraft fuel balancing system.
Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

This section contains some preliminaries on temporal logic
and the problem formulation.

a) Linear Temporal Logic: Linear Temporal Logic (LTL) is
an extension to classical logic, by adding temporal operators.
Besides the Boolean connectors like conjunction ∧, disjunction
∨, implication→ and negation ¬, LTL uses also the following
temporal operators: ”next” ©, ”until” U , ”always” � and
”eventually” 3.

Let π be an atomic proposition (a predicate) given as a
polyhedron (i.e., polyhedral set). A polyhedron in Rn is an
intersection of at least n+ 1 half-spaces:

∃k ≥ n+ 1, ai ∈ Rn, bi ∈ R, i = 1, . . . , k, such that

π = {x ∈ Rn | aTi x+ bi ≤ 0, ∀i = 1, . . . , k}. (1)

Given a set of atomic propositions Π, an LTL formula over
Π is recursively defined as follows [14]: (i) every atomic
proposition π ∈ Π is a formula and (ii) if φ1 and φ2 are
LTL formulas, then ¬φ1, φ1 ∨ φ2, φ1Uφ2 are also formulas.
Formula φ1Uφ2 means that φ2 will become eventually true
and until that φ1 is true. 3φ1 means that φ1 will eventually
become true and �φ2 indicates that φ2 is always true over all
atomic propositions the formula is defined on. Using the entire
set of LTL operators makes it possible to define complex
requirements on the desired behavior of the system.

b) Problem formulation: Consider a discrete-time switched
affine system described by:

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t) + fσ(t), (2)
σ(t) : N→ D := {1, . . . , d}; d ∈ N,

where Aσ(t) ∈ Rn×n , Bσ(t) ∈ Rn×m and fσ(t) ∈ Rn×1
describe the system dynamics and x(t) ∈ X ⊂ Rn and u(t) ∈
U ⊂ Rm are the state and applied control at time t ∈ N. The
natural number d represents the number of dynamical modes.
When σ(t) = i for some i ∈ D the ith subsystem is governing
the dynamics (2). For brevity we will use also the notation
{xt}t∈N = x0x1 . . . to denote a trajectory of the dynamical
system (2), i.e., xt = x(t) for all t ∈ N. In this work we
assume that the switching law σ(t) is generated by partitions
of the state and input spaces X and U, i.e., using the state and
input trajectories x(t), u(t), respectively. Also, external inputs
that take values in a discrete finite set may used to derive the
switching law σ(t), as illustrated in Section V.
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The specification for system (2) is given as an LTL formula Φ
over a set of predicates Π. A trajectory of system (2) x0x1 . . .
satisfies the formula Φ if the observed atomic propositions
within the trajectory satisfy the formula. So the problem
considered can be formulated as follows.

Problem II.1 Given an LTL formula Φ over a set of linear
predicates Π and the dynamical system defined in (2), find a
state space abstraction with an a priori specified complexity,
a path within the abstraction for any initial condition in the
state space which satisfies the formula and a feedback control
strategy such that the generated path is enabled.

III. STATE SPACE ABSTRACTION ALGORITHM

In this paper we abstract the state space of the system
dynamics into a given number of discrete states and afterwards
we provide a confidence index of the computed abstraction.
To this end, the state space is abstracted into a Discrete Time
Markov Chain; the partitions of the state space are regu-
lar Polyhedrons and the probabilistic transition relations are
computed based on the Chebyshev radius of the intersection
between one-step reachable sets and discrete states. Let us
define formally a Discrete Time Markov Chain next.

Definition III.1 A Discrete Time Markov Chain is a tuple
D = (S, S0, TMC , AP, L), where:

• S is the set of states;
• S0 ⊂ S is the set of initial states;
• TMC : S×S → [0, 1] is the transition probability matrix,

where
∑
s,s′∈S T (s, s′) = 1;

• AP is the finite set of atomic propositions;
• L : S → 2AP is a function labeling states with atomic

propositions (taken from the set AP).

Define next a partition of the state-space P := {Pi}i∈{1,...,N},
where each cell Pi is a polyhedron, ∪i∈{1,...,N}Pi = X and
for all i 6= j it holds that Pi ∩Pj = ∅. For a set S we use Sr
to denote the one step reachable set from S corresponding to
dynamics (2). Define an additional region, PN+1 := Xr \X to
account for the trajectories that start in X and leave it in one
discrete time step. PN+1 may be different than the empty set,
as we do not assume that X is invariant for the dynamics (2).

In this work we will use a cubic partitioning of the state
space, for an easier point location, but any regular polytopic
decomposition can be used. For each cell Pi with i 6= N + 1
the reachable set Pri is computed. Then, define the Chebysev
radius rij := ChebyshevRadius(Pri ∩ Pj) for all j ∈
{1, . . . , N + 1}. Note that the computation of the Chebysev
radius can be performed automatically for any polytope (e.g.,
using the MPT Toolbox) and it is computationally efficient.
For any cell i with i 6= N + 1 define the index set Ji :=
{j ∈ {1, . . . , N + 1} | Pri ∩Pj 6= ∅}. Then we can define the

transition matrix TMC for all pairs (i, j) ∈ {1, . . . , N} × Ji
as follows (note that self transitions are included):

TMC(i, j) :=
rij∑
l∈Ji

ril
.

Observe that
∑
j∈Ji

TMC(i, j) = 1 for all i ∈ {1, . . . , N}.
For all other possible pairs (i, j) the corresponding matrix
element is taken equal to zero, i.e., there is no transition in the
Markov Chain from node i to node j. The abstraction of the
system dynamics will not be a deterministic transition system,
but a nondeterministic transition system with probabilities on
transitions. The discretization algorithm using the Chebyshev
radius of reachable sets is presented below in Algorithm 1.

In what follows, before stating the actual algorithm we specify
the required Input data and the produced Output.

Input :

• system dynamics (2);
• input state space U;
• X - state space polyhedron;
• P - partition of X and PN+1;
• GridStep ∈ N - level for state space partition.

The GridStep number is used to split each edge of the polytope
X into equal intervals as follows: if GridStep = l, then each
edge is partitioned into 2l intervals. Hence, the total number
of regions for GridStep = l is equal to 2l×. . .×2l, where the
length of the product is equal to the state space Rn dimension.
For example, in 2D for GridStep = 1, 2, 3, 4 we will have
4, 16, 64, 256 cells respectively, using a uniform partitioning.

Output:

• TMC - Markov chain transition matrix.

Algorithm 1 Probabilistic State Space Discretization

1: RegularDecomposition(X, GridStep)*;
2: for all i = 1, . . . , N do
3: find the dynamics (Al, Bl, fl) that corresponds to Pi;
4: Pri ← ReachableSet(Pi, l,U, forward);**
5: Compute index set Ji;
6: for all j ∈ Ji do
7: TMC(i, j)← CR(Pri

∩Pj)∑
l∈Ji

CR(Pri
∩Pl)

;***
8: end for
9: end for

10: return TMC

In Algorithm 1 we have used the following functions:

• *RegularDecomposition(X, GridStep) - recursively
partitions in GridStep steps the polyhedral set X;

• **RechableSet(Pi, l,U, dir) - computes the one-step
reachable set for the polyhedral set Pi using affine
dynamics (Al, Bl, fl); dir is the direction used for com-
puting the reachable set (backward or forward); and U is
the input state space polyhedron;
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• ***CR(Pi) - computes the radius of the Chebysev ball
of the polyhedral set Pi.

In what follows, for brevity we will assign to each cell Pi a
corresponding discrete state qi. I.e., whenever the (continuous)
state xt = x(t) of the dynamical system (2) lies in cell Pi,
we consider that the abstraction of system (2) has qi as its
(discrete) state. Then (qi, qj) is a transition in the DTMC
and its weight (probability) is given by TMC(i, j).

Next, to every sequence of continuous states {xt}t∈N that
corresponds to a trajectory of the dynamical system (2), we
associate a corresponding sequence of discrete states {qjt}t∈N
where jt ∈ {1, . . . , N + 1} for all t ∈ N and which is such
that xt ∈ Pi implies jt = i.

Definition III.2 The state space abstraction, given by the
DTMC, is complete if all the sequences of discrete states
{qjt}t∈N that can be generated by trajectories {xt}t∈N of
system (2) are a subset of the sequences of discrete states that
can be generated by the transitions of the DTMC. I.e., for
all t ∈ N and for any pair (xt, xt+1) ∈ Pi × Pj that satisfies
(2) for some u(t) ∈ U, it holds that TMC(i, j) 6= 0.

Theorem III.3 The finite state abstraction model (DTMC)
constructed by Algorithm 1 is complete.

Proof: The theorem is proven by contradiction. Let x0 ∈ Pj0
for some j0 ∈ {1, . . . , N + 1} be the initial state and
let x0x1x2 . . . be the corresponding trajectory generated by
the dynamical system (2). By construction of the DTMC,
we have that x1 ∈ ReachableSet(Pj0) ⊆ Pj1 for some
j1 ∈ {1, . . . , N + 1} and hence, by repeating this reasoning
the system trajectory results in a sequence of states within
the DTMC, i.e., qj0qj1qj2 . . .. Let us assume that there exists
a pair (xi, xi+1) such that there is no transition within the
DTMC for the corresponding pair (qji , qji+1). However, this
contradicts the fact that by construction of the abstraction,
if xi+1 ∈ ReachableSet(Pji) there exists a transition from
qji to qji+1

with a certain probability. Hence, for all pairs
(xi, xi+1) it holds that TMC(ji, ji+1) 6= 0, and thus, the
abstraction is complete.

Although the abstraction is complete, it introduces also some
false transitions. In order to minimize the amount of false
transitions, the probabilities associated to the transitions be-
tween the discrete states are validated using Monte Carlo
Simulation, as specified next in Algorithm 2. Based on its
output we will be able to define an abstraction error. Monte
Carlo simulation is done as follows: for each cell Pi, a number
of state space samples are randomly generated, which results
in a discretized cell Pi with a finite number of points. Then
for each point generated in the state space we simulate for
a finite sampling of the input space Uδ . In what follows
S1 ⊕ S2 := {x+ y |x ∈ S1, y ∈ S2} denotes the Minkowski
addition of the sets S1 and S2.

Input:

• Nx - number of state space samples;
• system dynamics (2);
• Tsim - zero matrix of suitable dimensions.

Output:

• Tsim - Monte Carlo probability matrix.

Algorithm 2 Monte Carlo Simulation

1: for all i = 1, . . . , N do
2: find dynamics l active in Pi;
3: for p = 1 : Nx do
4: select xp0 ∈ Pi as initial condition;
5: compute x̄1 ← {Alxp0} ⊕BlUδ ⊕ {fl};
6: for j ∈ {1, . . . , N + 1} do
7: if Pj ∩ x̄1 6= ∅ then
8: Tsim(i, j)← Tsim(i, j) + 1;
9: end if

10: end for
11: end for
12: normalize Tsim(i, :) such that

∑
j Tsim(i, j) = 1;

13: end for
14: return Tsim

Recall that the aim of this paper is to find a state space
abstraction with a trade-off between complexity and accuracy.
A complete abstraction is computed with Algorithm 1, while
Algorithm 2 performs “random” one-step simulations, in order
to detect the false transitions introduced by Algorithm 1.

Next we can define the abstraction error

ε(i, j) := |TMC(i, j)− Tsim(i, j)| (3)

for all admissible pairs (i, j), i.e., the error between the
transition weights resulted from the state space abstraction,
using Algorithm 1, and the transition weights resulted from
simulation; then we can check if the abstraction error given
by (3) is below a certain threshold.

The results reported in the next section show that by further in-
creasing the grid step of the state space partition the abstraction
error eventually decreases. As the grid step tends to infinity, the
abstraction error tends to zero as in the limit case all transitions
will have probability one. In practice, the abstraction error can
be used as a stop criteria for increasing the grid step and as a
confidence estimator, i.e., if the average of matrix elements is
below a given threshold εsup, the abstraction is complete and
has enough accuracy.

IV. PATH GENERATION AND CONTROLLER SYNTHESIS

Once the state space abstraction was computed, a satisfying
path with respect to the given LTL formula must be generated
and a controller that drives the system along the path must be
designed. Solutions to these sub-problems of Problem II.1 are
presented next.
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Path generation: The next step in solving the proposed
problem, after abstracting the state space to a Discrete Time
Markov Chain DTMC, is to find a trajectory over the gen-
erated transition system which satisfies the LTL formula Φ.
Note that in the discrete abstraction used in Algorithm 1 we do
not use any interest regions. We denote by πi, i = 1, 2, . . . , µ,
µ predicates which are polyhedral sets. In order to express
in a correct way the information about the predicates, due
to the fact that the partition is not proposition preserving,
the definition of the DTMC is enhanced with the following
function labeling description: L : S → 2AP × 2[0, 1], where
[0, 1] is the probability interval.

Thus the transitions between states have some probabilities,
but also each atomic proposition associated with each state
has some probability of existence. This is due to the fact that
the partition is not proposition preserving; for example, if a
cell Pi within the partition contains two propositions φ1 and
φ2, covering 20%, respectively 80% from the cell, that means
that L(Pi) = {(φ1, 0.2), (φ2, 0.8)}.

For finding a path in the DTMC we will construct the
probabilistic product automaton between the DTMC and the
Büchi Automaton, corresponding to the LTL formula. The
structure of a Büchi Automaton is given in Definition IV.1.

Definition IV.1 A Büchi Automaton is a tuple B = (SB ,
S0B , ΣB , →B , F ) where:

• SB is a finite number of states;
• S0B ⊂ S is a set of initial states;
• ΣB is the input alphabet;
• →B⊆ S×ΣB×S is a nondeterministic transition relation;
• F ⊆ S is a set of accepting states.

We will use an adaptation of the definition from [18] to define
the probabilistic product automaton, in which we will also
introduce the information containing the confidence of the
state space partition.

Definition IV.2 A probabilistic product automaton PA =
DTMC × B between the Discrete T ime Markov
Chain and the Büchi Automaton is a tuple PA =
(SPA, S0PA

,→PA, TPA, FPA) where:

• SPA = S × SB is the set of states;
• S0PA

= S0 × SB is the set of initial states;
• →PA⊆ SPA × SPA is the transition relation, where

((si, sBm), (sj , sBn)) ∈→PA if and only if P (si, sj) :=
TMC(i, j) > 0 and (sBm , L(si), sBm) ∈→B ;

• FPA = S × F is a set of final states;
• TPA : SPA × SPA → [0,∞) is the transition cost.

Above, the transition cost TPA is defined as follows:

TPA((si, sBm
), (sj , sBn

)) =

=− log(P (si, sj))− log
∑

π∈AP,(sBm ,π,sBn )∈→B

(L(si))

+ ε(i, j),

(4)

where P (si, sj) > 0, L(si) = (πi, p) and p ∈ [0, 1].

The transition cost uses the logarithm of the probabilities
because we want to find a path with a minimum cost, which
maximizes the probability of existence of the observable from
the LTL formula and the probability of the transitions which
can lead to a final state. The error matrix is used in the
transition cost, because we want to choose the transitions
with the most accurate probability. The product automaton
contains the observables and transitions from DTMC and the
transitions from the Büchi Automaton B. So if an accepted
path in PA is found (at least one final state is reached),
this means that the LTL formula is satisfied with a certain
probability (given by the cost), and there are controllers which
enable transitions to each state from the resulting path (also
with some probability). A path in PA and its projection into
DTMC which satisfy the LTL formula is found using tools
from [6]. After all satisfying paths are found, the one with
minimum cost is chosen; this means that the chosen path has
the maximum probability of satisfying the formula. Naturally,
other optimality criteria can also be used for selecting a path.

Controller synthesis: Next we present the controller which
represents the last step in solving Problem II.1. Recall that
the aim is to maximize the probability of satisfying the LTL
formula. First, a satisfying path starting with the current cell
is generated; then the first cell within the path is selected.
Using Linear Programming, we try to find a control action
u(t) ∈ U for the current state x(t) such that a transition from
the current cell to the intersection between the next cell in
the path and its corresponding interest region is enabled. If
an admissible u(t) is found, the next state is computed and,
the first element within the path is removed and the algorithm
continues with the next cell from the path. A path is defined
as Path := (qj0qj1 . . .) and Path(0) := qj0 , Path(1) := qj1
and so on.

If no feasible input is found the current path is discarded, the
current cell becomes the initial cell and a new path is searched
for within the PA. This is a possible recovery solution for
controller synthesis; another option is to possibly violate the
formula for one discrete time step and move to one of the other
cells, where transitions are possible from the current cell, or to
another state within the same cell, and then regenerate the path.
A transition to another cell or to another state within the same
cell will always be possible, because the sum of probabilities
over all transitions leaving any of the cells is equal to one.

To compute the control action u(t) ∈ U, we apply an
adaptation of the polytope-to-polytope control method from
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Algorithm 3 Controller Synthesis
1: t = 0;
2: Let x(t) ∈ Pjt ;Path(t)← qjt ;
3: Generate Path := (qjtqjt+1 . . .);
4: while Path 6= ∅ do
5: find dynamics lt active in Path(t);
6: find u(t) by solving LP (5);
7: if LP feasible then
8: compute x(t+ 1);
9: t← t+ 1;

10: Go to 5;
11: else
12: Path← ∅;
13: x(0)← x(t);
14: end if
15: end while
16: Go to 1;

[11]. Let x(t) be the current state, (Al, Bl, fl) the correspond-
ing dynamics, Pjt+1

the next cell in the path and u(t) a
corresponding control action. For the current state, we can
define the following set of linear equalities and inequalities
constraints in the variable u(t):

x(t+ 1) = Alx(t) +Blu(t) + fl,

HUu(t) ≤ hU,
HPx(t+ 1) ≤ hP , (5)

where matrices HU, hU and HP , hP are corresponding coeffi-
cients for specifying input constraints and state constraints (the
next state must be in the next cell in order to enable the found
path), respectively. A solution to the problem described by (5)
is found by solving the corresponding Linear Programming
problem.

V. ILLUSTRATIVE EXAMPLE: FUEL BALANCING

The application considered consists of two airplane fuel tanks
T1 and T2, as originally described in [9]. The state variables
are the two fuel volumes v1 and v2 in these tanks. The
maximum capacity in both tanks is 10 fuel units. The system
can be controlled by moving fuel from tank T1 to tank T2
by using a pump, at a maximum rate of 3 fuel units per time
step. The considered system has two dynamical modes, one
for normal operation and one for refueling mode. During aerial
refueling mode, a tank plane is flying next to the plane which
needs fuel and fills up fuel in tank T1 at a rate of 3 fuel units
per time step. Also, it is assumed that the aircraft consumes
1 fuel unit per time step from tank T2 [9]. So this system can
be described by the following model:[

v1(t+ 1)
v2(t+ 1)

]
=

[
1 0
0 1

] [
v1(t)
v2(t)

]
+

[
−1
1

]
uc(t) +

[
uin(t)
−1

]
(6)

uin(t) =

{
3, if v1(t) + v2(t) ≤ 2 and uin(t) = 0;

0, if v2(t) ≥ 8 and uin(t) = 3,
(7)

where uin(t) can be either 0 or 3, depending on the dynamical
mode and uc(t) is the controlled input. The system dynamics
equation can be written in the form (2) as follows:

σ(t) ∈ {1, 2};

A1 = A2 =

[
1 0
0 1

]
, B1 = B2 =

[
−1
1

]
,

f1 =

[
3
−1

]
, f2 =

[
0
−1

]
,

σ(t) =

{
1, v1(t) + v2(t) ≤ 2, uin(t) = 0;

2, v2(t) ≥ 8, uin(t) = 3.
(8)

The constraint on the input signal is formulated as follows: 1 0
−1 0
1 −1

[uc(t)
v1(t)

]
≤

 3
0

uin(t)

 . (9)

In order to avoid instability of the airplane, we will control
uc such that the difference between the two fuel levels will
remain low. The system must satisfy two specifications:

• always |v1 − v2| ≤ 2;
• always eventually |v1 − v2| ≤ 1.

The first specification is safety relevant and the second one is
performance relevant. Then, the atomic propositions are π1 :
|v1 − v2| ≤ 2 and π2 : |v1 − v2| ≤ 1 and the LTL formula
which must be satisfied is φ = �π1 & �3π2.

1) Abstraction Algorithm 1 - Results: In Fig. 1 we plot the
state space partition using different Grid Steps (1, 2, 3, 4).

(a) Grid Step = 1 (b) Grid Step = 2

(c) Grid Step = 3 (d) Grid Step = 4

Fig. 1: State Space partition - Algorithm 1.

In the table below, Step values represent in how many grid
steps the State Space is partitioned. For Step = 1, the
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x, y, z coordinates are partitioned in half. At the next step, the
coordinates of all resulting cells from the previous step are
partitioned again in half and so on. Time values represent the
number of seconds used for constructing the partition of the
state space and computing the transitions among the partitions;
Nr. States is the number of states of the Markov Chain obtained
using Algorithm 1. In the Monte Carlo Simulation column
there is the average error between the probability on transitions
given by Algorithm 1 and the probability on transitions given
by Algorithm 2 for both dynamical modes. The result from the
Confidence Flag column is computed using Algorithm 2 and
it states whether a certain partition has the error between the
transitions computed using Algorithm 1 and the simulations
below a given threshold or not. M1 and M2 represent the two
dynamical modes of the system - normal and aerial refueling.

After running Algorithm 1 using a grid step 1, 2, 3 and 4,
respectively, and using a threshold error = 0.007, for which the
confidence of the results are considered correct compared with
Monte Carlo Simulation, we obtained the following result:

Markov Chain Monte Carlo

Step Time Nr. States M1 M2 Confidence

1 0.11 4 0.026 0.045 0
2 0.17 16 0.014 0.020 0
3 0.23 64 0.004 0.006 1
4 0.76 256 0.0012 0.0019 1

TABLE I: Confidence results

The obtained results indeed validate the fact the the proposed
abstraction method allows for a trade-off between accuracy
and complexity and manages to yield a sufficiently accurate
abstraction with a significantly reduced number of regions (i.e.,
64) compared with the approach of [9] (277 regions).

2) Controller Synthesis: In this subsection we present the
results after applying the control synthesis procedure of Al-
gorithm 3. For each partition - GridStep = 1, 2, 3, 4 - the
simulations are done and the results are presented in Fig. 2,
Fig. 3, Fig. 4, Fig. 5 respectively.

Fig. 2: Simulation result. GridStep = 1.

The first graphic (Fuel move rate) represents the time evolution
of input uc and its polytopic constraint: 0 ≤ uc ≤ 3. The
second graphic (Difference between volumes) represents the
time evolution of the satisfaction of the LTL formula. The red
line represents the safety requirement |v1 − v2| ≤ 2 and the
black line represents the performance requirement |v1−v2| ≤
1.

Fig. 3: Simulation result. GridStep = 2.

Fig. 4: Simulation result. GridStep = 3.

Fig. 5: Simulation result. GridStep = 4.

From the verification done with Monte Carlo Simulation we
can see that only the partitions with grid step 3 and 4 are
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reliable. Hence, we can observe in Fig. 2 and Fig. 3 which
correspond to grid step 1 and 2, respectively, that even the
safety specification is violated. In Fig. 4 which corresponds
to grid step 3, the safety requirement is satisfied always and
the performance requirement is often met; in Fig. 5 the safety
requirement is always satisfied and the system performance is
high.

3) Analysis of the results: Using the algorithm from [9], the
complexity of the resulting partition can not be specified a
priori as in Algorithm 1, where the complexity of the partition
can be prespecified. The algorithm used in [9] produces a
result that satisfies the specification; Algorithm 1 produces also
a result that satisfies the LTL formula but only if the com-
plexity specified a priori gives an accurate enough partition.
Verification is done comparing the Algorithm 1 output with
Monte Carlo Simulation. In conclusion, the specification can
be fulfilled using Algorithm 1, with a prespecified complexity
with lower number of states and with the resulting partition
verified. The comparison results are summarized in the table
below:

Grid Predefined No. Obs. Formula
Step complexity states Satisfaction

1 X 4 7
2 X 16 7
3 X 64 X
4 X 256 X

TABLE II: Algorithm 1. Results

These results confirm the benefits of the proposed approach:
explicitly trading off complexity versus accuracy, as done by
Algorithm 1, can result in attaining the same performance with
less complexity.

VI. CONCLUSIONS

In this paper we have proposed a probabilistic approach to
the state space abstraction problem for deterministic systems
and temporal logic control. The main contribution was to
develop an abstraction model and algorithm that allow for
a priori specifying the desired complexity for the resulting
abstraction. As such, the proposed approach allows a trade-
off between the accuracy and complexity of the resulting
abstraction. As future research we are interested in improving
scalability of the abstraction algorithm by assigning transitions
without computing reachable sets.
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