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Abstract— One important feature of a cognitive system is
to perceive and understand its environment and to adapt its
actions to changes and unforeseen situations. In this paper, we
propose a scheme for visual surprise detection in cognitive mo-
bile robots. With the robot’s observation and a set of reference
images previously acquired near its current viewpoint, a pixel-
wise surprise trigger is computed using Bayesian probabilistic
inference techniques. With appropriate mathematical approxi-
mations this algorithm can be implemented on modern graphics
hardware which nearly allows for real-time surprise detection.
In order to refer to prior observations, a mobile robot has to be
able to re-localize itself with respect to its environment. Thus,
we also present two online image-based homing algorithms
which both facilitate the computation of location-independent
surprise triggers. Experiments show acceptable results in terms
of robust and fast detection of unexpected changes in the
environment.

I. INTRODUCTION

Cognitive technical systems need to be aware of the
environment they are acting in. Common environment rep-
resentations for mobile robots are based on geometric 3D
maps which are acquired by the agent using laser range
finders or fused from stereo vision data. These maps contain
important cues for navigation and make the robot aware of
potential collisions. 3D models of single objects are also
indispensable for grasping. In practice, cognitive technical
systems have to act like humans in dynamic real-world
environments which are permanently changing over time.
Detecting changes in the 3D world in order to update the
internal model is very challenging since the cognitive system
has to check all the points and triangles in its reference
representation for alterations. It is impossible to build up an
internal dynamic representation of the whole environment
containing all changes over time.

The agent has to learn to evaluate its perception and to fo-
cus on events which are of interest and convey some kind of
novelty. Hence, the update of the environment model has to
be attention-driven. Furthermore, changes in the environment
can be detected much faster with an appearance model than
with a purely geometry-based model. Using the appearance
for change detection, an internal virtual image is computed
which serves as a reference for the current observation. In
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the field of computer graphics, many methods exist for the
visualization of 3D models with image data. However, in
case of translucent or filigree objects it is very challenging to
acquire accurate geometric models with common computer
vision techniques.

Image-based rendering techniques ([1]) have been shown
to be very suitable for the photorealistic modeling of such
objects because the computational complexity does not de-
pend on the properties of the environment. In our approach,
we use a densely acquired set of images together with view-
dependent geometry information in order to predict virtual
images in a given viewpoint space. A necessary cue for
view synthesis is the knowledge about the positions and
orientations of the capturing cameras, which have to be
estimated. The localization algorithm we use is also purely
based on images.

Beyond that, a cognitive system which should be able to
recognize changes in the environment over time has to re-
localize itself with respect to the coordinate frame of its
internal representation. A detailed classification of visual
intensity-based homing algorithms can be found in [8]. In
[10], various methods are compared with respect to their
efficiency. Most of them are biologically inspired (e.g. [9] or
[11]). We present two structure-based “snapshot” approaches,
where the structure is based on images again. These methods
allow a cognitive system to register the captured images in
a partially seen environment.

In [4], it is shown that surprise is an important cue for the
direction of human attention to unexpected events. A variety
of image change detection algorithms have been presented
in literature ([12]). However, they all have in common that
they are only applied to images taken from the same camera
at a rigid position. For a mobile cognitive technical system
this is not acceptable since it also needs to notice changes
at positions where no previous camera image is available.
Therefore, we propose in this work an algorithm for visual
surprise detection in cognitive technical systems, which relies
on accurate visual registration of the system’s cameras and
image-based environment modeling. Surprise detection is
applicable from any point in the world and at any time
because of the underlying homing algorithms.

The remainder of this paper is structured as follows. After
a brief outline of the visual localization method used in this
work in Section II, Section III proposes two online solutions
to the homing problem. The image-based view synthesis
method which is briefly outlined in Section IV is the basis
of our novel method for visual surprise detection described
in Section V. Before we conclude this work, we present in



Section VI selected experimental results.

II. VISUAL LOCALIZATION

The first step in the generation of image-based models is
the accurate localization of the captured images. Our real-
time capable algorithm allows us to estimate the position and
orientation of the calibrated camera during the acquisition
of the image sequence. Since our method does not require
any external references like, for example, artificial markers
in the scene or the dimensions of a known object in the
world, it makes our algorithm very flexible and suitable for
a cognitive system navigating in real-world environments.
Features tracked by the Kanade-Lucas-Tomasi (KLT) tracker
[6] are used to estimate the camera position with a robustified
variant of the visual GPS (RVGPS) ([18]) algorithm. A
second camera is used to initialize the 3D structure of the
features, which is necessary for RVGPS. Thus, apart from
the highly accurate initialization the scale of the translation
is known, too.

III. VISUAL HOMING

Our localization method provides acceptable results with
respect to position and orientation as long as the tracker
finds enough matches between the images. However, it fails
as soon as there are too few tracked landmarks for pose
estimation. This may happen if the torsional moment of
the camera is too high, so that all references leave its
field of view or just the tracker’s search range. After a
simple reboot, the relation to the prior run can also be lost.
Even if all detected features were saved on a hard drive,
the cameras could not be registered within the prior world
coordinate frame, as soon as the robot moves outside the
known trajectory. We need to register the new sequence
with respect to the reference coordinate system in order to
establish a relationship to the previously acquired data. Since
we do not use external markers as reference, which could be
used to determine the origin of the reference frame, we need
to initially specify an arbitrary origin. All the information
which is necessary to refer to this origin, whenever required,
has to be stored – a so called “snapshot” has to be taken.
In this chapter, we present two different approaches to solve
this problem.

Let us assume that we have done a first run, where we
acquired an image sequence. Now we want to perform a
second run and estimate the camera poses with respect to
the coordinate frame of the first run. W.l.o.g., we call the
first sequence S1 and the second sequence S2. The reference
image is assumed to be the first of S1 with the initialized
KLT feature set. It defines the origin of the coordinate frame
and is denoted as I1.1. Now, S2 should be registered with
respect to the coordinate frame of S1, the so called reference
frame. The first image in S2 is called I2.1 and our aim is
now to localize it with respect to I1.1.

First of all we have to find a relation between the
two viewpoints. To find feature correspondences between
two images, which are related to each other by an affine
transformation, we can not use KLT any longer. However,

in the last decades various detector-descriptor combinations
were investigated, which are also able to deal with such
transformations. The most well-known and widely used one
is probably SIFT ([14]). A well-known drawback is its
speed. SIFT uses complex detection functions and large
descriptor vectors which make it independent of any affine
transformation but slow down the whole algorithm. A newer,
alternative approach is SURF ([13]), which is supposed to be
at least as accurate and robust, but faster than SIFT. Hence,
we use SURF to find correspondences between images which
show the same scene but from different viewpoints.

A. Homing based on three images

In our first homing approach (further on Homing1) we use
RVGPS for extrinsic parameter estimation (see Section II).
RVGPS is now used to estimate the rotation and translation
between the current and the reference frame. We only need
I1.1 and its initialized points of interest (POIs), provided
by SURF. This 3D structure forms the so called snapshot
of the origin. SURF and KLT use different detectors, hence
the stereo-registration method used by the visual localization
scheme in Section II cannot be used between I1.1 and I2.1.
Instead the POIs are initialized by a so called structure
from motion approach: The distance of the camera between
I1.1 and I1.2, which is estimated by our visual localization
routine, is used as baseline for stereo triangulation. Once the
SURF-features are initialized, we only need at least 3 SURF
correspondences between I1.1 and I2.1 to apply RVGPS in
order to estimate the six degrees of freedom (DOFs). Of
course, the robustness and accuracy rapidly increases if more
matching features are available. Thus, big parts of the same
scene should be seen by these three images to ensure that
enough matches are found. Otherwise one can also use more
than one image in S1 to initialize more POIs in I1.1. The
more points are available, the higher is the probability that
correspondences in I2.1 are found and the higher is also the
accuracy of the motion estimation. Fig. 1(a) illustrates the
principle of the Homing1 algorithm, which needs only 3
images.

B. Homing based on four images

The Homing1 variant has shown that its results strongly
depend on the accuracy of the POIs’ structure. Our second
approach has been developed with the aim of avoiding
that inconvenience by not using RVGPS for localizing I2.1
with respect to I1.1. Instead we are looking for an optimal
matching of two 3D structures in the different coordinate
frames of S1 and S2 in order to estimate the six DOFs.
To calculate two corresponding structures for our second
homing algorithm (Homing2) we need for each sequence S1

and S2 two images, their extrinsic parameters and the SURF
correspondences in all 4 images. The extrinsic parameters
for structure initialization in I1.1 resp. I2.1 are estimated in
the same way as in the Homing1 method - by the visual lo-
calization routine and subsequent stereo triangulation. Using
Arun’s algorithm ([15]) we can calculate the transformation
matrix between the two frames of S1 and S2. The result of



this method is obviously more robust, because we do not
estimate the transformation matrix and the structure of the
point set at the same time, like in Homing1. On the other
hand we need to find SURF matches in 4 images, which
is more problematic than with 3 images due to the smaller
common feature intersection. Fig. 1(b) depicts the principle
of the Homing2 algorithm based on 4 images.

(a) Homing using 3 images. (b) Homing using 4 images.

Fig. 1. Fig. 1(a): The transformation between sequence 1 and 2 is estimated
using the RVGPS algorithm. Thus, only one image of run 2 is necessary.
Fig. 1(b): The point structure in run 2 is initialized independently of the
reference sequence (run 1), so that a higher accuracy is provided at the cost
of the robustness (usually fewer common features are found).

Which algorithm to use therefore strongly depends on the
application and the scene. Since the errors do not vary much
(compare the subfigures in Fig. 7), the more robust but less
accurate Homing1 algorithm is preferable in most cases.

IV. IMAGE-BASED VIEW PREDICTION

One type of image-based scene representation that recently
has become very popular uses view-dependent geometry
and texture. Instead of computing a global geometry model
which is valid for any viewpoint and viewing direction, the
geometry of the scene is locally estimated and only holds for
a small region in the viewpoint space. It has been shown that
this approach is suitable especially when the scene contains
specular and translucent objects. To extract local geometry
information, per-pixel depth maps are calculated for each
reference image, i.e., the left image of each captured stereo
pair. Loopy belief propagation [2] minimizes a matching
cost volume and yields the most probable depth value for
each pixel, assuming that the scene is smooth between depth
discontinuities. A triangulated mesh is reconstructed from
each depth map and simplified using the algorithm in [3].
While these steps are done off-line, the view selection and
view synthesis, as explained in the following, are performed
on-line.

The view selection only chooses a small subset of all
captured images which contribute to view interpolation, each
time a new frame is rendered. In real-world environments
most surfaces are non-Lambertian, which means that the
reflected intensity depends on the position of the viewer.
Hence, in our approach, the reference cameras are ranked in
terms of their orthogonal distance with respect to predefined

rays within the viewing frustum of the virtual camera. Before
a new frame is rendered, the seven closest ones are selected.

Novel virtual views are synthesized in a two-pass proce-
dure. In the first rendering pass, the color data of the se-
lected reference images which is associated with the triangle
vertices of the view-dependent meshes is warped into the
virtual view. Pixels that lie inside the projected triangles are
interpolated from the color values at the corners. The second
rendering pass then determines the final color of each pixel
in the virtual view.

Our approach for view synthesis infers probabilistic mod-
els for the single pixel colors in the virtual image. It is
assumed that the warped color values of the reference images
are data samples X = [x1,x2, . . . ,x7] which are indepen-
dently drawn from a Gaussian distribution whose mean value
µ is identical to the true color value at the respective pixel
in the virtual view (see Fig. 2 for illustration).

current observation,
virtual camera

xI

p(xI | µI, λI)

x1

x2

x3
x7

µML

xOb

intensitiesXI‘

. . .

Fig. 2. View synthesis: The pixels of the virtual image are predicted from
a set of reference images. The color values from the reference images are
assumed to be samples from a Gaussian distribution whose mean is the true
color value. Surprise detection: If the current observation yields a sample
value which is, due to changes in the scene, largely different from the
reference samples, a surprise trigger is generated in a given pixel region.

The task of the second rendering pass is to find an accept-
able estimate for the true color value µ. A common method
to determine the parameters of a probability distribution from
sample data is maximum-likelihood (ML) estimation which
yields

µML =
1
7

7∑
k=1

xk (1)

where xk = [xR,k, xG,k, xB,k]T , k = 1, . . . , 7 are RGB-
tripel. Thus, the estimated color value at a given pixel
position in the virtual image is the arithmetic mean of the
pixels colors from the seven reference images.

V. SURPRISE DETECTION

The ML estimates for the mean and the covariance of
the Gaussian distribution are point estimates which give one
model which describes the statistical properties of the sample



data. However, the estimates still deviate from their true
values and there are other less probable parameterizations for
the Gaussian distribution. Unlike ML estimation, Bayesian
inference takes into account all possible models and puts
priors over the parameters of the probability distribution
of the sample data. In [4], a Bayesian framework was
presented for modeling and quantifying human surprise in
a mathematical way. Inspired by that, we propose in the
following a scheme for Bayesian visual surprise detection
based on the probabilistic concept for view synthesis.

For surprise detection the set of samples consists of seven
RGB-tripels from reference images captured in the past and
an additional color value from the current observation. As
depicted in Fig. 2, the virtual camera and the real camera
capturing the current image have identical position and orien-
tation. Hence, accurate localization of the cognitive system’s
camera is crucial for robust surprise detection. Similar to
the processing of color information in the human visual
system ([16]), we compute from each RGB reference image
a luminance signal and two color opponency signals (red-
green and blue-yellow), respectively. Thus, surprise detection
does not have to be performed jointly in RGB-space but
can be done independently in three decoupled pathways. For
the luminance of a pixel in the virtual image the following
likelihood function for a univariate Gaussian model results:

p(XI | µI, λI) =
7∏
k=1

(
λI

2π

) 1
2

exp
{
−λI

2 (xI,k − µI)
2
}
. (2)

XI = [xI,1, . . . , xI,7] is a vector containing the luminance
samples from the reference images. µI denotes the true
luminance value at the pixel in the virtual image which is
also the mean of the Gaussian distribution. For the choice
of the prior distributions it is more convenient to use the
precision λI, which is defined by the reciprocal of the
variance (λI ≡ 1

σ2
I

). Assuming that the mean is given by

its ML estimate µI,ML =
∑7
k=1 xI,k, we put a prior over the

precision which has the form of a gamma distribution

p(λI) =
1

Γ(a0)
ba0
0 λa0−1

I exp
{
−b0λI

}
. (3)

Here Γ(a0) =
∫∞

0
ta0−1 exp

{
−t
}

dt denotes the gamma
function which serves as a normalization constant. The shape
of the distribution thus depends on the two hyperparameters
a0 and b0.

With Bayes’ formula the posterior distribution of the pre-
cision given the sample data is calculated from the likelihood
function and the prior up to a scaling factor by

p(λI | XI) ∝ p(XI | µI,ML, λI) · p(λI) (4)

Note that the posterior is again a gamma distribution
with the hyperparameters a = a0 + 7

2 and b = b0 +
1
2

∑7
k=1 (xI,k − µI,ML)2 which depend on the sample data.

The kind of prior whose posterior has the same functional
form is called a conjugate prior. The advantage of conjugate
priors is that their posteriors can again be used as priors for
further analysis.

Now we augment our set of luminance samples by the lu-
minance value which the current observation of the cognitive
technical system provides (X′I = [xI,1, . . . , xI,7, xI,ob]). The
posterior distribution over λI is then calculated by

p(λI | X′I) ∝ p(xI,ob | µI,ML, λI) · p(λI | XI) (5)

which results in a gamma distribution with the hyper-
paramters a′ = a+ 1

2 and b′ = b+ 1
2 (xI,ob − µI,ML)2.

In [17], the Kullback-Leibler divergence (KLD) as the
difference between the posterior distribution over the model
parameters given a new observation and the prior distribution
is proposed as a quantitative measure for surprise

KLD (p(λI | X′I); p(λI | XI)) =

=
∫
λI

p(λI | X′I) log
(
p(λI | X′I)
p(λI | XI)

)
dλI. (6)

It can be shown that the KLD between two gamma
distributions is a function of their hyperparameters

KLD (p(λI | X′I); p(λI | XI)) =

= a · log
(
b′

b

)
+ log

(
Γ(a)
Γ(a′)

)
+ b · a

′

b′

+ (a′ − a) · ψ(a′) (7)

where ψ(a′) =
d
dx Γ(x)|

x=a′
Γ(a′) is the digamma function. We

evaluate (7) for each pixel in the virtual image and as a result
get a pixel-wise surprise trigger.

For fast and parallel calculation of pixel-wise surprise trig-
gers, modern graphics hardware can be used. Since common
graphics APIs like Direct3D and OpenGL do not allow for
the direct calculation of gamma and digamma functions, (7)
has to be modified. In our pixel shader implementation, we
approximate the gamma function using the Stirling series

Γ(z) ≈
√

2π
z
·
(z
e

)z
· exp

(
1

12z
− 1

360z3
+

1
1260z5

)
(8)

where e = 2.71828 . . . is the Euler’s number.
The digamma function is approximated by

ψ(z) ≈ −1
z
− γ +

5∑
n=1

(
1
n
− 1
z + n

)
(9)

where γ = 0.57721 . . . denotes the Euler’s constant.

VI. EXPERIMENTAL RESULTS
In this section, we show some test results of our visual

navigation algorithm and the visual output obtained from
our image-based modeling technique applied to a household
scene. We further tested our methods for visual homing and
surprise detection. Fig. 3 shows the acquisition of an image
sequence S1 with a stereo camera head (640x480 pixels)
mounted on a Pioneer 3-DX robot. The robot went along
an approximately circular trajectory around a table set with
household objects like glasses, plates etc. The stereo camera
was looking towards the objects and captured 213 pairs of
images.

The visual localization of image sequence S1 in a world
coordinate frame is illustrated in Fig. 4.



Fig. 3. Acquisition of a set of images with a stereo camera head mounted
on a Pioneer 3-DX.
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Fig. 4. 3D-plot of the localization results, which were used for the model
generation in Section IV. The blue lines show the viewing direction of the
capturing camera. The pioneer was programmed to go along a quarter circle
around the scene.

In order to test our algorithm for surprise detection we
captured another image sequence S2 on a trajectory which
was close to the first one but not identical. We changed
the scene before by removing the two glasses. The task
of the cognitive system is to detect these changes. This is
usually quite challenging for an artificial cognitive system
due to the difficulties involved with building up an internal
representation of the glasses. One image from S2, which is
the current observation of the cognitive system, was localized
with respect to the world coordinate system of S1. We
“manually” looked for a similar image from S1 with known
pose and estimated the observation’s pose with respect to
it using the method from Section II. The observation is
depicted in Fig. 5(a) together with a photorealistic virtual
image rendered from reference images which were selected
only from S1 (Fig. 5(b)). The virtual image was rendered
with our method described in Section IV. Note that there is
no real camera image from S1 which was acquired exactly
at the position of the observation. Applying our algorithm
from Section V on the luminance signals of the two images,
we obtained the surprise trigger shown in Fig. 6(a). The
surprise trigger was calculated in MATLAB using (7). The
figure clearly shows a region of high KLD values around the
missing glasses.

With the approximations in (8) and (9), we obtained
the surprise trigger in Fig. 6(b) which was calculated on
the graphics hardware by a pixel shader implemented in
Direct3D. For better visualisation the surprise trigger was
amplified by a factor of 10. For a static observation, we

(a) (b)

Fig. 5. (a) Observation of the cognitive system. (b) Virtual image rendered
from a set of reference images from S1 at the current position of the
observing camera.
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Fig. 6. (a) Surprise trigger obtained from the pixel-wise calculation of
the KLD between prior and posterior distribution over the precision of the
color samples. (b) Approximated surprise trigger computed on the graphics
hardware.

measured an average frame rate of 14 frames per second (at
a resolution of 320×240 pixels). Fig. 7 shows the results
for surprise detection when comparing the two strategies for
the homing problem. Since the pose is not that accurate in
case of automatic localization, the surprise trigger is higher
in regions where indeed no changes occured compared to
Fig. 6(a). However, there is still a pronounced region around
the missing glasses with high surprise trigger compared to
the rest of the surprise map.
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Fig. 7. Bayesian surprise trigger: (a) The cognitive system automatically
localizes itself using the Homing1 algorithm described in Section III-A. (b)
Automatic localization with the Homing2 algorithm presented in Section III-
B. Even if the results for the Homing2 algorithm seem to be more accurate,
the Homing1 method is preferable due to its robustness.

Furthermore, we evaluated our algorithm for surprise
detection using an image-based representation of a metallic
workpiece which we acquired in a factory environment. A



dense set of images was taken of the workpiece with a
stereo camera mounted on an industrial robot. The robot’s
arm was controlled in a way that the stereo camera moved
along a zigzag path across a part of a spherical surface. In
Fig. 8, a comparison is shown between simple differencing,
a method which is widely used in image change detection
due to its simplicity, and our Bayesian approach for surprise
detection. The image in Fig. 8(d) was obtained by calculating
the pixel-wise difference between the observation (Fig. 8(a))
and the virtual image (Fig. 8(b)). Although the virtual image
appears visually correct, the predicted colors are different
from the color values captured by a real camera. The reason
for this are errors in the depth maps which occur during
depth estimation due to the non-Lambertian metallic surface
of the workpiece. Obviously, the simple differencing method
shows large differences between observation and rendered
image at sites where the workpiece actually has not changed.
Our Bayesian approach for surprise detection (Fig. 8(c)), in
contrast, only indicates the missing part of the workpiece.

(a) (b)
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Fig. 8. (a) Observation made of an incomplete workpiece. (b) Virtual image
predicted from reference images of the error-free workpiece. The surprise
trigger computed with our proposed method (c) detects the actual changes
reliably while the simple differencing method (d) indicates changes along
the surface of the workpiece which are due to intensity variations between
different viewpoints.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented an approach for visual surprise
detection from image-based representations of a cognitive
system’s environment. Bayesian probabilistic inference al-
lows computing pixel-wise surprise triggers. Experimental
results show that our proposed method outperforms existing
methods like simple differencing with respect to the relia-
bility of the indicated changes. The approximated surprise
trigger calculated by the graphics hardware still sufficiently
indicates unexpected changes. Accurate self-localization of
mobile cognitive systems in their environment tackles the
well-known homing problem and is crucial for robust sur-

prise detection. We proposed two solutions for the homing
problem which show acceptable results.

Our future research work will focus on the segmentation of
environments into static and dynamic objects. Our algorithm
for surprise detection should contribute to the generation
of ontologies for an understanding of the environment and
execution of tasks on higher cognitive levels.
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