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Abstract— This paper is concerned with path planning of
highly redundant manipulators, which are particularly well
suited for flexible manufacturing. We envision that highly
redundant manipulators will be composed of a set of standard
modules. In order to find the optimal configuration of modules,
one has to perform a discrete search on possible assemblies of
modules combined with a continuous search of each assembly to
verify the feasibility for completing the given task. This requires
efficient planning techniques in the workspace since configura-
tion space conversion is too demanding when considering many
possible assemblies. For this reason, we propose a hierarchical
path planner consisting of a global path planner (GPP) and
a local motion planner (LMP). The GPP generates multiple
collision-free paths in the workspace by using the free space
structuring algorithm MAKLINK. The GPP passes the paths to
the LMP, which determines their feasibility. If one path is found
to be unfeasible, another one is chosen automatically. Along the
path the LMP selects a number of points as intermediate goals
and for each goal it solves the inverse kinematics problem.
The LMP is based on a genetic algorithm that reuses the
population from one intermediate goal to the next. This non-
random initial population technique significantly reduces the
joint angle variations, thereby increasing the probability that
a collision-free path exists in the configuration space.

I. INTRODUCTION

A current trend in robotics is to provide new solutions
for highly flexible manufacturing processes. Due to the great
demand of flexibility, these processes are typically performed
by humans. A possible approach towards more efficient
manufacturing is to use modular robots, which can be easily
assembled from a small number of given modules. This
often results in highly redundant robotic designs. A challenge
towards modular robots is to find an optimal assembly of
modules to perform a given task among all possible com-
bination of modules. Consequently, fast planning algorithms
are required since a very large number of possible assemblies
have to be checked.

In this paper, we focus on fast planning methods when the
assembly is given, such that as many assemblies as possible
can be automatically investigated. Path planning of manipu-
lators is a well-known problem [1]–[9]. Most approaches can
be grouped into two main categories: configuration space (c-
space) approaches and workspace approaches.

For a robotic manipulator with n joints, the c-space
approach constructs an n-dimensional space, in which the
robot is represented by a point [4]. The n coordinate values
represent the joint angles of rotational joints or displacements
of prismatic joints. The projection of an obstacle into the c-
space is called a c-obstacle and is a set of configurations in
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which the robot collides with the obstacle. Path planning in c-
space is relatively easy once the full extent of the c-obstacles
is known, however computing the c-obstacles has an expo-
nential complexity in n. The requirement for generating c-
obstacles renders configuration-space-based approaches un-
feasible for finding optimal assemblies of modular robots.
Popular solutions that avoid computing the c-obstacles are
potential fields [2], roadmap algorithms [5], [6], rapidly-
exploring random trees (RRT) [7], and cell-based methods
[8].

Workspace-based approaches try to find a solution directly
in the workspace of the robot (usually the 3D environment)
[3]. A common workspace-based approach is to compute
a collision-free path for the end-effector. For certain points
along this path, the inverse kinematics problem is then solved
to find a robot configuration that places the end-effector in
the desired position. Solving the inverse kinematics means
searching in the n-dimensional configuration space and for
this kind of problems genetic algorithms (GA) have been
shown to provide good results [9], [10]. Typically, in those
approaches the inverse kinematic problems are solved in-
dependently of each other, yielding solutions that might be
far away in the configuration space. Even though the end-
effector positions can be chosen arbitrarily close, the found
c-space path might lead to a collision of the manipulator
with nearby obstacles. In order to circumvent this problem,
[1] proposes a genetic algorithm with non-random initial
population, which greatly reduces the distances between
adjacent points in configuration space. However, the planner
in [1] selects only one path for the end-effector to follow
and if this turns out to be unfeasible, the planner fails.

Our planner improves upon [1] by selecting multiple
collision-free paths and finding the shortest feasible path.
In Sec. II we describe our planning algorithm, followed by
implementation details in Sec. III and the discussion of the
results in Sec. IV.

II. OVERALL APPROACH

We present a workspace-based path planning approach
consisting of a global path planner (GPP) and a local motion
planner (LMP), inspired by [1].

A. Global Path Planner (GPP)

We assume that obstacles are represented by polygons,
whose vertices are called obstacle vertices. The global path
planner algorithm MAKLINK [11] uses the obstacle vertices
to divide the free space into convex areas as shown in Fig. 1.
The lines connecting obstacle vertices are called free links.
The algorithm works as follows:



• We select as candidate free links all segments connect-
ing vertices of an obstacle to vertices of other obstacles
or to the workspace boundaries. Only those segments
are selected that do not intersect with the obstacle edges.

• We sort the candidates according to length, from the
shortest one to the longest one.

• We select the candidates one by one and we check if
the connected vertices are convex. A convex vertex is
defined as a vertex where all angles formed by adjacent
segments are less than 180◦. If the candidate segment
makes a convex vertex or at least reduces the largest
angle, it is selected as a free link.

• We repeat the step above until all obstacle vertices are
convex.

• We remove redundant free links. A free link is redun-
dant if its removal does not change the convexity of the
vertices it connects.

• For all remaining free links, we select the midpoints
(see Fig. 1a).

• We create a visibility graph by connecting all midpoints
using segments that do not intersect the obstacle edges
(see Fig. 1b).

• For any given start and end point, we construct multiple
collision-free paths from the graph (see Fig. 1c).

It is important to note that MAKLINK was proposed for
mobile robots, but it is being used here and in [1] for
manipulator path planning. As manipulators have a fixed
base, they cannot move freely in the workspace, so paths
generated by MAKLINK are not always feasible, as can be
seen in the examples below:

• In Fig. 2 and Fig. 3, the shortest path is seen to be
dependent on the height of the workspace. The free link
center point connecting the obstacle to the top of the
workspace is lower in the workspace from Fig. 3. This
makes the path going above the obstacle to be shorter
than the path going below it. However, the manipulator
cannot reach the goal on the other side of the obstacle
by reaching over, but it can easily do so by reaching
below the obstacle.

• In Fig. 4, the manipulator has already moved from its
starting position. The base point is fixed and because
of the leftmost obstacle the manipulator cannot reach
the goal position on the right side by following the
prescribed path.

The path planner in [1] selects the shortest path in the
graph, which may turn out to be unfeasible. In this case, the
LMP will fail to find a solution. Our planner will select
multiple paths and is therefore more robust: if one path
happens to be unfeasible, another one can be tried out
instead.

An important concept in path planning is homotopy. Two
paths are homotopic if one can be continuously deformed
into the other. For example, in Fig. 2 the path going above
the obstacle and the one going below are non-homotopic,
as we cannot deform one into the other while keeping the
end points fixed without going through the obstacle. A set of

homotopic paths is called a homotopic group. Our planner
will construct only non-homotopic paths, always selecting
the shortest path from each homotopic group.

The paths are constructed using a depth-first traversal
algorithm with a cutoff condition that ensures that the length
of the path is not greater than 2.5 times the length of the
robot. This maximum length was chosen empirically. Our
algorithm keeps a set of shortest non-homotopic paths. For
each new path, the homotopy with every path in the set
is computed and if the new path is non-homotopic with
all of them, it is added to the set. If a homotopic path
is found in the set, the shortest one of the two is kept.
This approach reduces the computation effort because for the
purpose of finding the optimal assembly only the feasibility
of the shortest path from each homotopic group is relevant.
Even if another path in the homotopic group is feasible, we
prefer a robot assembly that can follow the shortest path over
one that requires a longer homotopic path.

In our approach, the GPP provides the LMP with each
non-homotopic path in turn, starting with the shortest.

B. Local Motion Planner (LMP)

The generated global path consists of a sequence of ver-
tices from the MAKLINK graph. Along the path additional
equally-spaced points are interpolated linearly and a finer
path is generated. We call these points intermediate goals,
which the end-effector will follow towards the final goal.
Finding the robot configuration that places the end-effector at
the intermediate goal is done using a genetic algorithm. The
main advantage of genetic algorithms consists in the ability
to find minima (or maxima) of non-differentiable functions.

Genetic algorithms are based on the concept of chromo-
somes, which is an encoding of a solution to the problem
at hand. A chromosome is a sequence of genes, each gene
taking values from a predefined alphabet. Typical alphabets
are binary (genes are 0 and 1), alphabetical (’a’ to ’z’)
or floating point values. Each chromosome has a fitness
value, which is typically the value of the objective function
whose maximum we are looking for. An initial population
of chromosomes is selected and is called the first generation.
The population is evolved generation by generation using a
set of three operations (Fig. 5):

• selection: the chromosomes with the highest fitness
are selected for reproduction. Several algorithms exist:
roulette, tournament selection, etc.

• crossover: offspring chromosomes are created from
selected parents through the exchange of genes. Sev-
eral algorithms exist: one-point crossover, two-point
crossover, cut and splice, three parent crossover, etc.

• mutation: gene values of the offspring chromosomes are
adjusted according to a mutation rate. The higher the
rate, the higher the probability of a change.

The fitness values for each chromosome in the new
generation are computed and the process is repeated until
a chromosome with a satisfactory fitness value is found or a
maximum number of generations is reached.
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Fig. 1: Global Path Planner

Fig. 2: Reachable goal on a path below the obstacle

Fig. 3: Unreachable goal on a path above the obstacle

The Local Motion Planner with non-random initial pop-
ulation uses the algorithm in [1], which is also shown in
Fig. 6. A chromosome in this algorithm is a point in the
n-dimensional configuration space and is the sequence of
the angle joints [θ1,θ2, ...,θn]. The gene values are floating
point values from the interval [0,2π). The fitness function is
defined as follows:

F = fcollision ·Ds ,

where fcollision is the collision coefficient, which is equal

base

intermediary goals
start

end

Fig. 4: Shortest path in the visibility graph

Fig. 5: Genetic algorithm operations

to 1 if the robot in the given configuration is collision-
free or a high value constant (Vmax) otherwise. Ds is the
Euclidean distance between the end-effector position and the
intermediate goal.

Once an intermediate goal is reached, the final population
is reused as the initial population for the next intermediate
goal. In a conventional genetic algorithm, the initial popula-
tion is always randomly generated. However, a non-random
initial population technique increases the probability that the
solution for the next intermediate goal is not too far away



1: i← 1 {Initialize the first intermediate goal}
2: t← 1 {Initialize the genetic generations}
3: randomly generate an initial population Pi(t)
4: compute fitness Pi(t)
5: repeat
6: repeat
7: select Pi(t +1) from Pi(t)
8: crossover Pi(t +1)
9: mutate Pi(t +1)

10: compute fitness Pi(t +1)
11: t← t +1
12: until reached intermediate goal qi
13: Pi+1(t)← Pi(t)
14: i← i+1
15: until reached final goal qn

Fig. 6: Genetic algorithm with non-random initial population

from the previous goal’s solution, thus making it more likely
that the obtained c-space path is viable.

In some cases (see Fig. 7), the random search performed
by the genetic algorithm might lead to incorrect solutions.
Even though the LMP has found a new configuration that
places the end-effector at the next intermediate goal, the
movement is not possible as the robot has passed through
the obstacle. Our planner detects this by checking that
there are no obstacle vertices in the space swept by the
manipulator. To do this, it constructs a polygonal shape (not
necessarily convex) using the manipulator in the two adjacent
configurations. If this polygonal shape contains a obstacle
vertex, then the path is rejected as being unfeasible and the
GPP will select an alternative path (see Fig. 8).

base

start

end

Fig. 7: Incorrect avoidance of an obstacle

III. IMPLEMENTATION

To demonstrate our path planner, we have implemented
it using the Java programming language. The source code
can be downloaded from an online Git repository1. In order
to validate our implementation and compare the results,
we recreated the examples of a 6-joint manipulator in a
workspace with several rectangular obstacles as used in [1].

1https://bitbucket.org/GeorgeMesesan/hierarchical-ga-path-planner
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Fig. 8: Alternative path around the obstacle

Fig. 3 (Fig. 10 in [1]) tests the ability of the algorithm to
find a path around a large obstacle and Fig. 4 (Fig. 15 in
[1]) requires the manipulator to reach into a narrow passage.

A. Path Planner Robustness

To demonstrate the robustness of our planner, we compare
it with another hierarchical planner, whose GPP considers
only the shortest path. The LMP algorithm and its parameters
are identical for the two planners. We perform two experi-
ments, one for each workspace mentioned above. In each
experiment, we run the planner for 1000 randomly selected
pairs of start and end points and we count the number of
solved path-planning problems. We run our experiments on
a Mac mini with a 2.6 GHz Intel Core i5 processor.

We consider a planner to be successful if it finds a
collision-free path that places the end-effector within a circle
of predefined small radius around the final goal. The chosen
radius value is 0.1 while, for comparison, the width of the
workspace in Fig. 4 is 67 and the height is 53. To detect
unfeasible paths early, we enforce the condition that for each
intermediate goal the maximum distance between the end-
effector and the goal does not exceed twice the distance
between two intermediate goals. In Fig. 4 this condition
will no longer hold when the end-effector is about halfway
between the start and the end point, and the manipulator
is fully extended and almost wrapped around the leftmost
obstacle. In this case, no further progress is possible along
the prescribed path.

For each run we choose a random base for the manipulator,
while ensuring that it is outside any of the workspace ob-
stacles. Further, while selecting the start and the end points,
we ensure that both are outside the workspace obstacles and
are reachable from the base point. We check reachability by
running the GA once, thereby solving the inverse kinematics
for the start and the end points.

For the workspace in Fig. 4, the planner that only considers
the shortest path finds a solution in 771 cases, while our
planner finds a solution in 987 cases with an average execu-
tion time for each case of 8.07 seconds. For the workspace
in Fig. 3, the shortest-path planner finds a solution in 906
cases, while our planner finds a solution in 977 cases with
an average execution time of 0.089 seconds.



B. Genetic Algorithm Parameters

For the selection of the genetic algorithm parameters, we
considered the following criteria:
• the percentage of intermediate goals that were reached,
• the number of generations required to reach the inter-

mediate goal,
• the mean of joint variations from one intermediate goal

to another one, computed for each joint.
A high percentage of reached intermediate goals (high

accuracy) and a low number of generations (high efficiency)
are naturally desired. A low value for the joint variations
means that the Euclidean distance in the configuration space
between two chromosomes is small and the chance of finding
a collision-free path in the configuration space is higher.
In Fig. 9 we see two sequences of points in configuration
space that correspond to the same end-effector position in
the workspace.

q2 q2

q1 q1

Fig. 9: Two paths in c-space, same end-effector path in
workspace

A low value of joint variations is thus desirable and
is achieved by reusing the population from the previous
intermediate goal as an initial population, this being one
the two main ideas in [1] (the other being the hierarchical
approach). Some parameters of the genetic algorithm are
explicitly mentioned in [1]:
• the population size is 100;
• the maximum number of generations is 600;
• the selection step selects the fittest 50% chromosomes;
• the crossover step exchanges one gene between two

parents to generate two offspring;
• the mutation step changes one gene in a chromosome.
For the missing parameters we make the following

choices:
• The collision punishment cost (Vmax) is chosen as

1000 to heavily penalize those chromosomes, where
the manipulator collides with the obstacles or with the
workspace boundaries. Experiments have shown that
smaller values (e.g. 100, 10) often produce solutions
that are not collision-free.

• An intermediary goal is considered to have been reached
if the distance between the end-effector and the goal is
less than 0.1.

• The distance between two intermediary goals is 2.5.
This value is computed using the formula (w+ h)/l,
where w and h are the width and the height of the
workspace, respectively, while l is the total length of
the manipulator.

• In the crossover step, the parents are chosen randomly
between the fittest 50% chromosomes obtained through
the selection step.

The most important parameter, i.e. the one with the biggest
influence on the quality of the path planning has been found
to be the mutation rate. The work in [1] mentions that the
probability of mutation for the base joint is lower than that
of the distal joint, however the exact mutation rates are not
given. To determine these we analyze all combinations for
the mutation rate of the base and distal joint from 0 to 0.9
in 0.1 intervals. As a mutation rate of 0 is not very useful,
we use 0.01 instead. Also a mutation rate of 1, meaning that
all genes change their values all the time, is not very useful
and is not considered in the following tests.

For the intermediate joints an arithmetic progression is
computed using the end joints. For example, if the mutation
rate for the base joint is 0.2 and that of the distal joint
is 0.6 then the mutation rates for all joints is the array
[0.2,0.28,0.36,0.44,0.52,0.6]. The mutation rates can also
be decreasing, for example the base joint mutation rate is
0.8 and the distal joint mutation rate is 0.3. Then the full
array is [0.8,0.7,0.6,0.5,0.4,0.3].

For each pair, the algorithm was run 100 times and
averages for the mentioned quality criteria were gathered.
The results for the workspace in Fig. 4 are in Fig. 10.
The best values for the mutation rate in terms of efficiency,
accuracy and low value of joint variations can be found along
a line going from (0.4,0.9) to (0.9,0.4). These values can
be shown to be appropriate also for the workspace in Fig. 3.

Finally, a comparison (Fig. 11) with a conventional GA
implementation, where a random initial population is gener-
ated for each intermediate goal, shows that an important goal
of the GA with non-random initial population is achieved:
the average joint variations are reduced 4 to 8 times, thus
increasing the probability of finding a feasible c-space path.

IV. CONCLUSION

Our path planner is a significant improvement to hierarchi-
cal path planners based on genetic algorithms. Our planner is
more robust than the planner presented in [1], as it considers
alternative paths towards the goal, not just the shortest path.
By considering alternative paths, our planner improves the
percentage of solved path planning problems (placing the
end-effector withing a given distance of the target goal) from
77% to 99% in the case of the workspace in Fig. 4, and from
91% to 98% in case of the workspace in Fig. 2.

Our mutation rate analysis allows us to find appropriate
genetic algorithm parameters, that place the robot end-
effector within a defined distance of each intermediate goal
in 96% of the cases. The presented genetic algorithm is much
better than a conventional GA in creating a viable c-space
path, as the average variations in the robot joints from one
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Fig. 10: Mutation rate analysis for the workspace in Fig. 4
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step to the next are 4 to 8 times smaller. Further, we found out
that the genetic algorithm is only slightly more efficient when
using non-random initial populations compared to random
ones, which is in contrast to the claims in [1].

The genetic algorithm used by the local motion planner
could find solutions that are not viable when applied in the
c-space (See Fig. 7). We verify the viability of the solution
directly in the workspace by checking that the space swept
by the manipulator does not contain any obstacle vertices. If
it does, then the solution is not viable and another path must
be selected.

Another way would be to verify the viability of the
solution by checking a linear path in c-space and if a collision
is detected, to select another chromosome (c-space point)
with high fitness and a clear path to the goal. This verification
could be integrated into the fitness function, however we
need to take into account the computation penalty associated
with it. This viability verification in c-space is also necessary
when the robot is in close proximity to obstacles and would
therefore not be able to perform certain movements (for
example from a elbow-up into an elbow-down position)
without collisions.

The achieved performance of our path planner encourage
us to consider it for the automatic search of robot assemblies

using a given set of different modules. Its robustness in
finding feasible paths for a single assembly and its short
computation time open the possibility of checking many
possible assemblies in a very short time.
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