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C. Lenz, T. Röder, G. Panin and A. Knoll 6

{lenz,roeder,panin,knoll}@in.tum.de

W. Maier and E. Steinbach 7

{werner.maier, eckehard.steinbach}@tum.de

1Institute of Automatic Control

Engineering

Department of Electrical Engineering

and Information Technology

Technische Universität München

Arcisstraße 21, 80333 München

2Intelligent Autonomous Systems

Department of Informatics

Technische Universität München

Boltzmannstraße 3, 85748 Garching

bei München

3Institute for Human-Machine

Communication

Department of Electrical Engineering

and Information Technology

Technische Universität München

Arcisstraße 21, 80333 München

4 Experimental Psychology Unit

Department of Psychology

Ludwig-Maximilians-Universität

München

Leopoldstraße 13, 80802 München

5Center for Sensorimotor Research

Clinical Neurosciences and

Department of Neurology

Ludwig-Maximilians-Universität

München

Marchionistraße 23, 81377 München

6Robotics and Embedded Systems

Department of Informatics

Technische Universität München

Boltzmannstraße 3, 85748 Garching

bei München

7Institute for Media Technology

Department of Electrical Engineering

and Information Technology

Technische Universität München

Arcisstraße 21, 80333 München



Contents

1 Introduction 1

1.1 Multi joint action . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivating scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Experimental Setup 4

2.1 Living area mockup and equipment . . . . . . . . . . . . . . . . . 4
2.2 CCRL robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Ceiling camera setup . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Challenges in Multi Joint Action 9

3.1 Shared knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Communication: facial expression recognition . . . . . . 9
3.1.2 Communication: robot emotions . . . . . . . . . . . . . . 10
3.1.3 Communication: dialog engine . . . . . . . . . . . . . . . 12
3.1.4 Perception: ceiling camera surveillance and visual tracking 14
3.1.5 Perception: probabilistic appearance representations and

their application to surprise detection . . . . . . . . . . . 16
3.2 Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Multi-robot task allocation and execution . . . . . . . . . 18
3.2.2 Planning of joint actions . . . . . . . . . . . . . . . . . . . 19

3.3 Joint execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Navigation in crowded environments . . . . . . . . . . . . 20
3.3.2 Intention recognition of approaching agent and dynamic

robot-human handover . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Human-aware navigation for joint task achievement . . . 23
3.3.4 Movement adaptation in joint action . . . . . . . . . . . . 24
3.3.5 Physical interaction . . . . . . . . . . . . . . . . . . . . . 25

4 Conclusion 27

A Collaborating CoTeSys Projects 27

A.1 List of active projects . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 List of finished projects . . . . . . . . . . . . . . . . . . . . . . . 28

References 28

1 Introduction

The Multi Joint Action demonstration scenario is one of the demonstrators in
CoTeSys – Cognition for Technical Systems cluster of excellence. It serves as
a showcase and focusing point for the research work inside the cluster that deals
with or is connected to the area of multi joint action.

This report present a summary of the current work done inside the demon-
strator, focusing on the description of the experimental setup and an overview
of challenges in the specific topics that are being studied.

The rest of this section gives a brief introduction to multi joint action, as
well as a description of two scenarios that serve as motivating examples for the

1



research. Section 2 describes the details of the hardware setup, whereas section
3 presents the research challenges and preliminary results.

1.1 Multi joint action

The research area of multi joint action is concerned with actions in which mul-
tiple cognitive systems take part. In our case we are interested in actions that
change the physical state of the world, where by cognitive systems we mean
primarily humans and robots, with the final goal being the study of mixed
human-robot teams.

Due to the presence of multiple actors, and interdependence and mutual in-
fluence of their actions, it is necessary to take a different perspective on multi
joint action compared to actions taken by a single cognitive system. The dis-
tinctive cognitive aspects of multi joint action can be defined as follows:

• Shared knowledge

– Perception

– Communication

• Coordination

– Self-awareness

– Team-awareness

• Joint execution

– Predictability

– Adaptation

The first aspect stands for the part of the knowledge about the joint action
that is shared, i.e. existing on all involved cognitive systems. The channels
for acquisition and sharing of this knowledge are perception, which is similar
to the single system case, and direct sharing through communication, which is
typical for joint action. In the planning and coordination of actions inside a
team important roles are played by the awareness of own capabilities, as well as
awareness of the team partners’ capabilities, actions, intentions, habits, etc. The
last aspect defines the direct influences during joint execution: predictability is
concerned both with the prediction of actions of the partner, as well as with the
performing in a way that is predictable to the partner; adaptation includes the
changes in own actions as immediate response to detected characteristics of the
team or changes thereof.

The presented view on multi joint actions matches well the CoTeSys defi-
nition of cognitive system architecture, which is illustrated with the perception-
cognition-action (PCA) loop, see Figure 1. The figure displays multi joint action
as a connection of two PCA loops, one belonging to the considered system and
the other representing the other system(s) in the team. As shown, in multi
joint actions there exist direct connections between the knowledge, control, and
action parts of the team members, which can be associated to the aspects of
shared knowledge, coordination and joint execution, in the way they were de-
scribed above. Note that for perception and learning / reasoning there is no
direct connection between different cognitive systems: here the mutual influence
is mostly indirect.
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Figure 1: Multi joint action represented through the connection of perception-
cognition-action loops of two (or more) separate cognitive systems.

Parallels to the presented framework for multi joint action can be found in
definitions presented in the literature on teamwork, human-agent actions, and
joint actions. For example, Sycara and Sukthankar in [68] give as important
facets of human-agent interaction: team knowledge, mutual predictability, and
directability (role assignment) and adaptation. In addition they also mention
communication as another key aspect of teamwork. Sebanz et al. [60] give a
summary of the psychological research of human-human joint actions and state
that ”successful joint action depends on the abilities: (i) to share representa-
tions, (ii) to predict actions, and (iii) to integrate predicted effects of own and
others actions”. In their description of the ATOM model of teamwork, Smith-
Jentsch et al. [65] argue that besides the individual competence in domain-specic
tasks, team members must have domain independent team expertise comprised
of four different categories: information exchange, communication, supporting
behavior, and team initiative/leadership. For all these definitions it is easy to
observe the similarity with the above framework.

All described multi joint action aspects are present, albeit to varying degree,
in the current research done in the Multi Joint Action demonstrator. The details
are described in Section 3.

1.2 Motivating scenarios

Coffee Break This is a service scenario, where a team of robots providing
services to human users is considered. The basic setting of the scenario is a
typical coffee break, in which multiple robots are working as waiters, whereas
humans are guests that can make orders for various beverages.

In a typical scene the robots wait until they detect a human who wants to be
served. Upon detection one of the robots approaches the human and initiates a
dialog. After finding out the human’s wish, the robot team proceeds with the
serving, coordinating their actions and sharing the work when necessary.
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Figure 2: Experimental setup in the CoTeSys Central Robotics Laboratory .

Several capabilities play an important role for successful execution of this
scenario. As discussed also in Section 1.1, knowledge needs to be acquired
both through perception, as well as from communication with humans, such as
in the case of an ordering dialog. Different research works in the demonstra-
tion scenario dealing with these topics are presented in Section 3.1, including
multi-camera perception, multi-modal human-robot interaction, and expression
recognition and generation. Next, inter-robot cooperation (Section 3.2.1) is a
prerequisite for efficient operation in a team. Finally, appropriate robot ac-
tion execution in a dynamic and human-populated environment is necessary,
especially during navigation and handover, see Sections 3.3.1, 3.3.2, and 3.3.3.

Moving-In The second scenario considers the coordinated work in the occa-
sion of a move into a new office or apartment. As opposed to the Coffee Break
scenario where robots needed to do joint work only between themselves, here
they act as members of a team consisting of both humans and robots. There-
fore, apart from the topics mentioned for the first scenario, here there is also a
strong focus on joint actions in such mixed teams.

Different aspects of human-robot joint action are analyzed in this setting.
One the one hand it is important that the robots coordinate their actions with
humans, which is why humans need to be included in the planning. Our ap-
proach is described in Section 3.2.2. On the other hand during action exe-
cution one can examine the joint performance in repetitive tasks with shared
workspace, like in the case of piling up of objects or taking them from a heap,
see Section 3.3.4. Another important aspect is physical cooperation between hu-
mans and robots, like for example when jointly carrying large furniture, where
a haptic coupling between them exists – Section 3.3.5.

2 Experimental Setup

2.1 Living area mockup and equipment

Figure 2 shows the demonstration area which has been set up in the CoTeSys

Central Robotics Laboratory – CCRL. It includes two mockup spaces: a kitchen
and a living room.
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Figure 3: Robot hardware overview.

The experimental setup consists of several robots and a cluster of overhead
cameras covering the complete operating area. These will be described in the
following sections.

Additional equipment used in the experiments includes VisualeyezTM VZ4000
motion measurement and tracking system from PhoeniX Technologies Inc.1,
which covers part of the area. It enables precise tracking of active infrared
markers, so it is utilized for determining the position of the robots, humans and
other objects and for calibration of other equipment.

Furthermore an array of several laser range finders (Sick LMS200) can be
setup to cover the whole operation area and used in addition to the ceiling
cameras for tracking of humans and other objects in the environment.

For precise tracking of hand/arm trajectories in part of the experiments a
Polhemus Liberty 240/8 system is used2. This is a magnetic motion tracker with
a six degree-of-freedom range (X, Y and Z coordinates and the three rotation
angles) that tracks with a constant sampling rate of 240Hz.

2.2 CCRL robots

Our robots are intended to closely interact with humans and with each other
in an everyday human household environment. They all have the same base
configuration, but in order to cope with varying demands parts of their config-
uration as end-effectors or specialized sensors differ or can be easily exchanged.
Figure 3 shows one of the robots used in the demonstration scenario.

Each robots’ main chassis provides space for up to six 19-inch rack-mount

1http://www.ptiphoenix.com/
2http://www.polhemus.com/
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cases. Here the battery trays, the manipulator amplifiers and the computational
hardware for program execution are mounted.

Sufficient battery capacity for long autonomous runs under full load is pro-
vided by lithium-ion polymer batteries, which have been chosen for their high
energy density and provide a total of 252Ah at 52V. A battery surveillance
keeps track of the charge condition of the individual battery packs in order to
provide status information – to humans or the robot – or give an acoustic signal
in case a battery pack is damaged or the batteries have to be charged.

Each robot is equipped with three PCs,whereby one computer is responsible
for the real-time actuator control, one for visual sensor data processing, and
the third one for processing the data of the remaining sensors, communication
with other robots and the environment, and planning. The PCs on a robot
are connected via LAN and a WLAN switch provides communication to other
robots and global sensors.

The main chassis is placed on a four-wheeled omnidirectional mobile plat-
form [26], which offers human-like maneuverability and smooth motions. The
platform can carry a payload of up to 200 kg and drives at a maximum velocity
of 1.5m/s.

Two identical anthropomorphic 7 degrees-of-freedom (DoF) arms in a mir-
rored configuration are front-mounted on the top of the main chassis to provide
a human-like working space [67]. The arms are able to carry up to 7 kg of
static load each and can be equipped with different end effectors that can vary
in design and functionality. In Figure 3 a Schunk PG70 two-finger gripper is
attached to the right arm. Additionally we use Schunk PVG two-finger grip-
pers and a three-fingered BarrettHand for dexterous manipulation. Both arms
are equipped with JR3 6 DoF force-torque sensors positioned before the end-
effectors.

For environment sensing the robot uses two Sick S300 laser range finders.
They have a 270◦ field of view and are placed in opposing corners of the chassis
what allows circumferential planar obstacle detection during navigation. Fur-
thermore it is possible to mount a small laser range finder (e.g. Hokuyo URG-
04LX) or a web camera before the end effector for use in visual servoing and
area sensing.

On top of one robot’s body there is the emotion display head EDDIE [66].
The head is a 23 DoF device mounted on a 5 DoF actuated neck which al-
lows dynamic and intuitive expression of the robot’s emotional state and social
gaze (see Section 3.1.2). EDDIE’s facial features are derived from a mixture
of anthropomorphic and zoomorphic features. EDDIE is also equipped with
speech processing and synthesis what results in a very natural human-robot in-
teraction. Furthermore, it contains a pair of Firewire cameras mounted in the
eyes, which are used as additional sensors for face and gesture recognition (see
Section 3.1.1) or visual servoing. The other robots are equipped with pan-tilt
units with mounted stereo camera heads and additional sensors according to
needs.

For safety of hardware and humans each robot is equipped with an emergency
system switching off the power supply to all actuators in case of emergency.
The system can be triggered by a human via a wireless emergency button.
Furthermore bumpers cover the mobile platform and activate the emergency
shut-down when coming into touch with environmental obstacles. For additional
security during the interaction with humans we periodically charge the complete
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Camera Type Qty. FPS Resolution

Baumer TXG08c 30 28 1024 × 768 px

Basler Scout scA1000-30gm/gc 10 30 1024 × 768 px

Table 1: Specifications of the cameras used in the setup.

Figure 4: An impression of the camera setup covering the experimental area.

robot and measure changes in the capacitance, which allows for detection of
unintentional contact of the robot with humans. The latter can be switched on
and off via software.

2.3 Ceiling camera setup

As mentioned before, our experimental setup includes a networked cluster of
optical sensors to address global perception tasks. To achieve a redundant
survey of the scene, 40 ethernet-connected cameras were installed on a metal
scaffolding at ceiling height, approximately 3.5 m above the floor level. Figure 4
provides an impression of the camera setup. The cameras’ fields of view (FOV)
cover the whole area from a top-down view. They were set up to achieve a
coverage redundancy of approximately 75%, which is measured at a height of
1.7 m. This height was chosen since it is the approximate average height of an
adult person, compare [52].

The cameras used in the setup provide images of 1024× 768 pixels at a rate
of 28 to 30 frames per second, for details see Table 13. Image acquisition occurs
asynchronously, using the GigE-Vision standard described in [12]. The cameras
are grouped in threes and pairs respectively to form 14 camera groups, each of
which is in turn linked via a Gigabit Ethernet (GigE) switch to one of 14 diskless
client nodes [35], where image acquisition and processing take place. Cameras
with adjacent FOVs are assigned to different camera groups. This helps to
compensate for the observed fact that human beings in social scenarios such
as the coffee-break demonstration scenario tend to flock together, rather than
distribute evenly over the surveyed area. Furthermore, this procedure reduces

3For further information on the cameras refer to http://www.baumer.com/

and http://www.baslerweb.com/
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Figure 5: Schematic of the hardware and network setup for the experimental
area survey.

the likelihood of adjacent cameras becoming unavailable simultaneously in case
of problems caused by single processing nodes, thus improving system robustness
and load-balancing between the image processing nodes.

The diskless client nodes consist of general purpose hardware and are pow-
ered by AMD PhenomTM Quad-Core processors, operated by Debian Linux 5.0.
The computers are equipped with two GigE network adapters each. One of these
adapters connects the node to the local camera group network, while the other
one connects to the client network via an HP ProCurve 28484 48-port GigE
switch. Figure 5 provides a comprehensive overview of the network component
setup used in the scenario. The RTDB, as described below, is used for inter-
process communication on the diskless nodes, which makes the images available
to potential subscribers and facilitates the process of buffering and synchroniz-
ing the image data. Image processing libraries used are HALCON 9.0 [13] and
OpenCV 2.0 [10].

In addition to the hardware described above, for we make use of a software
framework for interprocess communication based on the Real-Time DataBase
(RTDB) [24]. The RTDB offers functionality similar to a shared memory, while
allowing maintenance of hierarchical data objects and providing real-time guar-
antees for management and exchange of data structures inside one computer.
For information exchange between computers on the robots, as well as other
hardware in the system, the ZeroC/ICE5 middleware is utilized. More details
on the communication framework and its use in the scenario can be found in [3]
and [22].

4http://www.procurve.com/
5http://www.zeroc.com/

8

http://www.procurve.com/
http://www.zeroc.com/


(a) Happiness (b) Surprise

Figure 6: The Candide-3 face model fit to images of a human face displaying
different basic emotions, where the model coloring intensity is used to visualize
the intensity of the facial expression.

3 Challenges in Multi Joint Action

3.1 Shared knowledge

3.1.1 Communication: facial expression recognition

Everyday human communication relies on a large number of different commu-
nication mechanisms, like spoken language, facial expressions, body pose and
gestures. This allows humans to pass large amounts of information in short time.
In contrast, traditional human-machine communication is often unintuitive, and
requires specifically trained personal. To complement human-robot communi-
cation, we establish a real-time capable framework that recognizes traditional
visual human communication signals: head gestures (nodding and shaking one’s
head) are a convenient way to signal agreement or disagreement, facial expres-
sions give evidence about the interaction partners’ emotional states and hand
gestures are a fast way of passing simple commands.

Head gestures are commonly used to signal agreement or disagreement [49].
Nonetheless, it is also imaginable to use head gestures for controlling operations,
like document browsing [48]. Ekman and Friesen find six universal facial ex-
pressions that are expressed and interpreted independently of the cultural back-
ground, age or country of origin [14]. The Facial Action Coding System (FACS)
precisely describes the muscle activity within a human face as it occurs during
the display of facial expressions [15].

We follow a three-step approach: First, preprocessing of the data supports
subsequent steps. Second, features are extracted from the raw image data.
Third, high level information is obtained from these features. The raw image
data, the extracted image features and the determined high level information
are stored and buffered in the RTDB. Since there are no dependencies within a
single work step, there is possibility for parallelization. For instance, the feature
extraction for the recognition of head gestures is independent of the feature
extraction for hand gestures and therefore both feature sets are extracted in
parallel.

Preprocessing: We apply an implementation of the object detection ap-
proach published by Viola et al. [74] to detect human faces in the video images
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obtained from the RTDB memory. Since this information is required by multiple
modules, it is also made available to them in the RTDB. We adapt a skin color
model with regard to the obtained face image; please refer to [44] for further
details on the approach.

Feature Extraction: To constrain the hand gesture recognition, we define
a region of gesture action (ROGA), which is located on the right side of the
interaction partner’s head, and extract Hu moments [27] from the ROGA in
the skin color image. To obtain information about face pose and shape, we
integrate the Candide-III face model and rely on the work of Wimmer et al. for
model fitting [1, 75]. To gain descriptive information about head gestures, the
temporal changes of the in-plane transition of the face and the temporal change
of the three rotation angles (pitch, yaw and roll) are extracted. Face shape
is considered by static features, which are assembled by calculating the model
parameters for a single image, and person-adapted features, which are calculated
as the model parameter change between a neutral reference image of the person
visible in the image sequence and the current image.

Classification: Classifiers are obtained using machine-learning techniques.
We apply continuous Hidden Markov Models with a left-right structure for the
classification of head and hand gestures. The HMM is presented with sequences
of varying length by applying different sliding window sizes on the feature data
buffered by the RTDB. Training classifiers for facial expression recognition usu-
ally relies on standard databases. For this purpouse, we integrate the Cohn-
Kanade Facial Expression Database [34] and the MMI Face Database [53]. We
apply decision trees and SVMs to map the feature vector obtained in the pre-
vious step to the corresponding facial expression.

Due to the utilization of the RTDB for communication, the data produced in
each step is easily accessible. The recognition of facial expressions is combined
with the emotion display EDDIE (see Section 3.1.2) to establish a closed-loop
human-machine interaction scenario for demonstration. In the preliminary ver-
sion, EDDIE is mirroring the facial expression recognized from the human inter-
actant. However, it is intended to serve as a basis for more complex interaction
scenarios.

3.1.2 Communication: robot emotions

Non-verbal communication and emotions play a key role in social scenarios, pro-
viding an intuitive human-machine interface that increases efficiency in working
with the robot and requires no user training. The user perceives internal states
of the robot in a simple and robust way, and the robot can recognize mental
and/or emotional states of a user. For example, recognition of the intention of
a user by the robot benefits from this, because our decision process is heavily
influenced by emotions [8, 9, 42]. On the other hand, including emotions in the
robot architecture can improve the robot’s own decision process and create the
possibility for adaptive human-robot interaction that accounts for the human
emotional state, enabling the robot to react appropriately in a socially accepted
context.

An effort to model and integrate emotions into robots has been made for
many years. But despite the fact that many models have been proposed and
several agents have been developed, there is still no out-of-the-box solution for
implementing emotions on artificial intelligent systems. This is definitely due to
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the immense complexity that emotions and cognitive systems induce. However,
even simpler parts that can be isolated, like expression of emergent emotions, are
still not available as ready to use solutions. Referring to Mehrabian’s 7%-38%-
55% rule [45], non-verbal communication dominates the eliciting of emotional
context in human-human interaction, so using non-verbal channels is of great
importance. For implementations in agents, mainly two emotion representations
are used.

One is a discrete set of emotional states, quite often based on the basic
emotions found by Ekman and Friesen [16] or Izard [31]. They are convenient,
because they reduce the complexity of emergent emotions and expressions to
a limited number of states, which are recognized independent of the cultural
background of an observer.

The other form is a variety of mental/emotional state spaces. They allow
a continuous representation either in a two-dimensional approach, for example
Russell’s circumplex model of affect with valence as axis of abscissae and arousal
as axis of ordinates [58], or a three-dimensional version. Although there exist
several three-dimensional models, the most noticeable are based on Russell’s 2D
model and extended by another orthogonal axis. The PAD model introduces a
dominance axis (pleasure-arousal-dominance). The dynamic mental model [46,
47] has a certainty axis, with the certainty being either +1 or -1. In this case, we
have two pleasure-activation planes. The mental vector, beginning in the origin
and ending on one of the planes, describes the actual mental state. Breazeal
extended the 2D model by adding a stance axis, with the 6 basic emotions on the
corresponding axes, forming the state space [11]. Some of these representations
are often closely related to the basic emotions, because they are divided into
regions which are labeled according to the basic emotions. For instance, the
dynamic mental model is divided into 7 regions, the pleasure-arousal-stance
space is defined by the basic emotions according to Ekman.

Facial expression is the best researched non-verbal communication channel.
The human face as primary indicator for emotional states is the most complex
and versatile face in a species [11] and capable of generating up to 7000 different
facial expressions [7]. The various expressions are a result of the interaction
between different layers of skin and several muscles and muscle groups. To be
able to make an objective distinction of the observable changes in the facial
appearance, the facial action coding system (FACS) by Ekman and Friesen [16]
is used. This theory defines so called action units, which are responsible for
certain changes in the face. Actuating a robot face can be based on these action
units. This is much simpler and more effective than rebuilding the whole facial
muscle system.

For the facial expression synthesis, the robot head EDDIE, as described in
Section 2.2, is used. With this head, 13 out of the 21 emFACS action units can be
displayed (emFACS is a subset of the facial action coding system, including only
action units which are involved in emotional facial expressions). The emotional
state displayed can be controlled in two ways, referring to either of the two
models described above. Using a state-space to joint-space mapping, EDDIE
allows for arbitrary facial expressions with smooth transitions. For details we
refer to [66]. The expression of the six emotional states can be seen in Figure 7.

The head is linked via the RTDB to the other systems, providing in-eye cam-
era images for the visual processing and visualization of emotional and internal
states (see Section 3.1.1) as well as visemes for the speech output.

11



(a) Happiness (b) Surprise (c) Anger

(d) Anxiety (e) Sadness (f) Disgust

Figure 7: EDDIE displaying the basic facial expressions proposed by Ekman
et al. [14].

3.1.3 Communication: dialog engine

The main goal of the dialog engine is to make the interaction between the hu-
man and the robot more natural and human like. Therefore, the dialog engine
is orchestrating the involved modules using a multi-modal communication back-
bone [22] to obtain a desired information from the human. In our motivating
example scenario (c.f. Section 1.2), this could be to find out what drink a human
would like to have. The dialog relevant modules for our Coffee Break scenario
are depicted in Figure 8. The dialog engine is triggered by the controller of
the robotic platform, when the robot is close enough to a new customer (e.g.
detected via the ceiling cameras see Section 2.3) to start the order dialog. In
the first step, the head and eyes of the robotic head EDDIE (see Section 3.1.2)
are directed towards the customer and asks what drink the customer would like
to have. Therefore, this question phrase is sent to the text-to-speech (TTS)
module and the head controller, to make synchronous lip movements to the
generated speech output.

As next step, the robot has to listen to the customer’s order. Therefore, a
speech recognition grammar is reduced to the current context of the dialog (here:
ordering a drink). Included in this grammar are all available drinks, which are
queried from a knowledge database containing all available drinks. With this
reduced grammar the automatic speech recognition (ASR) module is configured
to allow a more robust and remote speech recognition. At the same time the
ears of the robotic head are widened to inform the user, that the system is now
ready to receive speech input. After a speech command was perceived, the robot
repeats the perceived phrase and asks the customer to confirm the utterance.
In addition to speech, head gestures [21] (for more details, see Section 3.1.1) can
be applied to confirm or cancel the received command. Basing on the positive
or negative response of the user, the robotic head reflects the answer by showing
happiness or sadness.

After the successful order, the desired drink is reported to the controller of
the robotic platform to initiate the fetch-sequence. Meanwhile, the knowledge
database is updated by retracting one instance of the ordered drink. These steps
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Figure 8: Schematic view of dialog engine and involved modules

complete the dialog order process and now the robotic platform controller is in
charge of locating, fetching and handing over the drink. During the fetch process
the dialog engine remains in a slave-mode to enable error or status reports of
the robotic platform controller.

The dialog engine is represented using first-order logic. Tasks to solve are
represented by a predicate of first-order logic with variables representing in-
formation needed to be determined during the dialog. Equivalence rules on
these predicates are specified to navigate through the dialog by splitting a
task into several subtasks. For the Coffee Break scenario explained above,
the dialog engine tries to evaluate the predicate orderDialog(P, D) with P

being the person to be served and D being the drink. Therefore, the dialog
engine inspects the equivalences of the system and determines a rule replac-
ing the orderDialog(P, D) predicate with isIdentified(P ) & isOrdered(D) &
isConfirmed(D). In the next step, the dialog engine will determine the truth
value isIdentified(P ) by inspecting the binding of P . At this point, interaction
with the environment is required to determine what person is interacting with
the robot and the predicate isIdentified(P ) evaluates to true at the same time
determining the interaction partner by the binding of P . In this case, the pred-
icate isIdentified(P ) is a C++ extension of the first-order logic interpreter,
which communicates with image processing modules and returns the identified
person as binding of P . In a similar manner, isOrdered(D) is evaluated by
binding the variable D to some name of a drink from the speech recognition
system. Finally, the value of isConfirmed(D) is determined from either speech
recognition or head gesture recognition to confirm the acquired drink.

Note, that this first order logic representation together with the C++ exten-
sion allows to integrate further sensory modules that perceive information about
the environment. Thereby, all modules report their information in a unified way
as predicate, which enables higher-level processing of the multi-modal data.
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Figure 9: Tiled joint view of the 40 cameras observing the apartment mockup.
Different illumination conditions are caused by object shadows, while variant
chromatic appearances are caused by using different camera models. Specular
reflections result from light sources above the ceiling-mounted cameras.

3.1.4 Perception: ceiling camera surveillance and visual tracking

A variety of perception tasks has to be addressed by the camera cluster de-
scribed in Section 2.3. A common quality in all these tasks is that they benefit
from a total survey of the scene to be executed effectively. To allow the robots
to approach specific persons for interaction, humans in the scenario have to be
detected and tracked across the whole apartment in real time, without confusing
their identities in the process. To allow robots to plan and execute the manip-
ulation of objects, viable candidates, such as tools or containers, have to be
detected and identified. For robot movement planning, the experimental space
has to be segmented into traversable and obstructed areas by obstacle detection
and floor segmentation.

Intelligent camera surveillance is employed commonly both for security pur-
poses as well as for smart rooms, which can autonomously act on perceived
situations. Surveillance systems can operate both in real-time or focus on the
post-processing of previously acquired video data. The state of the art for that
kind of visual surveillance systems is is described in several surveys, such as
Valera et al. [71] (with an emphasis on distributed systems) or Šegvić et al. [61].
However, for a large-scale many camera system using high-resolution images
while operating in real-time, precedents prove to be hard to find.

Since the camera system is designed to cover the whole area, challenges start
with the scope of the system which has to be designed and integrated. One can
easily compute from the figures in Table 1 that at any single moment the full-
size combined image for all cameras would measure 5120×6144 pixels, while the
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(a) Original camera
frame

(b) Foreground and
background segmen-
tation

(c) After applying
morphological oper-
ations

(d) Static pixel-wise
fused result

Figure 10: Segmentation of foreground pixel regions that are likely to corre-
spond to people. For this basic detector, a background subtraction procedure
in combination with a morphological closing operation was used.

total data rate generated by the cameras amounts to approximately 7.6 Gbps.
Since this exceeds the capacity of a GigE adapter by far, it is not an option to
transfer the image data to a single computer. Consequently, image processing
has to be distributed. This incurs challenges regarding the integration of data
over all the processing nodes maintaining the cameras, such as the real-time
exchange of extracted features to track persons and objects. Figure 9 provides
an impression of exemplary image data on all 40 cameras at a single point in
time.

Apart from the circumstances of the distributed setup, individual computer
vision tasks retain their inherent challenges. Applicable approaches are limited
for the scenario by real-time and stereo coverage constraints. Some popular
approaches, like 3D reconstruction [55], cannot be realized under these condi-
tions. Instead, we opt for algorithms operating on monocular images only, and
integrate our data on the positional level rather than the image level. While
the largest single challenge is posed by the real-time constraints for the al-
gorithms, dynamic lighting conditions remain a challenge for all vision tasks,
ranging from background subtraction and floor segmentation to person tracking
and body-part identification for gesture recognition. Precise intrinsic and ex-
trinsic calibration of all involved sensors is required to allow a consistent world
model incorporating all cameras, and has proven to be a challenging task on its
own. To facilitate this process, the Visualeyez infrared tracker (see Section 2.1)
are used to accurately determine the pose of a calibration table with fiducials
attached anywhere in the experimental area. Subsequently, the determined pose
is used to perform the extrinsic calibration of the cameras.

As mentioned before, visual person tracking is a main focus in the sce-
nario, and a prerequisite for further analysis of participants’ actions. The visual
tracking process itself typically consists of two distinct phases. In the detection
phase, the object to track is detected and located within a single image, us-
ing techniques such as foreground segmentation or feature extraction, e.g. the
Viola-Jones [74] algorithm. A summary of the person detection technique used
is depicted in Figure 10. In the subsequent tracking phase, the trajectory of this
object is established in successive images using a predictive algorithm, a process
considerably less expensive than the previous detection. For a comprehensive
survey on algorithms to be used during the tracking phase we refer to Elfring et
al. [17], and for a comprehensive survey of visual tracking methods see Yilmaz
et al. [76].

For such a tracking approach to be implemented on a distributed multi-
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camera system efficiently, exchange of world position and tracked features be-
tween the involved processing clients has to be dealt with to avoid repeated de-
tection phases, and thus improve the performance of the system beyond the one
of the sum of its parts. Unless a tracking-by-detection approach [4] is employed,
a robust visual tracking algorithm relies on spatio-temporal consistency of the
images depicting the object to track. Consequently, the challenge of tracking an
object increases in a real-time environment, where spatio-temporal consistency
of the image material is limited by the processing speed of the tracking system
in addition to the camera frame rate. Ergo, the most challenging parts within
the tracking process are those which require the most processing, i.e. the de-
tection phase. With a distributed camera setup such as the one described in
Section 2.3, spatio-temporal consistency is violated for targets switching cam-
era FOVs. Currently, we approach this by initiating another detection phase for
the object to track within the corresponding image. From an image processing
point-of-view, this is the greatest challenge for person tracking in the distributed
setup. For a more detailed description of our approach, along with quantitative
results on tracking accuracy, we refer to Lenz et al. [41].

3.1.5 Perception: probabilistic appearance representations and their

application to surprise detection

An environment where multiple robots interact with multiple humans is highly
dynamic and changes over time. These changes may include the sudden and un-
expected appearance of objects which are unknown to the robots. New objects
which are relevant for the robots’ tasks have to be represented in their internal
environment model. In general, it is challenging to acquire accurate geometric
models of transparent and glossy objects. Image-based modeling approaches,
in contrast, provide realistic appearance representations of real-world environ-
ments [62]. It was shown that surprise attracts the attention of humans and is
already generated at very early stages of visual information processing [30] if
the perceived stimuli do not match the expectation inferred from past stimuli
data. Hence, robots need similar mechanisms for attentional control in order to
trigger learning processes. To this end, we develop algorithms which provide a
quantitative measure for the level of surprise for each pixel of an image captured
by the robot’s camera. These surprise maps can be used in order to segment
new objects from the familiar background which is represented in the internal
model. In this context it is challenging to achieve a robust segmentation if the
estimated pose of the robot’s camera is inaccurate and thus the robot’s camera
image cannot be registered well to the internal representation.

In order to overcome this issue, we base the computation of surprise on
a probabilistic appearance representation for the robot’s environment. The
appearance of the environment is represented as a dense series of viewpoints.
For each viewpoint, the luminance and chrominance at each pixel are modeled by
a Gaussian distribution, as illustrated in Figure 11. The mean of the Gaussian
distribution is the expected luminance or chrominance at a given pixel and
the variance expresses the uncertainty of the robot about the environment’s
appearance. A joint probability distribution over the mean and the precision
(reciprocal variance) is obtained from the robot’s past observations by Bayesian
inference. In addition, a per-pixel depth map and the pose of the robot’s camera
head is stored for each viewpoint.
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Figure 11: Our proposed appearance representation uses Gaussian models for
the luminance and the chrominance of the environment for each pixel at a
viewpoint. The Gaussian distributions are inferred from observations along the
robot’s trajectory. The representation also includes a depth map and the pose
of the robot’s camera head for each viewpoint.

When a robot captures a new camera image at a given viewpoint, the internal
environment model provides prior knowledge about the appearance of the scene.
Since the robot never exactly returns to a previous viewpoint, the probability
distributions stored in the internal representation have to be interpolated in
order to be used as priors for the pixels of the image acquired at the robot’s
current viewpoint.

The luminance or chrominance value at a pixel in the new image updates
the interpolated prior distribution and provides a posterior distribution over
the parameters of the Gaussian model. The posterior distribution is different
from the interpolated prior distribution in image regions where the environment
has changed. Hence, a quantitative measure for the surprise level at a pixel in
the new observation is provided by the Kullback-Leibler divergence between the
posterior and the interpolated prior distribution. The interpolation of the prior
distribution and the computation of the Kullback-Leibler divergence are done
in real-time on the robot’s graphics hardware [43].

Figure 12 shows a camera image captured by the robot (Figure 12a), together
with an image which shows the robot’s expected appearance at this viewpoint
(Figure 12b). The expected appearance is computed from the robot’s internal
environment representation. The surprise map in Figure 12c shows high surprise
values in the region of the new cup whereas the surprise values are relatively
low in the rest of the map.

In future work, we will use our method for the computation of surprise in
order to selectively extract visual features from new objects and to build ob-
ject databases which can be queried later for recognition. Whereas common
approaches require that new objects be presented in front of a uniform back-
ground, we suppose that our method allows for the segmentation of new objects
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(a) (b)

(c)

Figure 12: (a) Image captured by the robot’s camera. (b) The robot’s expected
appearance. (c) The surprise map indicates high Kullback-Leibler distance val-
ues in the region of the new cup.
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(a) The multi-robot framework. Layers with
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Figure 13: The multi-robot framework and an application example.

in front of arbitrary backgrounds.

3.2 Coordination

3.2.1 Multi-robot task allocation and execution

Cooperative human-robot and robot-robot interaction in complex robotic sys-
tems requires distributed decision making and cooperative execution. Further-
more, these two parts have to be efficiently connected to yield in a consistent
performance optimization. We address these issues with the cooperation frame-
work illustrated in Figure 13a. It shows the main modules and the interaction
between them. The Task Allocation is responsible for negotiating and distribut-
ing the tasks among the robots, whereas the Task Execution takes care of both
sequential and parallel execution and the supervision of tasks on one robot. For
optimal operation a global performance metric has to be maximized. As the lo-
cal task performance metrics defined by the Task Execution might be different
from the global one, a performance metrics conversion procedure is included.

For the task allocation we use a market-based approach that follows the idea
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of economical markets [33], and provides a good trade-off between a fully de-
centralized system design, which allows only suboptimal solutions, and a fully
centralized design, which is unfavorable in terms of complexity and due to a sin-
gle point of failure. Following the taxonomy of [23], our approach deals with the
instantaneous assignment of tasks (i.e. with no planning for future allocations)
– whose completion may require either a single robot or multiple robots – to a
set of robots which are capable of executing multiple tasks simultaneously. The
assignment of a set of single-robot tasks as well as the sequential assignment of
multi-robot tasks is solved optimally. The sequencing of the set of multi-robot
tasks is done in a greedy manner.

While the task allocation might only have a symbolic representation of the
tasks, the task execution must provide the actual realization. This is achieved by
decomposing the symbolic task into a set of sub-tasks and forming a hierarchical
combination of simpler tasks. The robots are assumed to be highly capable,
i.e. each robot is a kinematic tree with multiple degrees of freedom and several
branches that comprise the hardware resources, such as mobile platform, arm,
end-effector, head etc. To take full advantage of the capabilities of the robot,
the task execution is able to accommodate multiple concurrently running tasks
which possibly interfere with each other. This is achieved by prioritizing tasks
and combining them using null space projection.

Ongoing work focuses on the enhancement from an ability-aware system, i.e.
resource management, failure recovery etc., to a capacity-aware system. With
capacity-awareness we envision a self-aware system that is able to quantitively
estimate and adapt its own performance online. In this respect, we utilize the
probabilistic system interdependence analysis described in [57], which enables
the learning of the metric interdependencies. This provides the functional re-
lation to solve the consistent optimization problem and is encompassed in the
performance conversion module in Figure 13a.

3.2.2 Planning of joint actions

At a high-level of control, a robot needs to decide what to do when. In a joint-
action scenario, these decisions depend on both a global plan of what needs to
be achieved as well as the current actions of humans in the vicinity.

Using the reactive planning language RPL [50], and a framework for inte-
grated Planning and Learning [36] we describe plans in a way that allows each
individual goal to be either achieved by a human or the robot. The robot will
then in the partially ordered set of plan steps always strive to decide on a next
task which best suits what the humans are doing.

Most of the preliminary work is done using a simulator6, in order to be able to
run a maximum of experiments without impacts of failures from perception and
technical infrastructure. The results will then be validated in fewer experiments
on a real robot.

In simulation, we introspect high-level interaction by having 2 agents rep-
resented in the simulator, one controlled by a human over the keyboard, and
the other by a robot controller. The simulation appears as shown in Figure 14
The sequences of actions that emerge when both act to achieve common goals

6Gazebo: http://playerstage.sourceforge.net/gazebo/gazebo.html - part of the
Player/Stage project
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Figure 14: Example of two agents in the Gazebo simulator jointly setting table

can then be evaluated with respect to performance and the satisfaction of the
human with his robot companion.

The main challenge for planning in multi joint action is different from clas-
sical planning as we are mainly focussed on deciding between several current
alternatives in a given general plan rather than creating plans.

We assume a general plan exists that states the goal to be achieved, and the
robots require a strategy to follow that plan while allowing for the human to
take part in that plan.

We hope to find which algorithmic changes to a given robot controller yield
the highest benefit for human robot interaction. As prerequisites, we depend on
lower level routines of the robot such as perception of the human and human
aware motion planning, without those working reliably, the experiments in multi
joint action will not yield meaningful results.

3.3 Joint execution

3.3.1 Navigation in crowded environments

The major challenges for a robot navigating in human-populated areas, i.e. dy-
namic and often very crowded environments, are finding a valid path to its goal
position and guaranteeing safety. In a static environment it is in general easy to
plan a path, whose safety can then be verified by checking if the planned state
trajectory does not enter the set of inevitable collision states (ICS) [20], which
depends on the geometry of the obstacles and the dynamics of the robot. The
concept of inevitable collision states can be extended to scenarios in which the
future behavior of dynamic obstacles is exactly known, see e.g. [54]. However, in
a scenario where the future behavior of other obstacles is unknown, one cannot
decide if the current robot state is an ICS since it depends on the future actions
of the dynamic obstacles. For this reason, the concept of ICS was extended to
probabilistic scenarios [2].
In crowded environments, motion planning with ICS is not reasonable. Con-
sider the scenario where a robot finds its way through many people in crowded
environment. Since in this scenario the workspace objects are humans, their
future occupancy is unknown and can only be predicted. Their motion and
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Figure 15: Difference between active and passive workspace objects.

their future occupancy is specified by probability density functions.
Two different kinds of objects are considered:

• Passive objects: they ignore the robot’s trajectory.

• Active objects: they react to the robot’s trajectory in order to reduce the
collision risk.

Modeling humans as active objects has two advantages. On the one hand it is
easier to find a path to the goal position and on the other hand the calculation
of the crash probability is less conservative. Figure 15 illustrates the usefulness
of modeling humans as active objects. The crash probability of the robot’s state
could be reduced by 45% compared to passive objects. In [2] was shown that
it is essential to take into account the avoidance possibilities of all workspace
objects to solve the problem of navigation in crowded environments, which can
be interpreted as an interactive process.

3.3.2 Intention recognition of approaching agent and dynamic robot-

human handover

The human capability to interact smoothly and efficiently constitutes the refer-
ence standard for robotic agents in human-robot interaction. A promising way
of achieving human-like performance is to mimic relevant features of human be-
havior to enable humans to intuitively react to and interact with the robot. Until
now, several studies were done on human-robot interaction [5, 29, 37, 51, 59, 63]
but only few of them [5, 29, 51] were based on the analysis of human-human
experiments. We therefore analyzed one of the basic interaction scenarios in hu-
man daily life: one person approaches another one and hands over an item [6].
26 subjects participated in the experiment. The delivering person approached
the receiving subject from a distance of 4.2 meters. The object to be handed
over and the head of the approaching subject were tracked using a motion track-
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(a) Handover scenario. (b) Table scenario.

Figure 16: Human-human handover and table scenarios. The red dots denote
the tracking sensors, while T and R denote the transporting and receiving sub-
jects, respectively.

ing system (IS-600 Mark 2, InterSense Inc.7, USA). The results showed that the
approaching person started to raise her hand during the approach phase and
well in advance of the handover. The approaching person was still in motion at
the moment of the handover with an average head and hand speed of 30 cm/s
and 12.5 cm/s, respectively. This blending of approach and handover actions
has two advantages: the approaching subject can achieve a smooth and fast
interaction, and the receiving subject is able to recognize the intention of the
approaching subject early enough to swiftly react in order to take over the
object. Thus, both the intuitive indication of intention by the transporting sub-
ject and the respective understanding by the receiving subject determine the
seamless interaction.

When considering the handover position in an interaction related coordinate
system with the origin being the midpoint between the interacting subjects,
the handover position was close to this midpoint and slightly but significantly
shifted to the right side of the receiving person (all subjects were right-handed).
The same handover pattern was also observed in our previous studies, where
two subjects sitting at a table were handing over a cube [28].

In order to analyze whether the behavior of the transporting subject de-
pended on the receiving subject being present, the receiving person was replaced
by a table (24 transporting subjects). A similar behavioral pattern as in the
first scenario was observed suggesting that the way humans approach another
person to handover an object depends mainly on their own sensorimotor con-
tingencies rather than social factors. The only significant (t-test, p < 0.05)
difference was found for peak hand velocity with a higher peak hand velocity
in the table scenario. This is in accordance with Fitts’ law [18], which states
that the speed increases if the size of the final target becomes larger: handover
position has to be more accurate when delivering an object to a person as when
placing the same item on a table.

In summary, our results suggest that the dynamic blending of motor pro-
grams determine the efficiency of the handover interaction between two persons.
However, the action of the approaching person it is not particularly affected by a
receiving subject being present. The various parameters measured in our study
are directly transferable to robotic systems. However, a human-like dynamical

7http://www.intersense.com/
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(a) Safety costs (b) Visibility costs (c) Hidden zones costs

Figure 17: Cost functions for HANP A* search

behavior can only be achieved in robots by executing motor programs in parallel

rather than successively.

3.3.3 Human-aware navigation for joint task achievement

Human-aware navigation planning has global and local impacts. While there is
no formal separation between what is global and what is local planning, usually
the boundaries depend on the available information. Global planning is based
on a map of the whole environment including the current position of the robot
and a target location.

Using search algorithms on the map, motion plans such as sequences of
waypoints can be found. Local planning on the other hand usually just takes a
local motion target from a global plan (such as a waypoint), and also the sensor
readings of the robot, to find a sequence of motoric commands that will reduce
the distance to the next target.

Human presence affects both global and local planning. In global planning,
human may act as obstacles in a map like furniture, however humans may be
moving and they may be considered as movable obstacles. Taking into account
the comfort of concerned humans using models of human discomfort, improved
global motion plans can be achieved.

We introduce the human aware navigation planner HANP [64] to create
global motion plans that take into account social costs of motion around humans
as visualized in Figure 17. Original HANP has been developed and evaluated
mostly for navigating around static humans in scenarios where the robot acts
as a servant. We extended HANP to take into account moving humans and
humans as cooperating agents [39].

In local planning, human presence naturally is a safety concern, a local
planner must make sure no harm can be caused by a robot. Aside from that,
local planning attempt to create robot motions that are legible and comfort-
able, in particular when approaching humans such as to hand over items or
communicate. The velocity and acceleration of the robot determine the human
understanding and satisfaction of the robot behavior. A robot approaching too
fast can be perceived as threatening, a robot approaching too slow will will be
annoying. A robot changing directions often will be hard to predict and thus
not have very legible behavior in that respect, and a robot changing acceleration
while approaching often similarly.

To find models of motion that appear natural, many researchers focus on
mimicking aspects of human motion [37]. In the demonstration scenario we
contribute by tracking human motion in controlled experiments. From that we
can infer models about how humans plan and interpret motion by other agents,
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(a) Example of experimental setup in
HH-Interaction experiment.
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comparison of left (green) and right sitting
interaction partner (blue) vs. single condi-
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Figure 18: Experimental setup for a human-human interaction task.

and get estimate of parameters for natural motion.
Aside from the technical challenges of creating safe experiments with moving

robots and humans, and scientific challenges in proving ergonomic improvements
of robot motion, we are also interested in combining local motion planning and
high-level behavior. Traditionally, robot motion planning follows robot task
planning, so the robot first decides what to do, and then where to go and how
to get there.

However, with the dynamics introduced by humans, this approach causes
annoying robot behavior. Instead we would like the robot to consider costs of
global and local motion when deciding what to do, and to be able to change
its mind about what to do next at given times. This human-aware navigation
is not just used to reach a certain goal, but also to continuously estimate costs
about how much discomfort moving to a certain target location will cause to
humans at this given time.

3.3.4 Movement adaptation in joint action

Motivation: Our studies aim at understanding how humans coordinate their
movements with a direct interaction partner. For a successful interaction be-
tween humans, it is necessary that people not only share the representation of
the task - they must also be able to predict the actions of the interaction partner
and integrate the predicted effects into the individual movement plan [60]. For
a successful human-robot interaction, these mechanisms are of importance for
several reasons. First, the human should be able to intuitively interact with
the robot. Therefore, it is necessary that the robot acts and reacts in a way
in which the human would expect him to move. Otherwise, it would be very
irritating to a human interactant and an intuitive interaction might not be pos-
sible. Additionally, knowing what the counterpart will do is a safety issue: if the
human expects the robot to act differently, the risk of collision and injury rises.
To provide solutions to these problems, it is important to know how humans
react in different situations [19, 32]. Our approach is to explore human-human
interaction and find patterns and mechanisms of human interpersonal coordina-
tion. These behavioral rules will later be used as input to robotic development
to improve direct human-robot interaction.
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Figure 19: Demonstration of human-human and human-robot interaction in a
sample motor task on CoTeSys October 2009 Workshop.

Human-Human Interaction: Exploring human-human interaction is pretty
new and untackled in experimental psychology. Therefore, we start with simple
experiments. For example, participants have to move bricks from a starting
position to a target area [72, 73]. To obtain movement data, the trajectories
of the hand and arm are recorded using the Polhemus Liberty motion tracker
described in Section 2.1. The movement data is analyzed offline, calculating
different spatial and temporal parameters. Figure 18 depicts an experimental
setup and corresponding movement data.

Human-Robot Interaction: From former experiments it is known that peo-
ple synchronize their movements to those of an interaction partner when con-
jointly working on a repetitive motor task [56]. It is therefore assumed that in
the present task, people establish an individual phase difference to their inter-
action partner over time that is kept constant throughout the experiment [25].
Here, robotic motion behavior may benefit from the found mechanisms. From
online-tracking of human motion data this phase difference can be calculated
and used to generate a robotic motion plan, as depicted in Figure 19.

In the next step, we want to evaluate this robotic control scheme in a direct
human-robot interaction experiment in terms of coordinated task performance.
As magnetic tracking with our robots is not possible due to interferences with
metal parts, the infrared tracking system installed in the experimental area will
be used (see Section 2).

3.3.5 Physical interaction

Physical human-robot interaction (pHRI) is an important aspect in multi joint
action scenarios [38]. While speech and gestures can be used to negotiate tasks
and goals explicitly, haptic interaction is mostly directed to simultaneously ne-
gotiate and solve tasks that require physical coupling [70]. Tasks demanding for
sophisticated pHRI capabilities of robots can be generally referred to as joint
manipulation of objects under environmental constraints where cooperation to-
wards a common goal within a mixed human-robot team is needed. For realizing
such robotic systems, several challenges must be addressed:

• Cooperation in overlapping subspaces of physical tasks requires efficient
task sharing mechanisms.
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Figure 20: Analysis and synthesis of task sharing strategies.

• Heterogenous, time-varying capabilities of participating agents demands
for a sliding autonomy of the robotic partner.

• Tight coupling of dynamically changing, interacting systems give rise to
adaptive control methods incorporating human models.

• Active contribution advancing the task state towards the common goal
can be achieved with human-aware feedback planning only.

Task Sharing Strategies Our work in this field addresses the cooperative
transport of a rigid bulky object with multiple humans and robots. We presented
a system theoretic analysis of the human-robot cooperative manipulation prob-
lem and developed an experimentally confirmed strategy for static task sharing
in terms of consistent effort sharing policies [40], see also Figure 20.

Next steps will involve an enhancement of our task sharing approach towards
human-adapted sharing policies. User-adapted control of effort sharing will be
performed in terms of an online-identification of the human’s current input
capabilities to the task.

Feedback Interaction Control: Human motor control is suggested to be
executed on at least two levels to reduce task complexity on a higher level [69].
Additionally, humans have a very distinct sense of touch -called haptics- which
is also used to communicate implicitly during interaction.

Schemes for fast feedback interaction control will be deployed on a low level
of task execution, forming a finite set of haptic motor primitives: feedforward
generation of motion following optimality principles derived from human mod-
eling and adaptive feedback shaping of reactive behavior based on human dy-
namical models. As a common control objective, we seek to deploy metrics for
cooperative task performance.

Planning for Cooperative Physical Tasks: Referring to our system-the-
oretic analysis of pHRI [40] we identified the need for cooperative planning
for joint manipulation under environmental constraints. Challenging aspects of
pHRI include:
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• A human behavior model for joint physical tasks.

• Concurrent task execution and plan negotiation.

• The appropriate objective function for joint task performance, satisfying
human ergonomic requirements as well as optimality criteria.

Human Behavior Modeling: To enhance the dyad’s cooperative perfor-
mance, an estimation of the human intention is necessary, as it minimizes the
risks of conflict between partners and improves the performance of the robot’s
planner. Using a probabilistic approach for the human modeling we are able to
learn not only at a continuous level but also at a symbolic level, segmenting the
time series data into task primitives, which provides a higher level of abstraction
prediction.

4 Conclusion

We presented an overview of the ongoing research in the cluster of excellence
CoTeSys in the area of multi joint action and in connection with the MuJoA
demonstration scenario. Multi joint action was defined as action that is done by
two or more cognitive systems, whose distinctive features result from the inter-
connection between the systems. The different aspects of this interconnection
were specified here as: shared knowledge, coordination and joint execution.

The various research efforts in the demonstration scenario that fall under
these three topics have been described in more detail, focusing on the motiva-
tions and challenges of the individual research areas. Additionally, the already
achieved results of the work, as well as work that is under way, have been
introduced.

The report also presented the distinctive and quite unique experimental
setup of the demonstration scenario, consisting of a human living area mockup,
with multiple human-like robotic platforms and a large ceiling camera array.

A Collaborating CoTeSys Projects

A.1 List of active projects

• #136 System-Theoretic Modeling Approach to Perception-Cognition-Ac-
tion Closed Control Loops

• #328 JAMIE – Joint Action in Multimodal Interaction Environments

• #410 MuJoA – Multi-Joint Action of Cognitive Systems

• #421 PARA – Planning for Adaptive Robot Assistance

• #425 Supporting Cognitive Processes on Mobile Platforms Using Joint
Geometry-Based and Image-Based Environment Modeling
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A.2 List of finished projects

• #327 ITrackU – Image-based Tracking and Understanding

• #344 MuDiS – A Multimodal Dialogue System for Intuitive Human-Robot
Interaction

• #418 ACE – Action Planning and Decision Making for Cognitive Techni-
cal Systems: Mobile Vehicles and Humanoid Robots
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