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Abstract. Many approaches in computer vision require multiple re-
trievals of histograms for rectangular patches of an input image. In 2005
an algorithm to accelerate these retrievals was presented. The data struc-
ture utilized is called Integral Histogram, which was based on the well
known Integral Image.

In this paper we propose a novel approximating method to obtain
these integral histograms that outperforms the original algorithm and
reduces computational cost to more than a tenth. Alongside we will
show that our adaptive approach still provides reasonable accuracy –
which allows dramatic performance improvements for real-time applica-
tions while still being well suited for numerous computer vision tasks.

Keywords: Computer Vision, Object Recognition, Tracking, Early Pro-
cessing, Integral Histogram, Adaptive Approximation.

1 Introduction

In statistics one certainly comes along histogram computation, as a histogram is
a statistical description of a set of observations. Each observation is categorized
and the number of observations matching each category are summed up. If the
counters on the categories are each divided by the total number of observations,
the total sum of all values is 1.0 and we call the histogram normalized. A nor-
malized histogram can be seen as an approximation of the probability density
function from the observation data given.

If more than one aspect defines a category, observations have to be examined
regarding any of the relevant aspects and thus the resulting histogram has multi-
ple dimensions. Normalized histograms with multiple dimensions are sometimes
also called Joint Histograms [1].

Besides visualization of statistics, one of the most relevant applications for
histograms is within computer vision (CV). Here a histogram is a very important
tool that can be used for various tasks like image understanding and tracking
(e.g. applying Particle Filters [2]). For the reason of further analysis numerous
different types of histograms can be computed on image data, for example color
histograms [3], gradient histograms [4], color cooccurrence histograms [5], local
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feature histograms [6,7] or histograms of coefficients from wavelet transforms on
localized object parts [8].

In this paper we confine ourselves to the computation of color histograms, but
in fact the approach presented here can be extended to any other type of his-
togram. When computing a color histogram the observations mentioned above
refer to the pixels of the image and the categories are determined by the gray val-
ues (one-dimensional histogram) or color values (multidimensional histogram).
In order to obtain an image histogram typically the number of possible values
for a color is limited, for example, a three-channel color value with 8-bit color-
depth (256 different values per channel) – like standard RGB color space – could
be quantized into N = 4 bins per channel. The histogram computed for such
an input image then has three dimensions, which results in a total number of
N3 = 64 categories.

The approach presented here proposes a new method for retrieval of Integral
Histograms (see Section 2). Our approach is considerably faster compared to
the original algorithm, because it approximates the integral histogram using an
adaptive stop criterion (see Section 3). In this way, we overcome the problem of
expensive initialization, a mayor drawback of the original algorithm, while still
exploiting the benefit of extremely fast retrieval times (see Section 4).

2 The Integral Histogram

For sophisticated tasks in computer vision often histogram retrievals of rectan-
gular regions are necessary [9]. A model-based object recognition approach could
for example define a set of spatially connected histograms as a model describ-
ing the object to search. Within the recognition algorithm a magnitude of a
view dozens to several thousand hypothesis (considering different rotations and
scaling) have to be evaluated in order to detect an object with high accuracy.
Each of the evaluations requires the retrieval of histogram(s) of a rectangular
sub-image. Porikli [10] recently presented a method to speed up these retrievals
dramatically. He introduced the concept of Integral Histograms, which is based
on the Integral Image data structure earlier described by Viola and Jones [11].

Considering a linear sequence of observations, an integral histogram in prin-
ciple specifies a bundle of histograms each summarizing observations from the
beginning to a certain observation. The algorithm for one-dimensional data thus
can be defined recursively by:

H(xi, b) = H(xi−1, b) ∪ Q
(
f(xi)

)
(1)

For image data, which is a two-dimensional data-plane rather than an obser-
vation sequence, the computation of subsequent histograms can be specified as
shown below, according to [10]:
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Fig. 1. Propagation of integral histogram by wavefront scan1

∀b : H(x1, x2, b) = H(x1 − 1, x2, b)
+ H(x1, x2 − 1, b)
− H(x1 − 1, x2 − 1, b)
+ Q(f(x1, x2)) (2)

In the above equations b denotes a bin (or category) within the histogram and
Q(f(x)) an empty histogram except for one entry that refers to the categorized
value of the pixel at position x. Figure 1 illustrates the flow of the algorithm.

The big advantage of the integral histogram approach is the dramatic im-
provement on the cost of retrieval of histograms for rectangular regions. After
the first step, the computation of the integral histogram, no further image ac-
cess is needed. A histogram for an arbitrary sub-image with left-upper coordinate
(x1|x2) and right-lower coordinate (x3|x4), relevant for the evaluation of a hy-
pothesis, can be retrieved in constant time independent from the patch size. The
scheme below describes the retrieval operation from the integral data structure:

∀b : H(x1, x2, x3, x4, b) = H(x3, x4, b)
− H(x3 − x1, x4, b)
− H(x3, x4 − x2, b)
+ H(x3 − x1, x4 − x2, b) (3)

As one can see from (3), only one addition and two subtractions (in addition to
array-value retrievals) are needed per bin b in order to create the new histogram.
In contrast, the naive implementation needs (x3 − x1) · (x4 − x2) pixel queries
and extra operations for computing the corresponding bin and summing up.

Obviously a big deficit in systems utilizing exhaustive histogram retrieval is,
that the cost for the intersection is dependent on the size of the patch and grows
proportionally to the area. Now, with the use of an integral histogram, the cost
for the retrieval remains constant for arbitrary sub-images.

In a nutshell, integral histograms have great computational advantages com-
pared to a naive approach in scenarios, where a multitude of histograms for
1 Taken from [10]. Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2005
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image-patches have to be retrieved, because the retrieval operation is very effi-
cient. But still there is one big drawback which is addressed in this paper: the
first step, the computation of the integral histogram, is in deed rather time and
memory consuming.

3 Advanced Integral Histogram Computation

In Porikli’s original work on integral histograms two methods for propagation
were proposed: the wavefront scan (see Figure 1) and a string scan method. Both
methods and various variations require the analysis of every single pixel of the
input image, so the larger images get, the more effort is needed for computation
of the integral histogram (proportional to the area).

This exact solution is not optimal by means of performance considering nat-
ural images, as in such images often uni-colored areas occur. We exploit this
finding and introduce a novel method based on iterative approximation apply-
ing an adaptive stop criterion.

3.1 Adaptive Refinement

Within the iterative algorithm the input image I is equally divided into four
rectangles and with every subsequent level these rectangles are divided the same
way. We call this refinement. Intuitively recursive refinement stops at a maximum
depth of

dmax = �log2 (argminI (widthI , heightI))� . (4)

A more sophisticated approach considering the presence of uni-colored areas
defines an adaptive abort criterion. Here refinement stops, when either dmax is
reached or the criterion is matched. The criterion c(p) comparing the n binned
values b(p) of a set of pixels p = {p1, p2, . . . , pn} can be defined as follows:

c(p) =
{

true if ∀i, j ≤ n : b(pi) = b(pj)
false otherwise (5)

From (5) one can deduce that refinement is aborted, if the values of all pixels
used for determination (random or equally distributed pixels inside the rectangle)
are categorized into the same bin. Thus uni-colored areas are not refined any
further (Figure 2).

3.2 Histogram Retrieval

As we always refine by dividing a rectangle into four sub-rectangles successively,
a Quad-Tree seems to be a good choice for data-maintenance, because we do
not loose information about the accuracy level of an approximation. Also spa-
tial information for the histogram origins are stored efficiently. Thus from a leaf
position inside the quad-tree we are able to reconstruct the position of the corre-
sponding pixel in the original image and vice versa. Moreover, downwards from
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Fig. 2. Using an adaptive stop criterion preferentially refines where strong gradients
occur

the root-node we can access any histogram at a maximum of dmax steps, which
is the maximum depth of the tree.

In order to obtain a histogram stored in a node of the quad-tree, we define a
method for retrieval of a node corresponding to a position p as follows:

function getNode(Position p, Node root) : Node
Node n := root
int d := 0
do

if p = n.pos or n.noChildren then break
else
Node lu := n.child(left, upper)
HVal h := p.x <= lu.pos.x ? left : right
VVal v := p.y <= lu.pos.y ? upper : lower
n := n.child(h, v)

fi
d := d + 1

while d < dmax
return n

One can see from the above listing, that this method always delivers the node
containing the best approximation for a position if the exact position is not
represented in the tree.

3.3 Recursive Approximation

On the first level of the recursive approximation, each of the histograms the inte-
gral histogram consists of is initialized with the bin value of the lower-rightmost
pixel of the input image.
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Within the next iterations, we recursively compute better approximations by
refining and successive updating steps. Supposing we refined to the full extent
of dmax without adaptive abortion, the recursive update can be define according
to Equation (2). But considering the use of an abortion criterion, we first have
to determine the best approximation for the four sub-rectangular histograms we
need for the update according to the method described in Section 3.2, before
we can actually update. The positions corresponding to those are determined
relative to the position of the parent histogram pd and according to the level
(the depth) d we process. For an image I we can calculate these positions (left-
upper to r ight-lower) as follows:

pd+1
l,u =

(
pd.x − 2−dwidthI , pd.y − 2−dheightI

)

pd+1
l,l =

(
pd.x − 2−dwidthI , pd.y

)

pd+1
r,u =

(
pd.x, pd.y − 2−dheightI

)

pd+1
r,l = pd (6)

Furthermore the histograms used for the update have to be weighted, again
considering depth d and their position p:

wd
I (p) =

22d · p.x · p.y

widthI · heightI
(7)

Utilizing Equations (6) and (7) and having retrieved the best approximating
histograms H ′(p) as described in the last section, the update method for a bin
b can be formalized as follows:

H(pd, b, d) = Q
(
f(pd+1

r,l )
)

− w(pd+1
l,u ) · H ′

(
pd+1

l,u , b
)

+ w(pd+1
l,l ) · H ′

(
pd+1

l,l , b
)

+ w(pd+1
r,u ) · H ′ (pd+1

r,u , b
)

(8)

Note that since Q(f(pd+1
r,l )) = Q(f(pd)) refers to a single entry, its weight has to

be set to 1.0 accordingly. As a final step, to keep all contributions in balance for
the updates in d − 1, the resulting histogram has to be normalized according to
the weights from (8):

H̄
(
pd, b, d

)
=

H
(
pd, b, d

)

1 − w(pd+1
l,u ) + w(pd+1

l,l ) + w(pd+1
r,u )

(9)

4 Experimental Results and Conclusion

Figure 3 depicts mean retrieval times for a single histogram. In case of the
integral histograms the values shown are computed with respect to the relatively



Accelerating Integral Histograms Using an Adaptive Approach 215

Fig. 3. Left: Mean retrieval times (note the logarithmic scale), Right: Initialization
times subject to side length of the input image

expensive initialization of the integral histogram (right graph). Note that the
left graph is drawn in logarithmic scale, which clarifies the enormous speed-
up applying the presented algorithm. As one can see, the more hypothesis are
evaluated, the less the initialization plays a role.

An important finding is, that applying the adaptive approach results in a com-
putational benefit with a mere magnitude of about 50 hypothesis on a ∼2.3M
pixel input image. The naive integral approach [10] reaches this break even point
with above 1800 hypothesis. Mean values for retrieval of a single random his-
togram in an integral histogram structure fluctuate between 0.01 to 0.03ms,
while retrieval using a traditional approach is highly dependent on the size of
the patch and takes a mean of 24.9ms in our evaluation scenario.

Utilizing our approach the problem of expensive creation of the integral his-
togram can be overcome. In fact mostly initialization can be executed in around
150ms and for smaller images ∼2502 px, considering 8-bit color depth and 8
bins per channel, the approach easily reaches the real-time limit of 25Hz. The
presented algorithm on the one hand benefits from very short retrieval times

Fig. 4. Accuracy using the adaptive integral histogram approach compared to exact
solutions (left: Bhattacharyya Distance, right: Correlation) on random patches
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Fig. 5. Demo application with exhaustive search of a random patch

provided by the integral histogram data structure and on the other reduces the
cost of structure initialization dramatically (at 2.3M pixel by 26.27) compared
to [10]. We can thus reach a speed-up proportional to the number of hypothesis
compared to a conventional approach. This speed-up grew up to ∼250 when
retrieving 104 random histograms in our experiments.

A deficit of approximating solutions in real world applications always is the
cost of achieving a desired accuracy. Concerning this topic, Figure 4 shows two
common measures, the Bhattacharyya distance [12] and the correlation. Values
in the figure have been compared to the exact solution obtained with the conven-
tional approach. It becomes clear, that the solutions are well suited for real-world
applications like particle filters. Moreover, due to extremely fast retrieval times,
one can easily compensate for occasional outliers by simply evaluating a few
more histograms.

Figure 5 shows a possible application of our approach. In this test, the adaptive
integral histogram approach was used to locate a random patch in an image. The
demo application uses exhaustive search and so evaluates every possible region
(considering size) of the original image in order to detect the patch. The figure
also shows a map of saliency - brighter areas refer to higher , darker regions
to lower similarity. On the left, the extracted integral histogram using hue and
saturation of the HSV color space is shown.
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In a nutshell the proposed approach already outperforms the conventional
approach with ∼50 hypothesis to evaluate on an input image, while the original
algorithm [10] does not until ∼1800 on natural color images with 8 bit color-
depth – 30 times faster. Yet there is some potential for improvements. Accuracy
can be tuned through adjustments on the adaptive stop criterion and the number
of bins. Performance on the other hand can be optimized by limiting dmax to a
lower depth, resulting in further acceleration up to a factor 10 in experiments –
a factor 300 (!) in total. Finally, due to the tree data structure, the algorithm
can easily be parallelized in order to gain even more on the performance side.
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