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I. INTRODUCTION

The basic, biologically inspired idea of the authors (and
some more in the scientific community) is to apply an
attention-based type of filter on the great amount of visual
input data and only perform further analysis on the tiny rest.
This residual is what we call the regions of interest (ROIs).

There have been many approaches to computation of salient
features in a static image, e.g. [1] shows that high contrast
regions seem to attract attention or [2] reports that salient
regions can be computed using multiscale images. Others on
the other hand argue that local complexity can be a measure
of saliency [3]. Also, a learning approach for visual saliency
models has been proposed recently [4]. Following these ideas,
one foundation of our approach is the claim, that fundamental
attention attractors originating from sensory input can be either
static salient features in a single frame or dynamics in the input
data sequence (considering temporal properties).

Inspired by the idea in [5], which is claimed to be biologi-
cally plausible, we extend the saliency attention approach with
the idea, that vision is a process of active and sometimes even
volitional exploration of the environment. Thus, considering
the second before mentioned assumption, i.e. based on the
theory of inhibition of return - as shown to be plausible
in human visual psychophysics [6], we implement top-down
cognitive feedback in the proposed system. Moreover, we will
go one step further and integrate a possiblity not only for
attention inhibition, but also for directed attention guidance.
This reinforcement is triggered by cognitive processes - rea-
soning about relevant additional information to gain from a
specific region (see Section III). Although we do not claim to
implement the entire framework of [5] - e.g. the inattentional
or change blindness, we in deed show that a system utilizing
the basic ideas performs considerably better than without.

Not contradicting, but complementing the work of other
authors [7], [8], we do not want to focus solely on build-
ing a biologically plausible visual systems, but our primary
target is to apply the underlying ideas of such frameworks

to a real-world robotic setup. We therefore avoid complex
neural, connectionist or machine learning techniques where
possible, giving preference to discrete algorithms. These fast
and efficient algorithms allow for realtime performance and
high accuracy for manipulation tasks on standard hardware.

The vision system presented in this paper is part of the
JAST1 human-robot dialog system.

A. The JAST Robot

The overall goal of the JAST project is to investigate the
cognitive and communicative aspects of jointly-acting agents,
both human and artificial. The robot torso (Figure 1) being
built as part of the project [9], [10] consists of a pair of
mechanical arms with grippers and an animatronic talking
head. The input channels consist of speech recognition, object
recognition, gesture recognition, and robot sensors; the outputs
include synthesized speech, emotional expressions, head mo-
tions, and robot actions. The user and the robot work together
to assemble a wooden construction toy on a common work
area, coordinating their actions through speech, gestures, and
facial motions.

Vision processing in the JAST system is performed on the
output of a single top-view camera. It provides an image
stream of 7.5 frames per second at a resolution of 1024x768
pixels. The output of the vision process is published to the
multimodal fusion component [11], where it is used for dis-
ambiguating spoken input from the user. Moreover, combined
hypotheses representing the users requests are produced and
reasoning on the properties of the observed world parameters
is performed.

B. Vision Architecture and Analysis Stage

The vision system presented here (Figure 2) applies an
asynchronous communication mechanism (ACM). Therefore
we can implement non-blocking behaviour and still guarantee
the required frequency for result publishing, as publishing
incomplete analysis results is tolerated. Derived from common
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Fig. 1. The JAST human-robot dialog system.

Fig. 2. Architectural overview of the vision system.

standards [12], intermediate vision data is managed in limited-
size priority-queues.

Concerning parallelization techniques [13], the JAST vision
system applies a wait-free [14] combination of data-domain
and function-domain parallelization. As previously shown in
[15], this combined approach performs very well in practice
because anchor points for distributed computation can be
designed to be independent concerning memory and workflow
and the system avoids starvation according to [16].

Object recognition within the scene is fairly straight
forward once the regions of interest are identified. We apply
the OpenCV-implementation of a template-matching algorithm
on 20 different rotations of each template we consider to be
relevant. The templates are generated from previously taken
samples (a future version of the system will extract them
online).

Gesture recognition is implemented as a two step ap-
proach: first, specific invariants have to be extracted from a
region, and second, the gesture has to be classified.

To classify an extracted set of invariants, we find the K
nearest neighbors which are calculated based on the weighted
distance of each training vector to the input invariant. The
training vectors are created in advance and remain stable
throughout the whole process. Next, we choose the K vectors
from the training pool which have the shortest normalized
(Euclidian) distance to the given invariants. A naı̈ve Bayes
probability for the invariants can then be computed for each
available class of gestures (details in [17]).

Self recognition or robot recognition is acomplished
by a cognitive feedback algorithm. From robot sensors one
can retrieve the current joint parameters of each joint of
the robot’s arms. This information is used to adjust a 3D
model of the robot accordingly. Based on this information, in
combination with link properties and the position of the torso,
that are known from a priori, the system can compute the 3D
cartesian position of each joint applying forward kinematics.
This information is then used to identify corresponding regions
in the input image.

II. ATTENTION ATTRACTORS

Before passing information to the Analysis and Interpreta-
tion stage described above, we apply a novel early processing
mechanism, which is the main topic of interest here. This
section herein describes the effects directly triggered by the
input data.

The goal of attention attraction described here is to generate
a saliency map. But we want to extend the idea of the saliency
map to a more general map of visual attention and emphasize
our technical perspective, so we introduce the term attention
condensation layer here.

Both algorithms described in this section directly process
sensory input data, so we call the emerging effects bottom-
up attention attractors. These effects are often referred to as
“scene-dependent”, on the contray to “task-dependent” ones
that originate from higher cognitive processing [7].

A. Static Saliency

Our approach for detecting salient local features in a single,
thus static, input image relies on a comparison of intensity and
hue [18]. A background model is used, which can be trained in
advance. This model is represented as a 2D normalized joint
histogram [19].

In the saliency detection step the model is compared to hue-
intensity distribution of image patches in the input image -
e.g. by applying the Bhattacharyya distance. If the distance is
greater than a certain threshold, the patch is considered to be
non-background and worth analyzing it within the recognition
stage (see Figure 3).

B. Dynamic Saliency

The extraction of saliency from dynamics we describe here,
is an extension to the approach for detecting locally salient
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Fig. 3. The visual layers for attention based compuation.

regions explained above. The basic idea is to create and
evaluate a disparity map, combine it with the saliency map
and observe its behavior for a number of frames.

Regions of particular interest are blobs of pixels moving in
an uniform manner for a number of frames. On the basis of
this observation, the system is able to infer regions containing
high dynamics, that are then considerd to be worth analyzing.

III. COGNITIVE FEEDBACK

As a second principle in our attention based robot vision
system we assume, that the cognitive layer should be able
to influence the amount of attention payed to a bottom-up
attracted region by giving some sort of feedback. Technically
speaking, this means projecting knowledge about a scene or
about constraints in the world into the attention condensation
layer. The active or sometimes even conscious projection of
world knowledge can either cause inhibitory effects, attract
attention, or increase the level of attention.

Neuroscientists often call these effects on the primary visual
cortex of humans top-down effects [20], as they have their
origin on higher levels of cognition, or task-dependent [7],
i.e. as the high level task or plan influences lower level visual
attention to specific regions. Their experiments show, that the
same attention attractors have very different influence on the
focus of attention and thus the activation of processing units
under variations of the task to accomplish.

A. Inhibition of Return

“Inhibition of return” [6], [21] constitutes the theoretical
foundation of one of the algorithms used to control the focus
of attention in a top-down manner. Here we are talking
about a situation where the system’s attention attractors got
activated and regions for analysis from the bottom-up view
were identified. In this case the inhibition of return mecha-
nism avoids re-analyzing regions that have been previously
processed (Figure 3).

In order to achieve this, the system keeps track of any object,
gesture or part of the robot visible in the scene. Many of
these items are likely to appear at the same or very close
position in consecutive frames. The level of attraction for a
ROI a(ROI, t) is in this case proportionally decreased with
the number of sequential frames t it appears in. Here we
propose two methods, either linear or non-linear degression.

a(ROI, t) =
{

linear: δ(ROI)− t
non-linear: tanh(−αt) + 1 (1)

Within the linear degression, we have to specify a δ(ROI)
which specifies the maximum number of consecutive attrac-
tions subject to the size of a region (larger regions need more
time for analysis, therefore the inhibition of return affects big
regions later), whereas within the non-linear case, we have to
specify a factor α that determines the duration of the attraction
and its strength subject to t. Usally α ' δ(ROI)−1 is a good
choice here.

B. Volitional Attention Control

Thinking about human attention control again, we find that
we are able to control our focus of attention and direct it to a
certain region, or generally to a subset of the perceived input
data. This was shown to be plausible in Stroop’s historical
psychological experiments [22] and is still being researched
on (e.g. [23]).

There are basically two complementary options for this kind
of attention control effects. First, if we suppose an object to
be at a certain location, we are able to take a closer look,
even when lacking the bottom-up stimulus. And second, even
if there is bottom-up attraction, we can volitionally choose
not to pay attention to this specific attractor and ignore the
stimulus. The system proposed in this paper applies both
control strategies by utilizing specific interfaces in the higher
level cognition modules (indicated by top-down arrows in
Figure 3).

IV. EXPERIMENTAL RESULTS AND CONCLUSION

Figure 4 exemplarliy depictes an image of a dynamic
input sequence2 and the analysis performed. In the figure
some relevant information for high level cognitive / reasoning
modules is annotated: a gesture is recognized and several
objects are detected and their location, orientation and color
is identified. The boxes around the identified items are not
published, but indicate the corresponding ROIs extracted with
the attention attraction algorithms.

In Figure 4 taken from a typical input video sequence one
can see all of the effects described in the above sections.

Static saliency Region 1421, the slat in the subject’s
hand, is computed with this approach. Its intensity differs a
lot from the background and so the previously unseen region
is considered to be worth paying attention.

Dynamic saliency The red regions, likely to be gesture
regions, are extracted using the moving blob approach. In the
image, the last few blob positions are depicted. Also, regions

2http://www.youtube.com/watch?v=JupXjgdYzY4

http://www.youtube.com/watch?v=JupXjgdYzY4
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Fig. 4. The figure shows a snapshot of an analyzed scene and the binarized
attention condensation layer in the upper-left corner.

1391–1393 in the image originate from scene dynamics, but
unfortunately they are false positives.

Inhibition of return Regions 4 and 5 containing an
orange nut and a green cube are not reanalyzed, although
static attention attractors were activated by the bottom-up
mechanism. In this case the inhibition of return mechanism
avoids the waste of resources on these specific regions.

Conscious induction of attraction The virtual regions
1185 and 1178, are projected by the cognitive layer. From the
whole video sequence one can see, that these objects exist on
the table, although they are invisible in the snapshot. The cog-
nitive layer infers, that objects do not disappear so suddenly
and thus virtual regions are generated and reanalyzed.

Negation of attraction The cognitive layer prohibits
further analysis for the small region 1357 next to the robot,
as it is part of the inferred position of the robot and thus does
not contain relevant information. Although, by means of the
region size it could possibly contain an object, the poperty “no
object” is assigned.

One has to consider, that a performance analysis cannot
be performed straight forward, because, as shown in [15], the
system operates massively parallel in the function and the
data domain. This means, lacks of computational ressources
are compensated for with frame-drops. But still, we are able
to measure according to a very basic metric: the time it takes,
until each object in a scene is detected and analyzed.

We first analyze the system’s performance without any at-
tention driven improvements. We find, that evaluating a single
frame even for a system only using object recognition (no
gesture and no robot recognition) with respect to 16 possible
template objects (a typical number for the JAST setup) and
20 rotations takes around 120 seconds for analyzing the 21
objects! But, when applying the bottom-up attention attraction
mechanism of static saliency, the time needed for processing
the whole scene already decreases to 6.39 seconds. Further
on, considering a sequence of image frames containing the
one from above, enabling the inhibition mechanism improves
the performance to more than real-time, once all regions were
analyzed.

In order to show the value of attraction on dynamics and
conscious attention focussing, we consider the example of
moving a hand or robot arm in the scene. First, dynamic
saliency compensates for inhibition of return, so moving ob-
jects are reanalyzed although the stimulus itself might remain
almost static, but spatial changes or distortions trigger the anal-
ysis. Finally, conscious mechanisms allow to compensate for
unlogic attention attraction, such as unnatural region behaviour
(sudden disappearances or appearances) or false positives due
to errorneous saliency.
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