
3D Position based Human Servoing System by
Low-Level-Control of 6 DOF Industrial Arm

Suraj Nair, Emmanuel Dean, Alois Knoll,

Abstract—In this paper, we present a new vision-based multiple
human tracking system. This novel 3D visual tracking system
is capable of automatically identifying, labeling and tracking
multiple humans in real-time even when they occlude each other.
Furthermore, the multiple human tracker was implemented in
a vision driven robot system for human robot interaction. The
distributed system comprises of 4 subsystems: a)Multiple Human
Tracking System, b) Robot Control System, c) 3D Visualization
System and d) Remote Interface System. The Visual Tracking
System performs real-time detection and tracking of humans
in 3D within a large workspace. The Robot System uses the
3D position data of the targets obtained from the vision system
to interact with the humans. The visual information is also
used to monitor safe interaction within humans and robot.
The Robot System is a 6DOF Stäubli TX90 industrial arm,
controlled in real-time through a low-level interface. A real-time
representation of the actual environment is rendered in 3D by the
3D Visualization System. The individual subsystems communicate
with each other over a common communication engine based on
TCP/IP. The complete system can be controlled and monitored
through a wireless device.

I. INTRODUCTION

The recent years have seen a rapid progress in computer
vision and motion control technology. As a result many
applications have evolved in this domain. Visual servoing is
one such application which finds many use cases. It combines
computer vision to visually track an object or target and
robot motion control. The main idea behind visual servoing
tasks is to control a robot system using visual information
feedback [1, 8]. The target can be an object or a human,
while the servoing device can be a simple pan-tilt unit or
a complete industrial robot arm [8]. The reliability of the
complete systems depends on both, the accuracy of the vision
system and the robustness of the control approach. Special
attention has been paid to Human Robot Interaction, where
the vision system must provide the target’s pose with high
accuracy and the robot uses this data to achieve a specific task
[6]. Depending on the properties of the target pose returned
by the visual tracker, there are two main categories within
visual servoing being, image based and position based visual
servoing. In image based visual servoing the typical configu-
ration is a camera mounted on a industrial robot arm [8]. The
target, in this case a Human, is tracked using visual tracking
approaches through the single camera image, providing the
target’s pose mostly in 2D. This information is used by the
robot controller to manipulate the camera position/orientation
in order to hold the target within the camera’s field-of-view at
a defined perspective. This task is simple when there is only
one target, but in real scenarios the robot system might need

Fig. 1. Complete Robotic Setup. The figure shows the different systems
involved in the robotic setup. a) the Multiple Human Tracking System: 4
USB cameras connected to a GNU/Linux OS PC, b) Robot Control System:
An industrial robot StäubliTX90 and a CS8C control unit are connected to
a GNU/Linux RT OS PC, c)3D Visualization System: OpenGL-based virtual
world visualization running on a GNU/Linux PC and d) Remote Interface
System: it allows the user to select the targets and control the robot.

to track more than one human at the same time. A single robot
mounted camera cannot achieve this within a large workspace
due to its limited field of view. The vision system must also
handle object identification, labeling, and occlusions between
targets in real-time, which is difficult using a single robot
mounted camera.

In such circumstances a vision system capable of perform-
ing tracking of multiple human targets in real-time over a large
workspace in 3D at all times is required. This information can
be used by the robot system to servo all the targets within a
large workspace. This approach is called position-based visual
servoing since the targets position is computed in the Cartesian
space.

In this article we present a novel position-based visual
servoing system for multiple human targets over a large
workspace. It uses a vision based 3D multiple human tracking
system using externally mounted cameras and a 6 DOF
industrial robot arm in order to visually servo the targets
such as they are all visible in the field-of-view of the camera
mounted in the robot end-effector. The vision based system
uses ceiling mounted cameras in a stereo setup to track each
human target in 3D. The robot system uses information of the

targets positions to control the robot mounted camera such
as all targets are visible in its field-of-view with a desired
perspective. The robot mounted camera is not used by the
vision system. The visual tracking system can react to new
targets even if they are not in the field-of-view of the robot
mounted camera. The system can also servo selected targets
through the remote interface system, see Fig. 1.

II. PRIOR ART

The literature concerning single person or multiple people
tracking in video surveillance, mobile robotics and related
fields, already counts several well-known examples, that we
briefly review here.

Multiple people trackers [7, 14, 10], have the common
requirement of using a very little and generic off-line infor-
mation concerning the person’s shape and appearance, while
building and refining more precise models (color, edges,
background) during the on-line tracking task; this unavoidable
limitation is due to the more general context with respect to
single-target tracking, for which instead specific models can
be built off-line.

Many popular systems for single-target tracking are based
on color histogram statistics [16, 12, 13, 2] and employ a pre-
defined shape and appearance model throughout the whole
task.

In particular, [13] uses a standard particle filter with color
histogram likelihood with respect to a reference image of the
target, while [12] improves this method by adapting the model
on-line to light variations, which however may introduce drift
problems in presence of partial occlusions; the same color
likelihood is used by the well-known mean-shift kernel tracker
[2].

The person tracking system [16] employs a complex model
of shape and appearance, where color and shape blobs are
modeled by multiple Gaussian distributions, with articulated
degrees of freedom, thus requiring a complex modeling phase,
as well as several parameters specification.

The work presented in [5], uses a template based approach.
This method uses about 4,500 templates to match pedestrians
in images. The Chamfer distance measure is used for similarity
measure.

[3] combines target occupancy in the ground plane with
color and motion models to track people in continuous video
sequences. This approach requires heuristics to rank the indi-
vidual targets to avoid confusing them with another.

III. SYSTEM OVERVIEW

In our setup, we use 4 USB cameras mounted on the ceiling,
sharing a common viewing region. They are calibrated for
both intrinsic and extrinsic parameters with respect to a global
origin. These cameras stream images of the tracking area at a
rate of 25− 35 fps. This cameras are integrated in a robotic
setup. This setup is integrated with 4 different systems, a)
the Vision Tracking System, b) the Robot Control System,
c) the 3D Visualization System and d) the GUI Command

Station, see Fig. 1. The communication between all the
systems is using TCP/IP protocol in a local network.

The organization of this article is as follows; in section IV,
the Human Tracking System is described, followed by section
V describing the Robot Control System and the trajectory plan-
ner. Section VI introduces the OpenGL based 3D Visualization
Environment and section VII describes the Remote Interface.
The Experimental Validation of the complete system is illus-
trated in section VIII. Finally, in section IX the Conclusions
and Future Work are given.

IV. HUMAN TRACKING SYSTEM

The human tracking system automatically localizes and
tracks humans in real-time within a desired working area.
When a new target enters the tracking area the system identi-
fies and adds him/her to a target list to be tracked. If a target
leaves the tracking area, it is erased from the list of targets
being tracked.

The target is modeled as a 3D rectangular box approxi-
mating to the dimensions of a human. The tracker holds a
3D state-space representation of the target’s pose, given by a
translation (x, y, z) within the observed workspace.

The tracker uses a bank of sampling-importance-resampling
particle filters [9] working on a 3D motion model and an
appearance model based on joint probability color histograms.
Each target is associated with a unique particle filter. We
choose a particle filter for the tracker over the more conven-
tional Kalman Filtering [15] techniques because the tracker
needs to be highly robust in dealing with multi-modal likeli-
hoods due to cluttered background. The particle filter provides
the sequential prediction and update of the respective 3D state
s = (x, y, z).

Particle filters are usually computationally intensive. A
bank of particle filters increase computation cost with every
new target. In order to achieve real-time performance, we
maintain a global particle set and distribute it evenly among
the bank of particle filters. Hence, if a new target enters the
tracking area, the system instantiates a new particle filter and
redistributes the global particle set evenly over the updated
filter bank keeping the computation cost constant. This is
feasible because, when the number of targets increase in the
workspace their mobility reduces and the number of particles
needed to track a target can be reduced. We rely on the
particle filter bank approach over the the more conventional
MCMC filter [11] for handling multiple targets since the later
maintains a global motion model, where as a bank of particle
filters allows us to learn and control the motion model of each
target individually.

Tracking multiple targets requires occlusion handling be-
tween targets in each camera view. This is important since
when a target occludes another target in a camera view, that
particular camera should be excluded during the likelihood
computation for the targets which are being occluded. The
reason being that, in the observation the region sampled will
contain measurement data only for the target which occludes
the other targets. However for successfully obtaining the 3D

Fig. 2. The figure illustrates the block diagram of the tracking system. It consists of the image acquisition module, target detection module, occlusion test
module and the particle filter bank.

pose of each target, it is necessary that the features be visible
in at least 2 or more camera views. Our system handles
occlusions between targets in real-time using a occlusion query
module. It is also used during the target detection phase,
which is important because when the system models the target
the appearance information should be sampled only from the
camera views in which the target is visible. This module will
be discussed in greater detail in the sections to come.

Fig. 2 describes the complete pipeline of the tracking
system. Each module is discussed in detail in the subsections
below.

A. Image Acquisition

The sensors used are 4 USB cameras capable of streaming
raw RGB 444 images of resolution (752×480) at the rate of
25− 35fps. The cameras are arranged such that they observe
a common tracking area with good overlap. Each camera is
calibrated for its intrinsic and extrinsic parameters with respect
to a global origin on the tracking area floor. The 4 cameras are
connected to a single PC with 2 dedicated USB controllers.
The cameras operate in streaming mode where images are
written into the memory continuously. When a request arrives
for an image update, the latest image from the camera buffer
is returned to the tracker.

B. Pre-processing of sensor images

The sensor images obtained Imgi from the image acquisi-
tion system, where the index i corresponds to the USB camera
index, undergo a two stage pre-processing. In the first step
background segmentation is performed on each camera image
using a static background model. The background segmented

image from each camera is then converted from RGB to HSV
for the color-based likelihood, where the index i corresponds
to the USB camera index.

Ibgi = bgSub(Imgi) (1)

zi = rgb2hsv(Ibgi) (2)

The pre-processed images are available at both stages since the
on line target detection module only requires the background
segmented image while the tracker requires the pre-processed
image resulting after both stages are performed.

C. On Line Target Detection
This module automatically detects targets when they enter

the tracking area by performing a scan along the tracking
floor area using the 3D box target model. At each location
in the scan the probability of a possible target detection
is computed using the background segmented image. The
number of foreground pixels are computed within the 2D
region obtained by warping the 3D pose of the target model
on the respective camera images. Regions occupied by existing
targets are not considered. If foreground occupancy of at least
70% is observed in each camera view then a target is registered
with an initial 3D pose of the particular scan location. A
occlusion test if performed at the target location in order
to identify the cameras in which the target is completely
visible. Using this information the shape and appearance
model of the target is generated. The shape consist of a 3D
rectangular cube with dimension of a normal sized human
(0.2m × 0.3m × 1.8m). The appearance model consists of
2D histograms of the targets in the HSV color space. Only
cameras in which the target is visible are selected. If the target

is occluded in a camera view, the appearance model in that
view is suspended until the target is visible in that camera
view. In order to register a target, we require that it be visible
in at least 2 camera views. The target data consists of:

• unique Target ID
• initial 3D pose
• shape data
• appearance data
• occupancy information depending on occlusion test
• current 3D pose

D. Occlusion Testing

This module determines if a target is occluded by any other
targets. This is very important during target detection and
tracking since we use 2D regions in the camera views obtained
by warping the 3D pose of the hypothesis under consideration.
When a target occludes other targets in a camera view, the
warped 2D regions are overlapped making the appearance data
visible only for the target which occludes the other target.
In such situations, the information from these 2D regions
should not be sampled for the targets which are occluded.
The occlusion test provides information of such occlusions.

Fig. 3. The figure illustrates the occlusion test system. The left part of the
figure shows a scene in a camera view with 3 targets, where target 1 occludes
target 2. The right part of the figure shows how the occlusion is detected by
rendering the targets with respect to their distance from the camera The target
closes to the camera is rendered first.

Fig. 3 illustrates the occlusion test system. This system
considers all the targets and computes their occupancies in
each camera image. For each camera view the euclidean
distance from the camera to each target is computed. The
target which is farthest from the camera is rendered first on
the camera image. This is followed by the remaining targets,
where the closest target is rendered last. Once all targets are
rendered an overlap test is conducted. If a target occludes
another target it will overlap the rendered region of that target.
For a target, if more than 70% of the rendered region remains
non-overlapped, then its considered to have a good occupancy
in the current view of this particular camera. Thereby, while
tracking the filter associated with a particular target considers
only the camera views in which the target is not occluded. For
a target to be tracked it is required to be visible in at least 2
or more camera views.

E. Tracker

The tracker has the primary goal of keeping a track of all
the targets in real-time, once they have been registered by the
target detection system. In order to do this, the tracker uses
a bank of Sampling-Importance-Resampling based Particle
filters[9]. Each target is associated with its own particle filter.
Each filter uses a Brownian motion model and a 3D transla-
tion state. The visual modality used is 2D color histograms
and the likelihood estimation is performed by computing a
distance measure between the histogram sampled from the
current hypothesis and the reference histograms. For each
hypothesis, the likelihood is computed for each camera view,
in turn computing an average likelihood. Camera views in
which targets are not visible are dropped during the likelihood
computation for the respective targets.

Particle filters are computationally expensive and hence in
order to obtain real-time performance from a bank of particle
filters, we maintain a common global particle count which is
distributed evenly among the filters. This distribution depends
on the number of targets. When a target is added or removed
from the target list, the number of particles allocated to each
filter is updated. Hence, if Np is the global particle count and
np is the number of particles allocated to each filter, then

np =
Np

N
(3)

where, N is the number of targets. This approach is well
suited since as the number of targets increase within the
tracking area, their mobility reduces and hence the number of
particles needed to track them can be reduced. The following
subsections provide detailed explanation of the functioning of
the particle filter.

• Tracker prediction The particle filter generates several
prior state hypotheses sit from the previous distribution
(si, wi)t−1 through a Brownian motion model.

sit = sit−1 + vit (4)

with v a zero-mean Gaussian white noise of pre-defined
covariance in the (x, y, z) state variables. The motion
model can be controlled during the course of tracking
by learning the motion of the target. Deterministic re-
sampling strategy over the previous weights wi

t−1 is also
employed.
For each generated hypothesis, the tracker asks for
computation of the likelihood values P (zcol|si)n after
projecting every hypothesis on to each camera image.

• Color likelihood The object model defining the targets
shape is projected on the pre-processed image of each
camera image at the predicted hypothesis sit using the in-
trinsic and extrinsic parameters of the respective cameras.
The underlying H and S color pixels are collected in the
respective 2D histogram q

(
sit
)
, that is compared with the

reference one q∗ through the Bhattacharyya coefficient

[13]

Bm (qi (s) , q∗i) =

[
1−

∑
N

√
q∗i (n) qi (s, n)

] 1
2

(5)

where the sum is performed over the (bin× bin) his-
togram bins (in the current implementation, bin = 10).
The computation is done for each camera where c repre-
sents the camera id (c = 1...M).
The color likelihood is then evaluated under a Gaussian
model in the overall residual

P (zcol|sit) ∝ exp(−
∏
M

(B2
i /λ)) (6)

with given covariance λ.
• Computing the estimated state

The average state st

st =
1

N

∑
i

wi
ts

i
t (7)

is computed and the three components (x, y, z) are re-
turned. In order to reduce the jitter in the output, the
average pose is smoothed using an exponential filter.

F. Graphical User Interface
The tracking system can be effortlessly controlled by the

user using an intuitive graphical user interface as shown in
fig. 4. Although the system can be operated automatically, the
GUI provides useful functions such as start, stop, background
training, etc. The complete tracking scene from all the camera
can be visualized by the GUI. The scene rendering is done
using widgets with capability of rendering into OpenGL
contexts.

Fig. 4. Graphical user interface for controlling the system and visualizing
the tracking results

In order to validate the Multiple Human Tracking Sys-
tem, we implemented a complete Human-Robot-Interaction
scenario, where the position of each target is needed to achieve
a specific task. The control flow of the vision-based robotic
system is illustrated in Fig. 5, where the Vision Tracking
System get the position of each target and sends them to
the Robot Control System. This module computes the joint
position reference vector and sends it to the control unit, which
in turn feeds back the current joint positions of the robot. The
Robot Control Unit updates the 3D Visualization environment
using the real joint positions. Each system is explained in the
following sections.

Fig. 5. Human Tracking System Block Diagram

V. ROBOT CONTROL SYSTEM

The robotic system comprises of a Stäubli TX90 industrial
robot arm, a CS8C control unit and a Workstation running
on GNU/Linux OS with real-time extension, see Fig. 5. The
data communication between the PC and the control unit is
in a local network based on TCP/IP. In order to open the
architecture of the industrial robot a C++ library based on
Stäubli LLI was written [4]. This library allows the user to
command the robot joint positions or the torque values for
each motor drive. In this article, the joint positions was used
to command the robot. This joint positions qr (t) ∈ <n are
obtained using the next trajectory planning.

A. Trajectory Planning

The Human Tracking System provides the position of each
target thi

0 = [xi0, y
i
0, z

i
0]T with i = 1, 2, ...,m where m is the

total number of targets, see Fig. 5. The trajectory planner uses
this data to generate the desired joint positions qd ∈ <n. Given
the kinematic decoupling properties of the Stäubli robot, the
task can be divided in two phases, the first being the Pan and
Tilt control of the eye in hand camera, and the second is to
set the camera’s Field of View (FOV).

B. Pan and Tilt

Using the Denavith-Hartenberg convention, the pose of the

robot’s wrist is given by, T 3
0 =

[
R3

0 t30
01×3 1

]
, where t30 =[

x30, y
3
0 , z

3
0

]T ∈ <3×1, and R3
0 =

[
X3

0 , Y
3
0 , Z

3
0

]
∈ SO (3)

represent the position and orientation of the wrist wrt the world
coordinate frame. In the same manner, T 6

0 , T c
0 and Thi

0 are the
pose of the robot’s end-effector , the eye in hand camera and
the target i, respectively.

In order to calculate the orientation of the camera T c
0 , the

average target position is needed.

P̃ =
1

m

m∑
i=1

thi
0 . (8)

Fig. 6. Camera’s Field of View and the Eye in Hand camera.

Then, the position error vector between t30 and P̃ is com-
puted

∆P = t30 − P̃ . (9)

The vector in eq.(9) will define the orientation of the camera
using its direction cosines in a general rotation matrix,

Rc
0 = Rx (α)Ry (β)Rz (γ) ∈ SO (3) . (10)

Where Rk (θ) is the basic rotation matrix around the k axis
through an angle θ.

The robot’s direct kinematics can be used to define the
camera’s orientation in terms of the Wrist’s Orientation R3

0

and the End Effector Orientation R6
3,

Rc
0 = R3

0 (q1, q2, q3)R6
3 (qd4

, qd5
, qd6

)

R6
3 = R3

0 (q1, q2, q3)
T
Rc

0 (11)

The solution of eq.(11) generates the desired qd4
, qd5

, qd6
,

and depends on q1, q2, q3. Now, to compute these first joints,
the desired wrist position t30 must be provided, which depends
on the camera’s field of view.

C. Camera’s FOV
For this task, two facts affect the position of the wrist: a)

the optical axis normal to the targets1 and b) the camera’s
FOV. For the first part, the solution of qd1 , qd2 , qd3 is derived
from eq.(10) with R3

0 = Rc
0. This motion is implemented

only when qd5
> q5max

, where q5max
is defined by the user.

In the second part, the camera’s FOV must be fixed. Fig.
6 shows the relation of the camera’s FOV and the angle of
each target, where tic = tc0 − t

hi
0 = [xi, yi, zi]

T represents the
position vector of the target i wrt the camera frame. αi is the
angle between tic and the optical axis given by Zc

0 .

Then, the optimal wrist position{
t30 ∈ <3|αi <

FOV
2 ,∀i = 1, 2, ..m

}
must be computed.

This solution is similar to calculating αmax < FOV
2 with

αmax = max (αi).
Then, to find the solution the next steps must be followed:

1The idea is to keep the eye in hand camera in front of the targets.

1) Compute αi = a cos(|zc0| ·
∣∣tic∣∣) ∀i = 1, 2, ...,m,.

2) if αi >
FOV

2 , then:
a) compute distance from camera to target i,

di =
∥∥tic∥∥22 ,

b) compute minimum distance,

dmin = di cos

(
FOV

2

)
, (12)

c) compute the projection of target i over the optical
axis Zc

0 ,
dzi = di cos (αi) , (13)

d) compute error distance,

∆d = dmin − dzi , (14)

e) then,
t30 = t30 −∆dZc

0, (15)

3) if t30 > tmin, t30 = tmin, where tmin is a safety threshold,
to avoid collisions with the robot body.

4) Finally, use t30 and the Inverse Kinematics to obtain
qd1

, qd2
, qd3

.

D. Path Planning
Once the desired qdi

, i = 1, 2, ..., n have been set, the
trajectory from the current position q0 ∈ <n to the desired
position qd must be established. In this case, a 5th order
polynomial function has been used,

qri (t) = (f5i (t) (qi − q0i)) + q0i (16)

f5i (t) = a1

(
t− t0
tfi − t0

)3

+ a2

(
t− t0
tfi − t0

)4

+ a3

(
t− t0
tfi − t0

)5

(17)

where t ∈ < is the current time, t0 ∈ < is the initial time
and the final time is {tfi ∈ <|q̈di (t) < amax,∀i = 1, 2, ..., n}
with amax as the maximum joint acceleration defined by the
user. This qri is transmitted to the control unit in real time,
see Fig. (5).

VI. 3D VISUALIZATION SYSTEM

This module performs OpenGL based real-time rendering
of the workspace in 3D. The scene is constructed using 3D
models of different objects occupying the scene such as the
robot, controller box, table and the human target locations.
The system updates the configuration of the robot arm and
the positions of the human in real-time. Fig. (7) illustrates
this module.

VII. REMOTE INTERFACE SYSTEM

Each individual system can be controlled through a remote
device supporting WiFi interface. Therefore devices such as
iPhones, Tablet PCs, Net-books. etc can be used to remotely
control and monitor the entire system. The remote interface
exchanges data with each subsystem through TCP/IP.

Fig. 7. OpenGL based virtual visualization

VIII. EXPERIMENTS AND TEST

To test the performance of the vision system we need precise
ground truth data of the target’s position. In order to achieve
this, we designed a 3D scene of the complete workspace
as illustrated in Fig. (1). In this scene, the motion of two
human targets were simulated in order to obtain the ground
truth data of their positions in each frame with respect to the
global origin. The whole animation was captured into video
sequences from the perspective of the 4 cameras used by the
vision tracking system. These sequences were used to test the
tracker and validate its performance and accuracy as illustrated
in Fig (8).

Fig. 8. Tracking results on video sequences obtained from the 3D animation
of the workspace where the motion of 2 human targets is animated.

Fig (9) illustrates the accuracy of the tracking results with
respect to the ground truth. The pose of the target is observed
in X and Y while the displacements in Z remains fairly
constant as the targets are moving on a horizontal floor. The
variance of tracking result was approximately 8cm in X and
1.1cm in Y for both targets. The error is higher in the X

Fig. 9. Tracking Results with respect to the ground truth using the animated
scene. It shows the tracking results for the two target in X and Y along with
the standard deviation and variance of the result.

direction since the motion of the targets was more in the X
direction in the video sequence.

Fig. 10 demonstrates the results obtained in the real-world
scenario. The tracker tracks 2 targets simultaneously in real-
time and the robot arm servos both targets. Later the operator
disables target 2 such that the robot arms servoyes only target
1 followed by target 1 being disabled and target 2 being
enabled. Later both targets are enabled and it is observed that
target 1 gets closer than the safety limit of the robot which
is detected by the tracking system and a signal is sent to the
robot controller so that it goes to a safe parking position and
thereafter all systems are shutdown.

Fig. 11. The figure illustrates how the system detects occlusion between
targets.

Fig. 11 shows how the system handles occlusion of targets
by other targets. It can be seen that in camera 1 (top right),
target 1 is occluded by target 2. Hence, during the likelihood
computation for the filter associated to target 1, camera 1 is not
considered. Similarly in camera 3 (bottom right), target 2 is
occluded by target 1 and therefore camera 3 is not considered
in the likelihood computation for the filter associated to target
2.

The visual tracking system runs at a speed of approximately
15fps on a Intel Core i7 desktop PC. A complete video

Fig. 10. The figure illustrates the test results. The 4 clustered images represent the tracking system results along with an additional robot mounted camera
output. Top Left: Two targets are tracked and servoyed by the robot. Top Right: Only target 1 is enabled to be servoyed by the robot. Bottom Left: Only
target 2 is enabled to be servoyed by the robot. Bottom Right: Target 1 gets closer than the safety limit of the robot and robot goes to park position and all
systems are shutdown.

demonstration is available at http://www.youtube.com/watch?
v=4mGXupIY-xU

IX. CONCLUSION AND FUTURE WORK

In this article we have presented a novel real-time human
tracking system which exhibit high accuracy. This accuracy
allows to use this tracking system within a Human Robot
Interaction scenario. In order to validate the human tracker
a complete robotic system was implemented. The results
obtained in the experiments shows the reliability of the tracker
and its potential applications. The human tracking system can
handle multiple targets and occlusion with each other using
only camera information. The visual information obtained
from the 4 cameras is used to compute the desired joint
positions of the industrial robot.

We plan to continue the developing the system further by
implementing fusion of multiple visual cues in the vision
system in order to improve the robustness. In order to improve
the performance we intend to map computation intensive parts
of the system to the GPU . We also intend to implement
different applications in order to validate the further use cases
of the system.

REFERENCES

[1] F. Chaumette and S. Hutchinson. Visual servo control.
i. basic approaches. Robotics Automation Magazine,
IEEE, 13(4):82–90, 2006. ISSN 1070-9932. doi:
10.1109/MRA.2006.250573.

[2] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer.
Kernel-based object tracking. IEEE Trans. Pattern Anal.
Mach. Intell., 25(5):564–575, 2003.

[3] Jerome Berclaz Francois, Jérôme Berclaz, François
Fleuret, and Pascal Fua. Robust people tracking with
global trajectory optimization. In In Conference on

Computer Vision and Pattern Recognition, pages 744–
750, 2006.

[4] Thomas Friedlhuber, Kai Klimke, Markus Rickert, and
Alois Knoll. Echtzeitsteuerung eines stäubli industrier-
oboters über tcp/ip. Technical report, Technische Univer-
sitaet Muenchen, March 2007.

[5] D. M. Gavrila. Pedestrian detection from a moving
vehicle. In Proc. of European Conference on Computer
Vision, pages 37–49, Dublin, Ireland, 2000.

[6] Michael Goodrich and Alan Schultz. Human–robot in-
teraction: A survey. Foundations and Trends in Human–
Computer Interaction, 1(3):203–275, 2007.

[7] I. Haritaoglu, D. Harwood, and L. S. Davis. W4: A
real time system for detecting and tracking people. In
CVPR ’98: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
page 962, Washington, DC, USA, 1998. IEEE Computer
Society. ISBN 0-8186-8497-6.

[8] S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial
on visual servo control. Robotics and Automation, IEEE
Transactions on, 12(5):651–670, October 1996. ISSN
1042-296X. doi: 10.1109/70.538972.

[9] M. Isard and A. Blake. Condensation – conditional
density propagation for visual tracking. International
Journal of Computer Vision (IJCV), 29(1):5–28, 1998.

[10] Michael Isard and John MacCormick. Bramble: A
bayesian multiple-blob tracker. In ICCV, pages 34–41,
2001.

[11] Zia Khan. Mcmc-based particle filtering for tracking
a variable number of interacting targets. IEEE Trans.
Pattern Anal. Mach. Intell., 27(11):1805–1918, 2005.
Member-Tucker Balch and Member-Frank Dellaert.

[12] Katja Nummiaro, Esther Koller-Meier, and Luc J. Van
Gool. An adaptive color-based particle filter. Image

http://www.youtube.com/watch?v=4mGXupIY-xU
http://www.youtube.com/watch?v=4mGXupIY-xU

Vision Comput., 21(1):99–110, 2003.
[13] Patrick Pérez, Carine Hue, Jaco Vermaak, and Michel

Gangnet. Color-based probabilistic tracking. In ECCV
’02: Proceedings of the 7th European Conference on
Computer Vision-Part I, pages 661–675, London, UK,
2002. Springer-Verlag.

[14] Nils T. Siebel and Stephen J. Maybank. Fusion of mul-
tiple tracking algorithms for robust people tracking. In
ECCV ’02: Proceedings of the 7th European Conference
on Computer Vision-Part IV, pages 373–387, London,
UK, 2002. Springer-Verlag.

[15] Greg Welch and Gary Bishop. An introduction to the
kalman filter. Technical report, 2004.

[16] Christopher Richard Wren, Ali Azarbayejani, Trevor
Darrell, and Alex Pentland. Pfinder: Real-time tracking
of the human body. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):780–785, 1997.

	Introduction
	Prior Art
	System Overview
	Human Tracking System
	Image Acquisition
	Pre-processing of sensor images
	On Line Target Detection
	Occlusion Testing
	Tracker
	Graphical User Interface

	Robot Control System
	Trajectory Planning
	Pan and Tilt
	Camera's FOV
	Path Planning

	3D Visualization System
	Remote Interface system
	Experiments and Test
	Conclusion and Future Work

