
Visual Servoing of Presenters in Augmented Virtual Reality TV Studios

Suraj Nair, Thorsten Röder, Giorgio Panin, Alois Knoll, Member, IEEE

Abstract— This paper presents recent developments in the
area of visual tracking methodologies for an applied real-time
person localization system, which primary aims to robust and
failure-safe robotic camera control. We applied the described
methods to virtual-reality TV broadcasting studio environments
in Germany in order to close a gap in TV studio automation.
The presented approach uses robot camera systems based on
industrial robots in order to allow high-precision camera ma-
nipulation for virtual TV studios, without limiting the degrees of
freedom that a robot manipulator can provide. To take robotic
automation in TV studios to a completely new dimension, we
have imparted intelligence to the system by tracking the TV
presenter in real-time, allowing him or her to move naturally
and freely within the TV studio, while maintaining the required
scene parameters, such as position in the scene, zoom, focus,
etc. according to prior defined scene behaviors. The tracking
system itself is distributed and has proven to be scalable to
multiple robotic camera systems operating synchronously in
real-world studios.

I. INTRODUCTION

Virtual TV studios have gained immense importance in
the broadcasting area over the past years, and are becoming
the mainstream way of broadcasting in the future. This
evolutionary step is based on developments in computer
graphics and rendering hardware, that allow to achieve high
quality images with reasonable effort. For these reasons, the
complexity and quality of HDTV contents in fully virtual sets
have seen a new high, providing an impressive experience
for educational and documentary movies, as well as for e.g.
weather or financial forecast transmissions. The present day
technology also allows broadcasters to have virtual objects
inside the virtual scene. Although with these advances the
acceptance for this technology has increased, the system
complexity has also inherently increased. Therefore it is
a crucial goal to keep systems maintainable for human
operators, and thus in general to hide their complexity.

Besides the nowadays powerful rendering engines and
astonishing 3D graphics available, the fundamental quality
of a virtual scene depends on the real-time robustness and
accuracy of three major system components, namely: 1. The
camera tracker, that recovers the absolute 3D position and
orientation of the camera (e.g. by using external infrared
sensors or odometry), 2. the rendering software itself, and
3. the precision with which the camera is moved w.r.t.
translation, rotation, zoom and focus.

Virtual TV studios around the world use a typical camera
configuration for motion control, consisting of a pedestal

Authors Affiliation: Technische Universität München, Fakultät für Infor-
matik.

Address: Boltzmannstrasse 3, 87452 Garching bei München (Germany).
Email: { nair, roeder, panin, knoll }@in.tum.de

Fig. 1. A virtual set for daily news broadcasting events. The upper and
lower left pictures show the virtual studio. The right shows our robot camera
system for broadcast automation. (image courtesy: RTL Television Studio
Köln, Germany, and Robotics Technology Leaders GmbH).

housing a pan tilt unit. These systems have limitations in
terms of degrees of freedom, motion smoothness and high
costs of the external sensor-based tracker, used to recover
the 3D pose of the camera.

Industrial robot arms can perform precise manipulation of
TV cameras with high repeatability in large workspaces, us-
ing many degrees of freedom. Moreover, the main advantage
of a robotic system is that the 3D camera pose is obtained
free of cost through the robot kinematics, thereby eliminating
the need for external trackers.

Robotic automation in TV studios can be pushed to a new
high by imparting intelligence to the robot system. To this
aim, in this paper we propose a vision-based person tracker
for visual servoing, integrating multiple visual modalities.
The system is able to localize the moderator and keep
her/him within the screen while sitting or freely walking
inside the studio.

Another important feature is the automatic positioning of
the moderator during different run-down scenes according
to a pre-determined region of interest. For example, when
switching from a scene with the moderator in the center to
one where visual graphics need to be rendered, it is necessary
to hold the moderator on the left (or right) part of the scene.
This can be achieved using the tracking results with almost
no need for human intervention. In comparison to our previ-
ous published work [1] and [2], the system has improved in
scalability, distribution and contains new modules for three-
dimensional tracking. It has been completely integrated into

a commercially distributed system called RoboKam R©.
The present paper is organized as follows: Sec. II briefly

reviews the related state-of-the-art; Sec. III describes the
visual tracker, providing a system overview, the user interface
and the tracking methodology. Sec. III-F explains the robot
controller. Experimental results are given in Sec. IV, and
conclusions including future system developments are finally
given in Sec. V.

II. PRIOR ART

To our knowledge, no fully integrated and self-contained
vision-driven robot cameraman has been developed for vir-
tual reality (VR) TV studio applications. However, the liter-
ature concerning single person or multiple people tracking in
video surveillance, mobile robotics and related fields, already
counts several well-known examples, that we briefly review
here. Although implementations of similar vision systems
do exist in the research and scientific domain, successful
application in real world scenarios remains very limited.

Multiple people trackers [3], [4], [5], have the common
requirement of using a very little and generic offline infor-
mation concerning the person shape and appearance, while
building and refining more precise models (color, edges,
background) during the on-line tracking task; this unavoid-
able limitation is due to the more general context with respect
to single-target tracking, for which instead specific models
can be built off-line.

Many popular systems for single-target tracking are based
on color histogram statistics [6], [7], [8], [9] and employ
a pre-defined shape and appearance model throughout the
whole task.

In particular, [8] uses a standard particle filter with color
histogram likelihood with respect to a reference image of the
target, while [7] improves this method by adapting the model
on-line to light variations, which however may introduce
drift problems in presence of partial occlusions; the same
color likelihood is used by the well-known mean-shift kernel
tracker [9].

The person tracking system [6] employs a complex model
of shape and appearance, where color and shape blobs are
modeled by multiple Gaussian distributions, with articulated
degrees of freedom, thus requiring a complex modeling
phase, as well as several parameters specification.

By comparison, in our system the off-line model is kept to
a minimum complexity, while at the same time retaining the
relevant information concerning the spatial layout of colour
statistics.

The main advantage of our tracker is therefore its usability,
flexibility and successful integration within the RoboKam R©

system for broadcast automation. In its complete form, it
bridges the gap between scientific research and industrial
applications with a minimum required throughput.

III. THE VISION-BASED PERSON TRACKER

In this Section we describe our vision-based system for
moderator localization and continuous tracking, providing
details regarding its design and implementation.

A. System overview

The system consists of two parts: 1. a single person
tracker, operating on each robot, localizes the moderator in
2D position (x,y), scale h and rotation θ within the field
of view of the TV camera, allowing the robot to hold the
moderator in a desired region of the scene, with the desired
zoom and focus.

The target is modeled by representing the head and
shoulder silhouette, in order to provide a stable scale output,
which is not possible by using only color statistics lacking di-
rect spatial information, 2. a supplementary overhead stereo
tracker localizes the target over the entire studio floor w.r.t.
3D translation (x,y,z). Although the 3D tracker makes the
overall architecture more complex, it serves very important
features such as:
• Initialize each robot camera, so that they can bring the

target in the respective fields of view independently of
their initial positions

• Re-initialize the local trackers in case of a target loss,
to recover their 2D locations

• Initialize zoom and focus control of each robot camera
• Handle interactions of the person with virtually rendered

objects, such as occlusion of the object when the mod-
erator moves around it

The target is modeled as a fixed omega-shape for the
person tracker, while for the overhead tracker it is represented
by a 3D box, along with a frontal picture of the person
appearance.

Figure 2 gives an overview of the complete system. Each
tracker is integrated into the robotic camera system through
a modular middleware called COSROBE, developed for
communication and configuration of studio devices.

It is possible to have more than one robot camera in the
same studio, although there exists only a single overhead
tracker. This tracker uses ceiling mounted firewire cameras
in a stereo configuration, to compute the 3D pose of the
moderator. These cameras are calibrated with respect to a
common world frame, with individual intrinsic and extrinsic
parameters.

For the 2D person tracker we choose a Kalman filter
[10], running on the output of a contour tracker known as
contracting curve density CCD algorithm [11], [12], based
on separation of local color statistics. In an object tracking
context, separation takes place between the object and the
background regions, across the screen contour projected from
the shape model onto a given camera view, under a predicted
pose hypothesis.

The overhead tracker uses a sampling-importance-
resampling particle filter [13] working on color histograms,
providing a joint likelihood of the 3D target pose. We
choose a particle filter for the overhead tracker, over a more
conventional Kalman filter, techniques because the overhead
tracker has to be highly robust when dealing with multi-
modal likelihoods, due to a high probability of having a
cluttered background. This way it can support the 2D person
tracker system in cases of loss detection and re-initialization.

COSROBE
Camera System 1

CS1

Tracking System 1
(IP/port)

Cam1 Signal (PAL)

Camera System N
CSN

Tracking System N
(IP/port)

CamN Signal (PAL)

Target CS_1
(x, y, scale)

Target CS_N
(x, y, scale)

OverHead Tracking
System

Overhead Firewire
Camera Signals

Overhead Tracking
System Target
3D Pose (x, y, z)

VR Engine

System GUI

Robot Motion Planner

Lens

Pan Tilt Units

Collison Avoidance

Joystick

Console

Other
Studio
Devices

Fig. 2. Block diagram of the system architecture. The middleware
COSROBE integrates multiple robotic camera devices and tracking systems.
An overhead stereo camera is used to initialize the system at startup and in
cases of target loss. Since each camera device is calibrated to a given world
point, tracking information can be fused. The middleware also connects to
the virtual reality engine and system configuration modules, like. e.g. the
operator GUI or the motion planning module.

Concerning computational resources, the software for each
camera system runs on a separate PC and obtains the
TV camera picture through a frame grabber. The overhead
tracker uses stereo FireWire cameras with wide angle lenses
for covering the complete studio floor. Currently the over-
head tracker runs on a single PC, to which two FireWire
cameras are connected.

B. Graphical user interface

The tracking system can be easily controlled by the user
using an intuitive graphical user interface (Fig. 3). The GUI
provides functions such as start/stop tracking, and automatic
target re-detection. The latter is done by frontal face detection
[14].

Fig. 3. Graphical user interface

C. The 2D person tracker

Our trackers are designed and implemented following a
recently developed general-purpose framework [15], follow-

ing a tracking pipeline concept. Fig. 4 describes the pipelines
for the two trackers of the previous Section.

Each 2D tracker holds a state-space representation of
the model pose, given by a planar roto-translation and
scale in the image plane. The Kalman filter provides the
sequential prediction and update of the respective 2D state
s = (x,y,h,θ).

1) Pre-processing: Sensor data are obtained from the TV
camera in a raw PAL format, through a frame grabber. In
CCD, no pre-processing is done, and color pixels are directly
used by the feature matching module, in order to collect
local statistics and optimize the pose. Therefore, the pre-
processing function merely copies the input image to a local
storage for the other modules.

2) Tracker prediction: The Kalman filter generates a
prior state hypothesis s−t from the previous state (st−1) by
applying a Brownian motion model

s−t = st−1 +wt ; (1)

with w a white Gaussian noise sequence. Although very
simple, this model suits our needs very well, providing a
Gaussian distribution around the current state which helps
keeping track of the target when it is not moving, as well as
when it exhibits motion at a reasonable speed. If the target
moves very fast, then we would need more adequate models
such as constant velocity, but this situation normally does
not arise in TV studio environments.

3) CCD Likelihood for Feature Level Matching: In the
original CCD algorithm [11], local areas for collecting color
statistics are given by regions around each contour sample
position, on each side of the contour. In order to simplify the
computation, as also suggested in [12], we first sample points
along the respective normals, separately collect the statistics,
and afterwards blur each statistics with the neighboring ones
(Fig. 5). This is fully equivalent to the initial process, but
computationally more convenient.

Fig. 5. The CCD algorithm tries to maximize the separation of color
statistics between two image regions. The algorithm first samples pixels
along the normals for collecting local color statistics.

From each contour position hi, foreground and background

Grabber
Pre‐Processing
Direct Pass

Feature Matching
CCD

Kalman Filter
2D Pose (x, y, scale, θ)

Output Filter

Grabber
Pre‐Processing

RGB2HSV
Conversion

Feature Matching
Color Histogram

Particle Filter
3D Pose (x, y, z)

Compute Average Output Filter

Cam1 Warp

Grabber
Pre‐Processing

RGB2HSV
Conversion

Feature Matching
Color Histogram

CamNWarp

Overhead
FireWire Cameras
Tint : Intrinsics
Text: Extrinsics

Cam1 Tint1 Text1

CamN TintN TextN

TV Camera
N Times

Omega Shape Model

Rectangular Cube
Model

Pose 2D‐1Scale‐Rotation:

Pose 3D Translation:

Fig. 4. Person tracking pipelines. The top pipeline estimates a planar pose with 4 degrees of freedom (roto-translation and scale). A Kalman filter
incorporates a feature-based contour matching modality, using an omega shape model. The pipeline on the bottom describes the overhead tracker: here,
a stereo setup is used in order to estimate the 3D position of the target. After capturing the image frames, they are converted into an HSV color space.
A SIR particle filter is used for Bayesian prediction and correction. As an objective function we use 2D color statistics within a 3D box model, that gets
simultaneously projected and evaluated on each camera.

color pixels are collected along the normals ni up to a
distance L, and local statistics up to the 2nd order are
estimated

ν
0,B/F
i =

D

∑
d=1

wid

ν
1,B/F
i =

D

∑
d=1

widI(hi±Ld̄ni) (2)

ν
2,B/F
i =

D

∑
d=1

widI(hi±Ld̄ni)I(hi±Ld̄ni)
T

with d̄ ≡ d/D the normalized contour distance, where the ±
sign is referred to the respective side, and image values I are
3-channel RGB. The local weights wid decay exponentially
with the normalized distance, thus giving a higher confidence
to observed colors near the contour. For a more detailed
explanation please refer to [12].

Single-line statistics are afterwards blurred along the con-
tour, providing statistics distributed on local areas

ν̃
o,B/F
i = ∑

j
exp(−λ |i− j|)νo,B/F

j ; o = 0,1,2 (3)

and finally normalized

ĪB/F
i =

ν̃
1,B/F
i

ν̃
0,B/F
i

R̄B/F
i =

ν̃
2,B/F
i

ν̃
0,B/F
i

in order to provide the two-sided, local RGB means Ī and
(3×3) covariance matrices R̄.

The second step involves computing the residuals and
Jacobian matrices for the Gauss-Newton pose update. For
this purpose, observed pixel colors I(hi + Ld̄ni) with d̄ =
−1, ...,1, are classified according to the collected statistics
(4), under a fuzzy membership rule a(x) to the foreground
region

a(d̄) =
1
2

[
er f
(

d̄√
2σ

)
+1
]

(4)

which becomes a sharp {0,1} assignment for σ → 0; pixel
classification is then accomplished by mixing the two statis-
tics accordingly

Îid = a(d̄)ĪF
i +(1−a(d̄))ĪB

i (5)
R̂id = a(d̄)R̄F

i +(1−a(d̄))R̄B
i

and color residuals are given by

Eid = I(hi +Ld̄ni)− Îid (6)

with covariances R̂id .
Finally, the (3× n) derivatives of Eid can be computed

by differentiating (5) and (4) with respect to the pose
parameters1

Jid =
∂ Îid

∂ s
=

1
L
(ĪF

i − ĪB
i)

∂a
∂ d̄

(
nT

i
∂hi

∂ s

)
(7)

which are stacked together in a global Jacobian matrix Jccd .
The state is then updated using a Gauss-Newton step

s = s+∆s (8)
∆s = J+ccdEccd

1As in [12], we neglect the dependence of Rid on s while computing the
Jacobian matrices.

using the stacked Jacobian and residual vector. After each
iteration, the measurement covariance is reduced with ex-
ponential decay, providing a robust multi-resolution conver-
gence to the locally optimal pose

Zccd = s∗ (9)

which is used as a measurement Z for the respective Kalman
filter.

D. 3D overhead tracker pipeline

The overhead tracker holds a state-space representation of
the 3D model pose, given by a translation (x,y,z) of the
box model with respect to the reference system of the stereo
setup. The particle filter provides the sequential prediction
and update of the respective state s = (x,y,z).

1) Pre-processing: The sensor data for the person tracker
is obtained from each FireWire camera in the raw RGB-444
format. The image from each camera is pre-processed by
performing RGB to HSV color conversion zcol

c ;c = 1, . . . ,C
for the color-based likelihood, where the index c corresponds
to the FireWire camera, and C is the total number of cameras.
An optional background subtraction step is possible before
color conversion, to further increase robustness in suitable
studio setups.

2) Tracker prediction: The particle filter generates sev-
eral prior state hypotheses si

t from the previous distribution
(si,wi)t−1 through a Brownian motion model

si
t = si

t−1 +wi
t (10)

with w a zero-mean Gaussian noise of pre-defined covariance
in the (x,y,z) state variables. Deterministic resampling over
the previous weights wi

t−1 is employed at each frame.
3) Color likelihood: For each generated hypothesis, the

tracker asks for a computation of the likelihood values
P(zcol

c |si) after projecting the hypothesis onto each camera
view.

The object model defining the person shape is projected
onto the HSV image of each camera at the predicted hypothe-
sis si

t , using the respective intrinsic and extrinsic parameters.
The underlying H and S color values are collected in the
respective 2D histogram qc

(
si

t
)
, that is compared with the

reference one q∗c through the Bhattacharyya coefficient [8]

B(qc (s) ,q∗c) =

[
1−∑

N

√
q∗c (n)qc (s,n)

] 1
2

(11)

where the sum is performed over the (bin×bin) histogram
bins (in the current implementation, bin = 10). The compu-
tation is done separately for each camera c.

The overall likelihood is then evaluated under independent
Gaussian models in the overall residual

P(zcol |si
t) ∝ exp(−∏

c
(B2

c/λ)) (12)

with a given covariance λ .

4) Computing the estimated state: The average state s̄t

s̄t =
1
N ∑

i
wi

ts
i
t (13)

is computed and the three components (x̄, ȳ, z̄) are returned
to the robot controller.

E. Loss detection and handover between trackers

One of the most important features of our system is the
possibility to automatically detect a track loss when the
person leaves the scene or gets occluded, and to re-initialize
the system in such situations, using the overhead tracker.

In principle there are two main techniques to determine a
possible target loss, 1) based on a covariance test, 2) based
on a likelihood test. A covariance test would be independent
from the actual likelihood values, but it may fail to detect
loss when the hypotheses concentrate on a small peak (false
positive), which has a low covariance as well. This is very
undesirable in a TV studio application, where the only target
that should be detected is the moderator, and never other
people or objects which the robot could drift to.

On the other hand, the likelihood test is dependent on the
likelihood values, and may detect too often a loss (false neg-
atives), for example in presence of light variations. However,
in a TV studio light conditions are strongly controlled, and
an occasional false negative is acceptable, as long as the re-
initialization is successful.

Therefore, we employ the likelihood test on the estimated
state s̄t from both trackers, and declare a loss whenever
P(z|s̄t) decreases below a minimum value Pmin. This thresh-
old is set as a percentage (e.g. ≤ 10%) of a reference value
Pre f , initially given by the observed maximum likelihood.

In order to provide adaptivity to variable postures, e.g.
when the moderator turns on a side, as well as light or
shading variations, Pre f itself is slowly adapted if the last
average likelihood P(z|s̄t−1) is comparable to Pre f (e.g. ≥
60%). When a target loss occurs, the tracker is automatically
re-initialized.

F. Robot controller

Tracking: estimated state
and movement

Image: ROI adaptation Movement of joints

Strategy (linear and/or hold angle)
Tracking system (Overhead-/Persontracking)

Mapping to joint movement,
collision avoidance

Fig. 7. Robot control methodology

In order to keep the target in a predefined ROI it is
necessary to generate the relative motion parameters for the
corresponding robot system. This is achieved by using 2D
pose information from the local tracker and convert it to
3D motion commands in the manipulator space. For this
conversion, additional parameters have to be considered,
namely:

Fig. 6. Experimental results Upper row: 2D contour tracking, both in a TV news studio with a green wall background and constant lighting, as well as
on a cluttered background. Bottom row: overhead stereo tracker, localizing the moderator in 3D translation.

• Region of interest (ROI): it is the desired area in the
image space of each camera system where the target
should be held, e.g. in weather broadcasts the target
appears usually on the right side of the scene.

• Balance speed: the speed of the robot is specified for X,
Y, pan and tilt, as an absolute percentage ranging from
[−100%;0%;100%] of the maximum values. This speed
is used by the camera system in order to get the target
back into the ROI. The actual speed also depends on the
distance between the target and the ROI. The effective
speed is then proportional to the calculated distance,
providing smooth motion properties.

As shown Fig. 7, 3D Cartesian control is computed out of
the X, Y, pan, tilt speeds. We propose two different operation
modes for the joint control:

• Normal mode: The movement of the robot is limited to
a linear motion in the X and Y direction, and angular
motion for Pan and Tilt in order to get the target back
into the desired ROI.

• Hold-angle mode: The movement of the robot is done
in 2 phases: In the 1st phase, the robot uses only Pan
and Tilt to bring the target back into the ROI, and in the
2nd phase it uses linear X and Y motion to compensate
and hold a predefined camera viewing angle.

The robot in used in the studio is a Stäubli RX-160L
with modified kinematics. In laboratory experimental setups
we use the Stäubli RX-90. The RX-160L has 6 joints, but
we replaced joints 4, 5 and 6 with a specialized tilt-pan-
tilt configuration, to improve capabilities of camera motion
control, as illustrated in Fig. 1. This robot comes with the
CS-8 Stäubli controller, so we bypass the kinematics com-
putation provided by the controller and instead compute the
kinematics and motion trajectories externally, and send this
information directly to the low level controller through the
respective interface. The controller runs a real-time extension
of LINUX. For the PID control, we instead rely on the CS-8

controller shipped by the manufacturer.
In a TV Studio setup, production is done on a scene-by-

scene basis, with respect to the run-down. The robot system
should react intuitively to a switch, from one scene to the
other. This is achieved automatically, with almost no need for
human intervention. Different scenes require the moderator
to appear in different regions, and with different zoom
and focus settings. This information can be combined with
the run-down information, in order to enable a completely
automatic switch of the camera position and zoom/focus,
holding the moderator within the current region of interest.

IV. EXPERIMENTS AND RESULTS

The system has been evaluated in real TV studios, for vir-
tual reality productions. For this purpose, standard Desktop
PCs with 2.4GHz Intel Pentium IV and standard graphics
hardware, have been used to realize each camera tracker and
the overhead stereo tracker, all running on Linux operating
system.

Both trackers run in real-time, with approximately 15−
20 f ps, which we found more than sufficient for the robot
controller, that requests visual feedback every 200ms. Image
resolution is 640× 480 pixels. Fig. 8 illustrates a lab robot
with a pan-tilt unit and a TV camera: the robot camera
follows the person while moving and interacting with other
people in the scene.

Fig. 6 show some experimental results of the 2D person
tracker, and also illustrates the 3D overhead tracker. Again,
the system keeps good track of the person during the whole
sequence. The accompanying video file demonstrates per-
formances in different scenarios, including automatic scene
switching during run-down.

Although the tracker perform in real-time, it communicates
to the robot controller through a common middleware, with
TCP-IP sockets, that introduce some delay in the motion
control. The robot controller send commands to the robot
with a cycle time of 4msec, at the same time requesting

Fig. 8. In-house testbed: example sequence with the robot controller in
action. Here the control of the robot arm as well as the pan-tilt unit, have
to be jointly performed, to provide smooth jitter-free trajectories.

data from the tracker every 100msec; the tracker generates
data at 15-25 fps, thereby fulfilling the requests from the
robot controller. There is indeed some delay (approximately
200msec) when the robot reacts to fast movements of the
moderator, but in TV studio environments, and especially
in virtual sets for new production, this situation is very
rare. Most of the motion control takes place during scene
switching, where a small delay can be tolerated during
production.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions and future work

We presented a distributed and scalable person tracking
system for visual servoing in Virtual-Reality TV applications.
In particular, we improved robustness and usability of the
current system with respect to our previous work [1], [2] in
many respects.

The use of CCD algorithm for 2D tracking made possible
a very robust localization of the person with a stable scale
estimate, needed for zoom control as illustrated in the top-
right of Fig. 6. The new stereo overhead tracker allows 3D
pose estimation, thus considerably improving performances
of loss detection. Moreover, the system has been successfully
integrated into a real-world robot controller, being used live
in TV studios.

Our future developments will focus on scaling the over-
head system to cover lager floor areas using camera grids.
New visual modalities are also planned to be integrated,
along with a fuzzy fusion module, to select the more reliable
modality according to the scene conditions.

VI. ACKNOWLEDGMENTS

The authors wish to express their acknowledgments to the
RTL Television Studio Köln, Germany, for providing the
environment, the pictures and live video sequences for our
experiments.

REFERENCES

[1] S. Nair, G. Panin, M. Wojtczyk, C. Lenz, T. Friedelhuber, and
A. Knoll, “A multi-camera person tracking system for robotic ap-
plications in virtual reality tv studio,” in Proceedings of the 17th
IEEE/RSJ International Conference on Intelligent Robots and Systems
2008. IEEE, Sep. 2008.

[2] S. Nair, G. Panin, T. Röder, T. Friedelhuber, and A. Knoll, “A dis-
tributed and scalable person tracking system for robotic visual servoing
with 8 dof in virtual reality tv studio automation,” in Proceedings of
the 6th International Symposium on Mechatronics and its Applications
(ISMA09). IEEE, Mar. 2009.

[3] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: A real time system
for detecting and tracking people,” in CVPR ’98: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. Washington, DC, USA: IEEE Computer Society, 1998,
p. 962.

[4] N. T. Siebel and S. J. Maybank, “Fusion of multiple tracking algo-
rithms for robust people tracking,” in ECCV ’02: Proceedings of the
7th European Conference on Computer Vision-Part IV. London, UK:
Springer-Verlag, 2002, pp. 373–387.

[5] M. Isard and J. MacCormick, “Bramble: A bayesian multiple-blob
tracker,” in ICCV, 2001, pp. 34–41.

[6] C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder:
Real-time tracking of the human body,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780–785, 1997.

[7] K. Nummiaro, E. Koller-Meier, and L. J. V. Gool, “An adaptive color-
based particle filter,” Image Vision Comput., vol. 21, no. 1, pp. 99–110,
2003.

[8] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based prob-
abilistic tracking,” in ECCV ’02: Proceedings of the 7th European
Conference on Computer Vision-Part I. London, UK: Springer-Verlag,
2002, pp. 661–675.

[9] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object track-
ing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564–
575, 2003.

[10] G. Welch and G. Bishop, “An introduction to the kalman filter,” Tech.
Rep., 2004.

[11] R. Hanek and M. Beetz, “The contracting curve density algorithm:
Fitting parametric curve models to images using local self-adapting
separation criteria,” Int. J. Comput. Vision, vol. 59, no. 3, pp. 233–
258, 2004.

[12] G. Panin, A. Ladikos, and A. Knoll, “An efficient and robust real-time
contour tracking system,” in ICVS, 2006, p. 44.

[13] M. Isard and A. Blake, “Condensation – conditional density propa-
gation for visual tracking,” International Journal of Computer Vision
(IJCV), vol. 29, no. 1, pp. 5–28, 1998.

[14] P. A. Viola and M. J. Jones, “Robust real-time face detection.” in
ICCV, 2001, p. 747.

[15] G. Panin, C. Lenz, S. Nair, E. Roth, M. Wojtczyk, T. Friedlhuber,
and A. Knoll, “A unifying software architecture for model-based
visual tracking,” in IS&T/SPIE 20th Annual Symposium of Electronic
Imaging, San Jose, CA, January 2008.

