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Abstract. In this paper, an intuitive interface for collaborative tasks
involving a human and a standard industrial robot is presented. The
target for this interface is a worker who is experienced in manufacturing
processes but has no experience in conventional industrial robot pro-
gramming. Physical Human-Robot Interaction (pHRI) and interactive
GUI control using hand gestures offered by this interface allows this
novice user to instruct industrial robots with ease. This interface com-
bines state of the art perception capabilities with first order logic reason-
ing to generate semantic description of the process plan. This semantic
representation creates the possibility of including human and robot tasks
in the same plan and also reduces the complexity of problem analysis by
allowing process planning at semantic level, thereby isolating the prob-
lem description and analysis from the execution and scenario-specific
parameters.
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1 Introduction

Industrial robotics, which was hitherto mostly used in structured environments,
is currently witnessing a phase where a lot of effort is directed towards appli-
cations of standard industrial robots in small and medium sized industries with
short production lines, where the scenarios are rather unstructured and rapidly
changing. One important challenge for conventional industrial robot systems in
these situations is the necessity to re-program the robot whenever the scenario
or manufacturing process changes, which requires an expert robot programmer.
Standard industrial robot systems also face limitations in their ability to adapt to
these environments, and with the complexity of some tasks which seem relatively
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easier to humans. A partial solution could be to extend the capabilities of the
current industrial robots by providing intelligence to these robot systems through
perception [1] and reasoning [2] capabilities. This extension of capabilities does
not solve the problem completely because these industries typically contain a
mixture of tasks, some of which are highly suitable for robots while some others
are difficult to model or inefficient for robots and are better suited for humans.
This problem stimulates the need for co-operative activities where humans and
robots act as co-workers, using the concept of symbiotic Human Robot Interac-
tion (sHRI). This work presents an interface for collaborative human-robot tasks
in such industrial environments.

For a robot to be able to work cooperatively with a human, both parties
need to be able to comprehend each other’s activities and communicate with each
other in an intuitive and natural way. In the social robotics and personal robotics
communities, meaningful information from human activities is extracted in an
abstract or semantic form to achieve this purpose. In an activity containing roles
for both human and robot, the level of detail at which the human instructions are
specified is important. In several works involving HRI [3,4], human instructions
are preferred at an abstract or semantic level. In this case, the scene perception
and recognition module is an important component in these intelligent robotic
systems. On one hand, the information provided by the perception module is
used by reasoning engines to generate an abstraction of the world and learn
tasks at this abstract level by human demonstration. On the other hand, the
perception module provides scenario specific information which is used by the
low-level execution and control modules for plan execution.

The perception problem in this context involves detecting and recognizing
various objects and actors in the scene. The objects in the scene consist of
workpieces relevant to the task and obstacles, while actors involved are humans,
and the robot itself. The most important part of the perception module presented
in this work is an object detection, recognition and pose estimation module,
which uses 3D point cloud data obtained from low-cost depth sensors and can
handle noisy data, partial views and occlusions. The popular approaches for this
task can be broadly classified as: local color keypoint [5], local shape keypoint [6],
global descriptors [7], geometric [8], primitive shape graph [9]. Global descriptors
such as VFH [7] require a tedious training phase where all required object views
need to be generated using a pan-tilt unit. Besides, its performance decreases in
case of occlusions and partial views. The advantage of these methods, however,
lies in their computational speed. Some other methods such as [9], [10] provide
robustness to occlusions, partial views and noisy data but are relatively slow
and not suitable for real-time applications. In this paper, an extension to the
ORR [10] method has been proposed, which enhances its robustness to noisy
sensor data and also increases its speed.

To distinguish objects having identical geometry but different color, the Point
Cloud is first segmented using color information and then used for object detec-
tion. There are several popular approaches for Point Cloud segmentation such
as Conditional Euclidean Clustering [11], Region Growing [12], and graph-cuts
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based segmentation methods [13]. In this paper, a combination of multi-label
graph-cuts based optimization [13] and Conditional Euclidean Clustering [11] is
used for color-based segmentation of point clouds.

The major contribution of this article is the integration of the presented
perception [1] and reasoning modules [2] in an HRI application. An intuitive
interface for instructing industrial robots in unstructured environments typically
found in SME’s is developed, where scene understanding is a key aspect for HRI
and co-operative Human-Robot tasks.

2 Shape Based Object Recognition

The approach presented here is an extension of the ORR method [10], called
Primitive Shape Object Recognition Ransac (PSORR) [1]. This approach has
two phases : (1) an offline phase where the model point clouds are processed and
stored, (2) an online phase where the scene cloud is processed and matched with
the models for recognition and pose estimation.

2.1 Primitive Shape Decomposition

This step is very important for the algorithm because the hypothesis generation
and pose estimation steps are based on this decomposition. The hypothesis ver-
ification step, which is a major bottleneck in most algorithms such as ORR, can
also be significantly simplified and sped-up using this decomposition.

a b

Fig. 1. Primitive Shape Decomposition example : (a) original Point Cloud (b) result
of Primitive Shape Decomposition.

An example of such a decomposition is shown in Fig. 1, where the original
scene cloud is shown in Fig. 1 (a) and its decomposition into primitive shapes is
shown in Fig. 1 (b).

Hypothesis for primitive shapes are generated by randomly sampling points
in the point cloud. Once the hypotheses have been generated, each point in the
cloud is checked to determine whether it satisfies the hypotheses.

Each primitive shape has a fitness score associated with it, which indicates
how well the primitive matches the point clouds, see Eq. 1.

fitness score = (inliers/total points) +K ∗ descriptor length (1)
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where, the first fraction represents the inlier ratio, i.e., the ratio of points
which satisfy the primitive shape (inliers) to the total number of points in the
input cloud (total points), descriptor length represents the complexity of the
primitive shape (e.g. the number of values required to represent the shape). The
constant K determines the relative weighting of the two factors.

The merging strategy, based on minimum descriptor length (MDL) [14], is a
greedy approach where pairs of primitive shapes are selected and merged if the
combined primitive shape has a better fitness score than the individual primitive
shapes. This continues till there are no more primitive shapes which can be
merged.

Planes and cylinders are chosen as primitive shapes for this implementation
since they are easy to model and efficient to detect compared to complicated
primitives such as ellipsoid or torus. The algorithm, however, is designed to
work for any kind of primitive for which a fitness score can be defined according
to Eq. 1.

2.2 Hypothesis Generation

An Oriented Point Pair (OPP) (u, v) contains two points along with their normal
directions: u = (pu, nu) and v = (pv, nv). A feature vector f(u, v) is computed
from this point pair, see Eq. 2.

f(u, v) = (‖pu − pv‖, 6 (nu, nv) , 6 (nu, pv − pu) , 6 (nv, pu − pv))
T
, (2)

The central idea in the ORR method is to obtain OPP’s from both the scene
and model point clouds and match them using their feature vectors. For efficient
matching of OPP’s, a Hash Table is generated containing the feature vectors
from the model point cloud. The keys for this table are the three angles in Eq.
2. Each Hash Cell contains a list of models (Mi ∈M) and the associated feature
vectors. Every feature vector f has a homogeneous transformation matrix F
associated with it, see Eq. 3.

Fuv =

( puv×nuv

‖puv×nuv‖
puv

‖puv‖
puv×nuv×puv

‖puv×nuv×puv‖
pu+pv

2

0 0 0 1

)
, (3)

where puv = pv − pu and nuv = nu + nv. Hence, for each match fwx in the hash
table corresponding to fuv in the scene, a transformation estimate (Ti) can be
obtained, which forms a hypothesis hi = {Ti,Mi} ∈ H for the model (Mi) in
the scene, T = FwxF

−1
uv . The raw point clouds are generally noisy, especially

the normal directions. The original ORR method is sensitive to noise in the
normal directions and hence, randomly selecting points to generate the feature
vectors requires more hypothesis until a good OPP is found. In the PSORR
method, every plane in the scene point cloud’s primitive shape decomposition is
considered as an oriented point (u) with the centroid of the plane as the point
(pu) and the normal direction as the orientation (nu). The normal directions
for these oriented points are very stable because they are computed considering
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hundreds of points lying on the plane. Therefore, we can use these centroids
instead of the whole cloud to compute and match features, which leads to a
significantly less number of hypotheses.

If full views of the objects are available in the scene cloud, the Hash Table for
the model cloud can also be computed in a similar fashion considering only the
centroids of the primitive shapes. However, in case of partial views or occlusions,
the centroid for the scene cloud primitives might not match the model centroids.
To handle this, the point pairs for the model cloud are generated by randomly
sampling points from every pair of distinct primitive shapes.

2.3 Efficient Hypothesis Verification

Since the model and scene clouds are decomposed into primitive shapes and rep-
resented as Primitive Shape Graphs (PSG), hypothesis verification using point
cloud matching is equivalent to matching all the primitive shapes in their PSG’s.
Matching these primitive shapes can be approximated by finding the intersection
of their Minimum Volume Bounding Boxes (MVBB’s) [15].

The i-th MVBB comprises 8 vertices vi1,..,8, which are connected by 12 edges

li1,..,12 and forms 6 faces f i1,..,6. To find the intersecting volume between MVBB’s

i and j, the points pi at which the lines which form the edges of MVBB i intersect
the faces of MVBB j are computed. Similarly, pj are computed. Vertices vi of
the first MVBB which lie inside the MVBB j and vertices vj of the second which
lie inside the MVBB i are also computed. The intersection volume is then the
volume of the convex hull formed by the set of points

(
pi ∪ pj ∪ vi ∪ vj

)
.

The fitness score for this match is the ratio of the total intersection volume
to the sum volumes of the primitive shapes in the model point cloud. This score
is an approximation of the actual match but the speed-ups achieved by this
approximation are more significant compared to the error due to approximation.

2.4 Results

Fig. 2 (c) shows an example of the results obtained using the PSORR algorithm,
where a partial view of the object is present in the scene cloud, which is much
sparser than the model cloud. The algorithm is able to recognize all the object
and estimate their poses accurately. The average number of hypotheses required
by the PSORR algorithm are nearly 50 times less than the ORR algorithm.
Also, the hypothesis verification step is nearly 100 times faster than conven-
tional approaches where point clouds are matched using octrees. Including the
additional cost of primitive shape decomposition, the PSORR algorithm is still
5 times faster than the ORR algorithm for the industrial workpieces used in our
experiments.

The algorithm has been designed to work with point cloud data and can
handle occlusions and partial views. Hence, this data may be from a single
frame, combined from several frames over a time interval or fused from several
depth sensors in the scene.
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3 Combining shape and color information

b ca

model
scene

missing
data
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d

Fig. 2. Example of object recognition using a combination color and shape information:
(a) Color Based segmentation (b) Detected Object Clusters (c) PSORR result for
partial view of sparse scene cloud (d) Final result of Object Recognition using shape
and color information.

Shape information is often not sufficient for object recognition tasks. For ex-
ample, some workpieces may have the same shape but different color. A combina-
tion of multi-label graph-cuts based optimization [13] and Conditional Euclidean
Clustering [11] is used for color-based segmentation of point clouds, followed by
cluster recognition and pose estimation using the PSORR method described in
Sect. 2.2.

The color based segmentation problem is posed as a multi-label graph-cuts
optimization problem. A graph G = {V,E} is constructed such that each point
in the point cloud is a vertex vi ∈ V . An edge Eij connects neighboring vertices
vi and vj . Labels li ∈ L are defined such that each label represents a color.
Each li is defined by a Gaussian N (µi, Σi) in the HSV space. Each of these
vertices needs to be assigned a label which indicates the color of the object to
which the point belongs. The energy term associated with this graph is defined
by D = Dp +Ds +Dl.

Dp is the data term. It represents the likelihood that the node vi belongs
to the label Lj . Ds is the smoothness term, which represents the energy due to
spatially incoherent labels. It can be considered as an interaction term between
neighboring nodes, where neighbors prefer to have same labels. Dl is the label
swap term. It is an indication of the likelihood of swapping labels for a given
vertex. These terms are generally set offline using color models. In this context,
the labels which are likely to get mixed up easily (e.g. white and metal) are
assigned a higher probability whereas labels which are unlikely to get mixed up
(e.g. red and blue) are assigned lower probability.

Fig. 2 shows an example of the results obtained using this approach.

4 Intuitive Interface for Human-Robot Collaboration

The scene perception and recognition algorithm, along with the reasoning mod-
ule [2] are used to create an interface for human-robot interaction. The percep-
tion and reasoning modules help in creating an abstract semantic representation
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of the world containing objects, actors and tasks. This representation is a key
factor in making the interface intuitive for the user since the user can now com-
municate with the robot system at an abstract level without the need of numeric
parameters.

A mixed reality interface is created using scene perception and reasoning
modules, targeted towards human-robot co-operation applications. This interface
can be used for teaching process plans at a semantic level (see Fig. 4 (a,b,c)),
and execute them in different scenarios without requiring any modifications (see
Fig. 4 (d,e,f)). This interface can also be used for executing process plans with
both human and robot tasks, see Fig. 4 (g,h,i). Fig. 3 shows an example with
the different phases of this interface, where it can be noted that the generated
process plan contains semantic names of the objects and not the numeric level
data in the form of poses taught to the robot.

Interactive GUI control

Teaching Phase Automatic Execution

Object Recognition and Pose Estimation

Semantic Process Plan

Articulated Human Tracker Semantic Process Plan Execution

Fig. 3. Overview of Intuitive Interface for Human-Robot Collaboration.

4.1 Teaching Process Plans

An articulated Human Tracker is used to recognize the hand positions and use
it to control the projected GUI, see Fig. 4 (a). This module enables the user to
physically interact with the robot, grab it and move it to the correct position for
grasping and placing objects, see Fig. 4 (b-c). The perception module (Sect. 3)
detects the objects present in the scene and a reasoning engine associates objects
with the taught poses to automatically generate a semantic script of this process
plan in STRIPS [16] format, see Fig. 3. The robot system learns process plans
and their associated paramters at a semantic level throught this interface. The
perception and reasoning module make this learnt process plan independent of
the scenario and robot specific details.
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b) Teaching Linear Movement using pHRIa) Projected GUI control using Hand Gestures c) Teaching Angular motion using pHRI

d) Pre-condition checking e) Interaction with the robot during execution f) Adding obstacles to execution scenario
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Fig. 4. a,b,c) Teaching Application. d,e,f) Execution and Plan generation of taught
Task. g,h,i) HRC in an assembly process.

4.2 Automatic Plan Execution

The user can place the objects to be assembled anywhere in the working area to
begin the plan execution. The system first checks if all pre-conditions for the task
are satisfied and informs the user in case something is missing, see Fig. 4 (d).
The human can physically interact with the robot during the execution and move
it by grabbing its end-effector, see Fig. 4 (e). The user can also add obstacles
in the path of the robot, which are detected using the perception module and
avoided during plan execution, see Fig. 4 (f). All these interactions and changes
in the scenario don’t require modifications in the process plan script because
object positions and obstacles are scenario-specific entities and, like the physical
interaction, are handled at the low-level execution. This is the main advantage
of decoupling the Problem Space from the Solution Space. The process plan
is generated using only information from the Problem Space. The associated
execution parameters are loaded on demand. The Perception Module provides
the updated information of the current objects in the scene. Therefore, these
execution-specific parameters are continuously updated.

4.3 Assembly task with Human-Robot Co-operation

In this demonstration, we highlight another important advantage achieved using
a semantic description of the process plans - possibility of symbiotic human-robot
collaboration, which is one of the primary goals of this research. Once the robot is
taught the Pick And Place process plan, it can be instructed to perform this plan
on different objects. The application in mind is the assembly of a power converter
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box. This operation consists of a number of steps, actors and objects which are
identified by the perception/reasoning module, Fig. 4 (g), some of which are
complex high precision assembly tasks suitable for the human, while some involve
lifting heavy objects which are more suitable for the robot. In the situation where
precision assembly is required for a heavy object, a co-operative task is performed
where the robot grasps the object and the human guides it by physically grasping
the robot end-effector and moving it to the desired place position, Fig. 4 (i). The
Low-Level Execution Engine switches between motion modalities and control
schemes according the current conditions (external perturbations) of the scene,
Fig. 4 (h). Thus, in this experiment, we demonstrate the use of this interface for
human tasks, robot tasks and co-operative tasks which require both actors. This
experiment also highlights that it is relatively easy to understand, edit or even
create such a plan from scratch since it is at a semantic level and is abstracted
from scenario or execution specific details.

A video illustrating results for the algorithms presented in this paper and its
use in the applications mentioned above can be found at :
http://youtu.be/Jgn9NqGKgnI.
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