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Abstract

We present in this paper a novel object tracking sys-
tem based on 3D contour models. For this pur-
pose, we integrate two complimentary likelihoods,
defined on local color statistics and intensity edges,
into a common nonlinear estimation problem. The
proposed method improves robustness and adaptiv-
ity with respect to challenging background and light
conditions, and can be extended to multiple cali-
brated cameras. In order to achieve real-time ca-
pabilities for complex models, we also integrate in
this framework a GPU-accelerated contour sampler,
which quickly selects feature points and deals with
generic shapes including polyhedral, non-convex as
well as smooth surfaces, represented by polygonal
meshes.

1 Introduction

Contour-based object tracking deals with the prob-
lem of sequentially estimating the 3D pose of an
object in real-time, by making use of internal and
external model edges. This information can be ex-
ploited by projecting, at a given pose hypothesis,
the CAD model onto the current image, and iden-
tifying the visible feature edges [11]: for example,
silhouette and flat surface boundaries, sharp internal
edges of polyhedra, as well as texture edges, can
be reliably identified in the image, since these are
related to significant texture or shading discontinu-
ities.

From the available feature edges, usually a set
of points and screen normals is uniformly sampled
and matched with the image data, by means of like-
lihood functions that can be defined and combined
in several possible ways. In particular, we consider
here intensity gradients and local color statistics,

that provide two informative and complimentary vi-
sual modalities for an efficient data fusion (Fig. 1).

The idea of integrating intensity gradients with
color likelihoods for improving robustness dates
back to [2], where pose estimation was locally per-
formed with a brute-force, discrete search for a 2D
problem (elliptical head contour tracking).

When dealing with more general and complex
3D tasks, two efficient methods are provided by the
well-known edge-based likelihood [8, 1, 4] and a
color separation statistics known as the CCD algo-
rithm [7, 13].

Both methods are based on Gaussian likelihoods,
and correspond to a nonlinear least squares esti-
mation (LSE) optimization starting from the pre-
dicted pose hypothesis of the previous frame. For
the first frame (or after a track-loss condition), the
system requires an initial pose information, which
can be given manually or by an object detector algo-
rithm. LSE problems are basically solved by means
of Gauss-Newton optimization [6, Chap. 6] that can
always be improved with more or less robust vari-
ants [10, 9, 5].

In this paper, we integrate the two methods into a
common LSE framework, that can eventually be ex-
tended to multiple, calibrated cameras. Due to the
improved robustness achieved by the multi-modal
fusion, we are able to formulate the two cost func-
tions in their basic version without any further im-
provement, thus keeping reasonable computational
requirements.

Finally, since the contour sampling process it-
self may be a costly and object-specific procedure
if performed with standard tools [14], we devel-
oped a GPU-accelerated visibility test and sampling
technique derived from a related method for non-
photorealistic rendering (NPR) [11], that makes use
of generic polygonal meshes and deals with differ-
ent shapes (polyhedral, smooth, planar); this proce-
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Figure 1: Local color statistics efficiently deal with situations showing a significant difference between
foreground and background color regions (left frame), but may fail when a weak separation is present
(right frame). On the contrary, an intensity-based tracker works well when luminance edges can be reliably
detected (right edge map), but may be challenged by a locally cluttered background (left edge map).

dure enables to uniformly sample feature points and
screen normals in real-time.

The paper is organized as follows: Section 2 for-
mulates the multi-camera setup and pose parame-
ters, while Section 3 shows our strategy for contour
point sampling; the individual modalities, and our
fusion methodology, are described in Section 4; ex-
perimental results of the proposed system are given
in Section 5, and conclusions in Section 6.

2 Camera and pose parameters

Our basic scenario consists of a calibrated camera
for tracking the 3D pose of a rigid object in Eu-
clidean space, with respect to a given world refer-
ence frame.

We express and update in time the homogeneous
(4× 4) transformation matrix W

O T in terms of 6 in-
cremental pose parameters p, through Lie algebras
[3] and the exponential mapping

W
O T (p) = W

O T̄ exp(
∑

i

piGi) (1)

where Gi are the 6 generators for rigid motion, p is
the corresponding twist vector [12], and W

O T̄ a ref-
erence transformation, estimated from the previous
frame.

The following informations are supposed to be
off-line available, via a standard camera calibration
procedure:
• Intrinsic (3× 4) projection matrix, KC

• Extrinsic transformation matrix W
C T between

world and camera frames
Therefore we define the warp function, mapping
object points to camera pixels in homogeneous co-

ordinates as

ȳ = KC

(
W
C T

)−1
W
O T (p)x̄ (2)

y =

[
ȳ1
ȳ3

ȳ2
ȳ3

]T

The LSE optimization requires also first deriva-
tives ofW in p = 0, that are straightforwardly com-
puted from (2) and (1)

∂y

∂pi

∣∣∣∣
p=0

=
1

ȳ2
3

(
wi,1ȳ3 − wi,3ȳ1
wi,2ȳ3 − wi,3ȳ2

)
(3)

wi = KC

(
W
C T

)−1
W
O T̄Gix̄

Due to the canonical methodology of using Lie
algebras for linearization and the exponential rep-
resentation (1), the estimation procedure can be ex-
tended to more complex transformations involving
articulated or deformable models, by providing the
related generators Gi. Uncalibrated problems can
also be dealt with, by letting K = [I 0] and defin-
ing the generators for a 2D transformation (similar-
ity, affine, etc.).

3 Sampling contour points

The first step, common to both modalities, involves
sampling good features for tracking from the object
model, under a given pose and camera view.

Starting from a polygonal mesh model (Fig. 2),
we first identify the visible feature edges at pose
W
O T :
• silhouette: boundary lines, located on the sur-

face horizon
• crease: sharp edges between front-facing

polygons of very different orientation



Figure 2: Sampling visible feature points and normals from a wireframe CAD model.

• boundary: boundary edges of flat surfaces

Afterwards, feature points hi are uniformly sam-
pled (right side of Fig. 2) in image space, also pro-
viding screen normals ni, as well as Jacobians ∂hi

∂p

(3).
For this purpose, we developed a GPU-based

procedure inspired by [11], that efficiently makes
use of vertex and fragment shaders in order both to
compute visible edges and to subsample them uni-
formly in screen space, also providing their location
in 3D object space (which is required for comput-
ing Jacobians). Details about the procedure can be
found in [15].

4 The integrated contour likelihood

4.1 Edge features matching

Edge measurements are performed by searching for
image edges along normal segments to the contour

Li = {hi + dni; d = −D, ...,D} (4)

where D is a pre-defined search length.
This requires first to pre-process the image with a

standard edge detector; we employ the Sobel filter,
providing the 2D image gradient at point (x, y)

g(x, y) = [Ix(x, y) Iy(x, y)]T (5)

and match edge points according to the magnitude
of their directional derivative:

zij =
{

(x, y) ∈ Li :
∣∣∣nT

i g(x, y)
∣∣∣ > t

}
(6)

with t a detection threshold.

In order to obtain a uni-modal Gaussian likeli-
hood, we keep the nearest neighbor

zi = arg min
zij

(‖zij − hi‖) = arg min |d| (7)

and the normal residual is given by

Ei,edge = nT
i (hi − zi) (8)

so that the edge-based Likelihood at pose T is

Pedge(z|T ) ∝
∏

i

exp

(
−
E2

i,edge

2R2
i,edge

)
(9)

with measurement z, suitable variances Ri,edge, re-
flecting the average measurement uncertainty.

The overall residual vector Eedge and covariance
matrix Redge = blockdiag(Ri,edge) are stored
for the Gauss-Newton step, as well as the Jaco-
bian matrix Jedge, obtained by stacking together the
normal-projected Jacobians Ji

Ji = nT
i
∂hi

∂p
(10)

4.2 Color features: the CCD algorithm

A complimentary color-based Likelihood for
single-contour models has been defined in [7] and
formulated in the real-time version [13] as a non-
linear LSE problem. This modality is based on the
idea of maximizing separation of local color statis-
tics between the two sides (foreground vs. back-
ground) of the object boundary.

This is achieved by iterating a two-step procedure
akin to Expectation-Maximization:



1. Collect local statistics: Pixels are sampled in
local areas on both sides around the contour,
and color statistics are estimated

2. Maximize separation likelihood: Observed
color pixels along the contour are classified
according to the respective statistics (with a
fuzzy assignment rule to each side), and the
classification error is minimized with a Gauss-
Newton step

The regions on which local statistics are col-
lected, as well as the fuzzy membership function
for pixel classification, are reduced at each iteration,
providing a likelihood that contracts to a small, uni-
modal shape, which motivates the name CCD (Con-
tracting Curve Density) for this algorithm.

In this paper, we apply the CCD algorithm to
generic meshes like the example of Fig. 2, by limit-
ing the contour sampling procedure to boundary and
silhouette contours, while neglecting internal edges
(crease, texture).

4.2.1 Step 1: compute local statistics

From each contour position hi, foreground and
background color pixels are collected along the nor-
mals ni up to a distance L, and local statistics up to
the 2nd order are estimated

ν
0,B/F
i =

D∑
d=1

wid

ν
1,B/F
i =

D∑
d=1

widI(hi ± Ld̄ni) (11)

ν
2,B/F
i =

D∑
d=1

widI(hi ± Ld̄ni)I(hi ± Ld̄ni)
T

with the local weights wid decaying exponentially
with the normalized contour distances d̄ ≡ d/D,
thus giving a higher confidence to observed col-
ors near the contour. The ± sign is referred to the
respective contour side (− for the background re-
gion), and image values I are 3-channel RGB col-
ors. Further details are given in [13].

Single-line statistics (11), are afterwards blurred
along the contour, providing statistics distributed on
local areas

ν̃
o,B/F
i =

∑
j

exp(−λ |i− j|)νo,B/F
j ; o = 0, 1, 2

(12)

and finally normalized

Ī
B/F
i =

ν̃
1,B/F
i

ν̃
0,B/F
i

; R̄
B/F
i =

ν̃
2,B/F
i

ν̃
0,B/F
i

(13)

in order to provide the two-sided, local RGB means
Ī and (3× 3) covariance matrices R̄.

4.2.2 Step 2: Compute color separation likeli-
hood

The second step involves computing the residuals
and Jacobian matrices for the Gauss-Newton pose
update. For this purpose, observed pixel colors
I(hi +Ld̄ni) with d̄ = −1, ..., 1, are classified ac-
cording to the collected statistics (13), under a fuzzy
membership rule a(x) to the foreground region

a(d̄) =
1

2

[
erf

(
d̄√
2σ

)
+ 1

]
(14)

which becomes a sharp {0, 1} assignment for σ →
0; pixel classification is then accomplished by mix-
ing the two statistics according to:

Îid = a(d̄)ĪF
i + (1− a(d̄))ĪB

i (15)

R̂id = a(d̄)R̄F
i + (1− a(d̄))R̄B

i

and the color residuals are given by

Eid = I(hi + Ld̄ni)− Îid (16)

with measurement covariances R̂id.
By organizing in vector form the residual Eccd

and its covariance matrix Rccd = blockdiag(R̂id),
we express the CCD likelihood as a Gaussian

Pccd(z|T ) ∝ exp

(
−1

2
ET

ccdR
−1
ccdEccd

)
(17)

which contracts after each update of T , by reduc-
ing the length parameter L via a simple exponential
decay.

Finally, the (3 × n) derivatives of Eid can be
computed by differentiating (15) and (14) with re-
spect to the pose parameters p of the exponential
mapping (1). As in [13], we neglect the dependence
ofRid on p while computing the Jacobian matrices.

Jid =
∂Îid

∂p
=

1

L
(ĪF

i − ĪB
i )
∂a

∂d̄

(
nT

i
∂hi

∂p

)
(18)

which are stacked together in a global Jacobian ma-
trix Jccd.



4.3 Integrated Gauss-Newton update

Color and edge likelihoods (9), (17) can be jointly
optimized in pose space, by assuming a basic in-
dependence condition for the two complimentary
modalities

P (z|T ) = Pccd (z|T )Pedge (z|T ) (19)

which results in a joint LSE problem

T ∗ = arg min
T

[
wccd

(
ET R−1E

)
ccd

(20)

+wedge

(
ET R−1E

)
edge

]
with residuals and covariances given by (16),(15)
and (8).

In order to optimize (20), we compute a Gauss-
Newton update

∆p = H−1g (21)

where

H =
(
wJT R−1J

)
ccd

+
(
wJT R−1J

)
edge

(22)

g =
(
wJT R−1E

)
ccd

+
(
wJT R−1E

)
edge

are the integrated Hessian matrix and gradient vec-
tor respectively, weighted by the inverse covari-
ances R−1 and by the global weights wccd, wedges.

Jacobian matrices Jccd and Jedge are given by
(18) and (10) respectively.

The resulting incremental pose ∆p is used for up-
dating the homogeneous transform T

Tk+1 = Tk exp(∆piGi) (23)

where the incremental matrix is computed with the
exponential map (1).

This procedure is iterated until convergence,
while contracting the CCD parameter L as de-
scribed in 4.2.2. In order to save computational re-
sources, the GPU visibility and sampling procedure
is done only for the first Gauss-Newton iteration.
Overall, we found a maximum of 10 iterations to be
more than sufficient in most cases.

5 Experimental results

We tested the proposed system on simulated and
real video sequences. The first experiment, see Fig.
3, shows tracking results based on a simulated video
sequence using a toy airplane CAD model.

The toy airplane shows a nonconvex shape, with
strong self-occlusions and a highly variable visible
surface according to the attitude parameters. De-
spite this fact, the contour sampler gives satisfac-
tory results at almost constant computation time,
providing around 100 feature points for tracking at
all poses.

The hardware for our experiments consists of a
workstation with a 3.4GHz Intel Dual-Core pro-
cessor, a programmable graphics card (NVIDIA
8600GT), and a standard FireWire camera for im-
age acquisition, with a resolution of 640x480.

A simulated trajectory has been generated by
specifying a set of key poses represented by twist
vectors, interpolated in time with B-Splines. The
object model has been rendered with artificial re-
flectance properties onto a constant background, as
shown in Fig. 3. This background has, on the left
side, a uniform color distribution very similar to the
airplane surface, whereas on the right side provides
a sharp color contrast, together with a highly clut-
tered edge map.

The three algorithms discussed so far have been
run on this sequence and compared with the avail-
able ground truth; in particular, in order to evaluate
the relative robustness, a track failure has been de-
tected for estimated poses with orientation and/or
position errors above a pre-defined threshold; in
cases of failure, the system has been re-initialized
by using the ground truth values. The ground truth
pose data is also used for initializing the system.

The result of this comparison is shown in Fig.
4, where we can see how the fusion methodology
achieves a lower failure rate (over 300 frames) com-
pared to the CCD tracker, whereas the basic im-
plementation of edge-based tracking has a higher
failure rate under low contrast or cluttered back-
ground. The choice of fusion weights in (22) has
been by a large extent arbitrary, and the default val-
ues wccd = wedge = 0.5 showed to be satisfactory
for all of the experiments (although a prior knowl-
edge of the reliability of CCD could favor a higher
weight for this modality). In the future it is planned
to compute the weights dynamically from the re-



Figure 3: Tracking on a simulated sequence with the three methods: CCD (top row), Edges (middle row)
and the proposed fusion technique (bottom row).

Figure 4: Failure cases on the simulated sequence.

spective covariance matrices.

Concerning the estimation precision for success-
ful frames, orientation and position errors with re-
spect to the ground truth have been computed, re-
spectively, as the norm of the equivalent rotation
vector (from the Rodrigues’ formula) and the trans-
lation vector. Results are shown in Fig. 5, and aver-
age error values (rms) in Table 5. A slight improve-
ment over CCD (that already provides a good pre-
cision) is observed, whereas the edge-based tracker
also shows a less satisfactory precision.

Moreover, we observe that the average process-
ing rate of the fusion method has been close to that
of the CCD algorithm, which is more complex than
the edge-based tracker; this is not surprising, since

the most expensive processing steps (i.e. sampling
contour points and computing screen Jacobians) are
common to both algorithms.

Fig. 6 shows tracking results for a second exper-
iment, where the proposed fusion method has been
applied to a real video sequence with a more com-
plex CAD airplane model. In this experiment, a
Kalman filter is used additionally as state estimator,
which receives the resulting incremental pose ∆p
from the Gauss-Newton update step (Section 4.3)
as measurement input. The system is initialized by
a manual pose estimation, and a white noise accel-
eration motion model is used to model the inertia of
the airplane model.

Successful tracking of the model airplane has



Figure 5: Position and orientation errors.

Orient. errors [deg] Pos. error [mm] Failures Frame rate [fps]
CCD 4.2274 31.2373 8 7.2
Edges 6.6262 50.5812 19 21.2

CCD+Edges 3.6608 31.3368 4 5.8

Table 1: Comparison of the three algorithms.

been achieved over more than 800 frames with an
average frame rate of 14.4 fps for the integrated
likelihood. The higher frame rate compared to the
first experiment has been reached by limiting the
maximum number of Gauss-Newton iterations to
five and disabling visual debug output. The bot-
tom row of Fig. 6 shows poses critical for track-
ing, where results could be significantly improved
by applying a multi-camera setup.

6 Conclusions

We presented an integrated contour-based track-
ing methodology, combining two complimentary
modalities within a common Gauss-Newton opti-
mization scheme, that increases robustness against
challenging background and foreground situations.
The proposed system also includes an efficient
GPU-accelerated procedure for feature edges selec-
tion and contour points sampling at each pose.

The integration achieves a better robustness with
respect to each modality alone, while requiring a
similar computational effort, due to the common
operations involved. Future developments include
a parallelization of the two likelihood and Jaco-

bian computations, in order to provide a significant
speed-up, as well as the extension of this methodol-
ogy to multiple calibrated cameras, which can solve
pose ambiguities and provide more robustness as
well.
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