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Abstract

In this paper, a dynamic multi-modal fusion scheme
for tracking multiple targets with Monte-Carlo fil-
ters is presented, with the goal of achieving ro-
bustness by combining complimentary likelihoods
based on color and foreground segmentation. The
generality of the proposed approach allows defin-
ing the measurements on different levels (pixel-,
feature- and object-space) through dynamic data fu-
sion. We demonstrate the approach in a people
tracking context, by using a multi-target MCMC
particle filter.

1 Introduction

Integrating complimentary visual modalities can be
crucial for multiple object tracking, because of an
improved robustness and adaptivity to variable con-
ditions such as background clutter, lighting and mu-
tual occlusions of the targets.

Several examples of multi-modal fusion for peo-
ple tracking are already well-known in the computer
vision literature [17, 5, 15, 9], with the common
requirement of using generic offline models of the
person shape and appearance, while building and
refining more precise models (with color, edges,
background information) during the on-line track-
ing task.

In a Bayesian framework [16, 2], the multi-target
state update is performed through the observation
process, which results in a more or less large set of
target-associated measurements.

Monte-Carlo filters [8, 11] in particular show to
be well-suited in presence of non-Gaussian likeli-
hoods, dealing with uncertain data association aris-
ing from clutter background and target interactions.
In this context, as shown in [11] and [7], simultane-

ous tracking of multiple targets can also be obtained
without exponentially increasing of the number of
particles (state hypotheses).

Apart from the huge variety of visual modalities
that can be defined for tracking (color, motion, tex-
ture, edges etc.), here we also distinguish between
three main processing levels, defined after the stan-
dard data fusion terminology [4]:
• Pixel-level: any measurement resulting in a

dense or sparse pixel-wise response map (e.g.
color segmentation, edge detection, optical
flow field, etc.)
• Feature-level: detection and matching of

target-associated primitives, of the most vari-
able nature (shape blobs, contour points or
lines, local keypoints, etc.)
• Object-level: a local (or global) maximum-

likelihood procedure, directly resulting in a
state-space estimate

When multiple modalities are employed for
tracking, data fusion can be performed in static or
dynamic ways.

Static fusion techniques compute a combined
measurement out of N for a single likelihood eval-
uation, which can be obtained in several ways
(weighted average, voting, fuzzy, etc.), also depend-
ing on the level and type of measurements involved.

Dynamic fusion, instead, basically amounts to
separately compute and multiply all independent
likelihoods during the state update. In a Kalman
filter setting, the latter corresponds to stack to-
gether individual measurements in a global vector,
whereas for Monte-Carlo filters the product of all
likelihoods is explicitly evaluated.

Dynamic fusion has a number of advantages,
since it optimally integrates the object dynamics
within the fusion process [1], it is performed in
a unique way for every combination of modalities
(Sec. 2.3), and it can integrate data of different na-
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ture and abstraction level in a uniform way.
In this paper, we present a multi-level fusion

methodology using robust multi-hypothesis likeli-
hoods, and we apply it to a people tracking task in
outdoor environments, with an MCMC particle fil-
ter.

The paper is organized as follows: Section 2 re-
views the Bayesian tracking problem, and formu-
lates the multi-level robust likelihoods; Section 3
proposes the multi-target MCMC filter, and Section
4 provides experimental results related to the people
tracking task; finally, Section 5 concludes the paper
and proposes future developments.

2 Problem formulation

The aim of our system is to follow multiple objects
in time, by integrating past information with the
current measurements, in order to update the poste-
rior state estimate. In the Bayesian tracking frame-
work, knowledge about the system state is repre-
sented and propagated in a probabilistic way [16, 2],
with two main steps:

1. Prediction (Chapman-Kolmogorov equation):

P
(
st|Zt−1) = (1)∫

st−1

P (st| st−1)P
(
st−1|Zt−1)

2. Correction (Bayes’ rule):

P
(
st|Zt) = kP (zt| st)P

(
st|Zt−1) (2)

where current state statistics st integrate the associ-
ated measurements zt together with the set Zt−1 ≡
z1...t−1 of all past measurements, up to time t− 1.

In this scheme, a dynamical model P (st| st−1)
and a measurement likelihood P (zt| st) need to be
specified, and the two steps will be implemented ac-
cording to the chosen estimation filter.

Concerning the measurement model, one of two
equivalent forms for may be provided
• Explicit form: zt = h(st, et)
• Implicit form (likelihood): P (zt| st)

where the measurement residual et is supposed to
be a discrete, zero-mean white process with covari-
ance matrix Rt.

The second form is the likelihood of the ob-
servation z given s, and alone can be used for
a maximum-likelihood (ML) parameter estimation;

Figure 1: Example of feature-level measurement.
Left: expected contour points under a given pose
hypothesis; Right: multiple corresponding points,
detected on the Canny edge map.

for Gaussian models, this corresponds to an LSE
optimization (possibly nonlinear).

When the first form is available, with Gaussian
noise, then a Kalman Filter (or EKF, UKF [10] for
nonlinear cases) can be used.

However, often in computer vision a multi-
hypothesis data association is a more realistic and
robust model, in presence of clutter background and
missing detections; this requires a non-Gaussian
density with possibly multiple peaks (modes).

2.1 Feature-level likelihoods

Generally speaking, a feature-level measurement
is obtained by defining one or more measurement
probes on each projected model primitive (contour
points, local keypoints, etc.), which are supposed to
be statistically independent one another; each one
provides a single or multiple data association hy-
potheses (hi, zij) , j = 0, ..., Ji, where hi is the
expected value and zij are the observed, associated
data (in a variable number Ji, possibly also J = 0).

This results in a set of residual values eij and co-
variances ri (with time index omitted for sake of
clarity)

(eij , ri) , j = 1, ..., Ji (3)

A well-known example is given by contour
points (Fig. 1), which provide a multi-hypothesis
likelihood [8] where hi are projected model points,
and zij the corresponding image edges, detected
along the normals.

The corresponding likelihood function has typi-
cally the form of a product of Gaussian Mixtures,



Figure 2: Example of pixel-level measurement.
Left: expected object shadow, Middle: foreground
segmentation on the real image; Right: residual im-
age.

plus uniform clutter noise [8]

P (z| s) ∝
N∏

i=1

[
α+

1− α
λ
√

2πri

Ji∑
j=1

exp

(
−
e2ij
2r2i

)]
(4)

with α the missing detection rate P (J = 0), and
λ the false alarm density (average rate of clutter-
originated measurements).

This model is usually employed in Monte-Carlo
filters, that can also deal with non-Gaussian den-
sities. The purely Gaussian likelihood can be ob-
tained as a special case of (4), by imposing α = 0
and Ji = 1 for all i, typically with a nearest-
neighbor approach

(ei, ri) =

(
eij∗ , ri : j∗ = arg min

j
‖eij‖

)
(5)

2.2 Pixel-level likelihoods

When the measurement is obtained pixel-wise, h
and z are, respectively, expected and observed pixel
maps of any kind.

We mention here a few examples: foreground
segmentation (Fig. 2) provides a binary map that
can be matched to the expected object shadow (left),
that represents an ideal segmentation, without shape
errors or clutter; an optical flow field [6] can also
be matched with the projected surface flow, at a
given pose and velocity. Finally, when a fully tex-
tured model is available, the surface can be directly
rendered and matched against the underlying image
values.

Pixel-level measurements have the advantage of
being more informative and generally more precise
than feature-level ones; on the other hand, they in-
volve an expensive and highly nonlinear computa-
tion that, however, can be nowadays performed by
exploiting the parallelism of graphics hardware, via
the OpenGL shader language [14].

In the case of binary images, we can consider
each pixel x as a measurement probe, with only two
possible values zx = {0, 1}. Therefore, we can de-
fine the following situations
• False alarm: hx = 0, zx 6= 0, occurring with

probability λ
• Missing detection: hx 6= 0, zx = 0, with

probability α
• Correct match: hx = zx, with probability

(1− α− λ)

By taking into account some numerical issues, we
propose a scale-normalized likelihood

P (z| s) =
1

K
· (6)

·α
|MD|
Nobj λ

|F A|
Nobj (1− α− λ)

N−|MD|−|F A|
Nobj

In this formula N is the image size, MD(s) is the
subset of undetected pixels and FA(s) the number
of false alarms, observed under the state hypothesis
s. The term Nobj is the average object size (area
of the predicted shadow ĥ), which provides scale
normalization in conjunction with the coefficientK

K = λ
F Amax−Nobj

Nobj (1− α− λ)
N−F Amax+Nobj

Nobj

(7)
where the maximum number of false alarms
FAmax is given by the overall number of fore-
ground pixels (worst case).

Basically, the scale-normalization coefficient
1/Nobj acts by modifying the covariance of the
three error terms with respect to the translational
displacement: in fact, an object with half the size
would normally exhibit a half variation in both the
MD and FA errors, resulting in a likelihood with
smaller variance.

Instead, the K coefficient ensures to maintain a
roughly unitary maximum likelihood value, other-
wise decreasing very fast with the object size. Both
K and Nobj must be updated from frame to frame.

Furthermore, in the case of pixel-level measure-
ments, the two parameters λ and α can be updated
during time as well, providing more robustness and
adaptivity to challenging conditions (e.g. a variable
clutter density, or partial occlusions).

For this purpose, we propose a simple adaptation
scheme: under the current pose estimate, the miss-
ing detection α and false alarm λ rates can be esti-
mated under the two regions defined by the object



shadow (foreground and background)

α =
#missing pixels under the shadow

shadow area
(8)

λ =
#detected pixels in the background

shadow area

While modeling the likelihood as in (6), a further
issue may arise because of the spatial closeness of
neighboring pixels, which somehow invalidates the
mutual independence assumption. However, to our
experience neglecting this effect does not degrade
significantly performances of tracking, while keep-
ing the likelihood function well shaped, and peaked
around the correct pose.

2.3 Multi-target and multi-modal fusion

In a dynamic fusion scheme, individual measure-
ments zm from different modalities are not directly
combined, but rather the tracks are fused together,
by providing individual likelihoods to the Bayesian
filter for the state update (2).

Given M visual modalities, possibly defined at
different levels, the integrated likelihood is given by

P (z| s) =
∏
m

P (zm| s) (9)

This scheme assumes a basic independency
between modalities, which should be intuitively
achieved when using complimentary features (such
as color, edges, motion, etc.). Although in some
situations this assumption may be less realistic, the
resulting likelihood (9) is again correctly behaving
around the target pose.

When multiple, simultaneous targets are con-
cerned, a state hypothesis for the system is made
up of I target states, s ≡ (s1, ..., sI).

By assuming also independence between targets,
both at the dynamic and measurement level, the
overall system likelihood becomes

P (z| s) =

M∏
m=1

I∏
i=1

P (zm| si) (10)

In order to adress and even to avoid two tracks
from being locked onto the same target [11], the
likelihood function can be improved to include
penalty terms ψ ≤ 1 for overlapping target states

(si, sj), decreasing with the common areas of the
respective bounding boxes B(si), B(sj)

ψ (si, sj) ≡ (11)

exp

(
−β |B(si) ∩B(sj)|

min (|B(si)| , |B(sj)|)

)
where the intersection area is normalized to [0, 1],
and β ≥ 0 is a coefficient which regulates its be-
havior (β = 0 gives no penalty term).

This is computed for all target pairs with overlap-
ping regions under the hypothesis s, giving

Ψ (s) =
∏

i,j>i

ψ (si, sj) (12)

that corresponds to a Markov Random Field (MRF)
in the global state-space.

Finally, the likelihood for the multi-target hy-
pothesis becomes

P (z| s) = Ψ (s)
∏
m,i

P (zm| si) (13)

3 Multi-target tracking with the
MCMC particle filter

In order to apply the Bayesian tracking equations
to a multi-target and multi-modal problem, we em-
ploy a MCMC particle filter, which, compared to
other traditional Monte-Carlo methods, also allows
an efficient modeling of multi-target interactions
(penalty term) [11]. Although with this filter a vari-
able number of targets can also be handled, for sake
of simplicity here we limit ourselves to a fixed and
known number of hypotheses I , detected at the be-
ginning of the sequence.

In a Monte-Carlo context, state statistics st are
represented by a set of N weighted particles

{sn
t , π

n
t } ; n = 1 . . . N (14)

where
∑

n π
n
t = 1. For MCMC filters, in partic-

ular, the sampling procedure provides no weights
πn = 1/N and the equivalent statistics for the pos-
terior density are given by possibly duplicated par-
ticles, so that

P
(
s|Zt) ≈ {sn

t , 1/N} ; n = 1 . . . N (15)



Following [11] (Sec. 4), the prior distribution can
be defined as

P
(
st|Zt−1) ≈ (16)

1

N

∑
n

[∏
i

P
(
si,t| sn

i,t−1

)]
which is a discrete approximation of the integral in
(1); however, the last quantity can be computation-
ally very expensive, and therefore we consider a fur-
ther approximation more suitable for real-time tasks

P
(
st|Zt−1) ≈

∏
i

P (si,t| ŝi,t−1) (17)

ŝi,t−1 =
1

N

∑
n

sn
i,t−1; i = 1, ...,M

where ŝt−1 are the average states of the last frame.
Therefore, the posterior distribution is given by

P
(
st|Zt) ∝ P (zt| st)

∏
i

P (si,t| ŝi,t−1) (18)

The MCMC filter generates each time a new par-
ticle set distributed according to (18), as a Markov
chain. The chain is generated from an arbitrary ini-
tial state (seed) by using the Metropolis-Hastings
algorithm:

Algorithm 1. Metropolis-Hastings sampling
Starting from an initial state s0, for each particle

n do
1. Propose a new state s′t from the previous one
sn−1

t by sampling from a proposal density
Q
(
s′t| sn−1

t

)
2. Compute the acceptance ratio

a =
P
(
s′t|Zt

)
P
(
sn−1

t

∣∣Zt
) Q (s′t| sn−1

t

)
Q
(
sn−1

t

∣∣ s′t) (19)

3. If a ≥ 1 accept the proposed state sn
t ← s′t.

Otherwise, accept it with probability a; in case
of rejection, the old state is kept sn

t ← sn−1
t

The proposal distribution Q can be to some ex-
tent arbitrary, and we choose to use the dynamical
model itself P (st| st−1), which is symmetric and
therefore the second ratio in (19) cancels out.

In the MCMC formulation, a big computational
saving is obtained by updating a single target i at a
time (randomly chosen), which results in a proposal
ratio only for this target P (si,t| si,t−1).

Under the assumption of independent measure-
ments for each target, also the two likelihoods

P (zt| s′t) and P
(
zt| sn−1

t

)
differ only for a sin-

gle target, as well as the penalty terms (12).
By substituting the posterior model (18) in (19),

with likelihood given by (13), we finally get

a =
∏

j

ψ
(
s′i,t, s

′
j,t

)
ψ
(
sn−1

i,t , sn−1
j,t

) ·∏
m

P
(
zm

t | s′i,t
)

P
(
zm

t | sn−1
i,t

)
·
P
(
s′i,t
∣∣ ŝi,t−1

)
P
(
sn−1

i,t

∣∣ ŝi,t−1

) (20)

In this formula, the first term is the penalty ra-
tio, which favors state motions towards less over-
lapping areas; the second term is the likelihood ra-
tio, which privilege motions that increase the multi-
modal likelihood; and the last term is the prior ra-
tio: it accepts any motion which is dynamically con-
sistent with the previous target state ŝi,t−1.

Therefore, as expected from the Bayesian track-
ing framework, new particles will be generated for
states which are consistent with both (measurement
and dynamics) models, as well as with the MRF
model for interacting targets.

Concerning the startup phase of the MCMC es-
timation, also the initial state can be chosen arbi-
trarily, provided it is not too far from the real tar-
gets, and that the first particles, generated before
the chain reaches its stationary distribution, are dis-
carded (burn-in sample).

For this purpose, we choose the old average states
ŝi,t−1 as the seed, and discard the first 20% parti-
cles from the final sample; the latter procedure in-
troduces some computational overhead to the over-
all algorithm, that however is well compensated by
the fact, that an MCMC filter requires much less
particles with respect to a standard particle filter, es-
pecially for multi-target problems [12, 9].

4 Experimental results

We tested our methodology on a people tracking
task using sequences from the CAVIAR project
(http://homepages.inf.ed.ac.uk/
rbf/CAVIAR/). For this task, we model people
shapes by generic rectangles and dynamics by a
simple Brownian model

st = st−1 + wt (21)

For tracking, we employ two complementary
visual modalities: color statistics (feature-level)



and foreground segmentation (pixel-level). In the
described scenario the color statistics modality
is responsible for maintaining the target identity,
whereas the foreground segmentation modality is
used to increase the tracking robustness and accu-
racy in cases of simple motion dynamics.

Color histogram matching is performed with the
Bhattacharyya coefficient [13, 3] as residual be-
tween 2D color histograms in Hue-Saturation space

ecol (f (s) , f∗) =

[
1−

∑
b

√
f∗b fb (s)

] 1
2

(22)

where f∗, f are expected and observed color his-
tograms over the underlying image region for each
target, and the sum is performed over (B ×B) bins
(with B = 20 in our implementation).

The color modality provides a single feature-per-
target (an expected-observed histogram pair), with
standard deviation rcol and a single association hy-
pothesis (α = 0), so that its likelihood (4) reduces
to a Gaussian

Pcol (z| s) ∝ exp

(
−ecol (f (s) , f∗)2

2r2col

)
(23)

In the color modality, adaptation to changing light
or viewpoint conditions is provided by combining
the off-line reference histogram f∗ with an on-line
version f∗on, updated every time from the image
data at the estimated pose. The off-line reference
histogram is gathered once at initial target detec-
tion time (track creation) and remains fixed during
the whole tracking process, whereas the on-line his-
togram is used to adapt to varying illumination con-
ditions. On-line and off-line histograms are sam-
pled in HSV color space in order to further increase
the robustness in varying illumination conditions.
The on-line histogram provides an additional like-
lihood term Pcol,on (z| s) for the dynamic fusion
context.

For the described people tracking task, we re-
strict ourselves to hypotheses with a fixed size of 16
by 62 pixels. Using more degrees of freedom (e.g.
1D or 2D scale) typically involves also an increas-
ing number of particles for the posterior approxi-
mation. In order to increase the overall robustness
of the color modality, we vertically divide the hy-
pothesis in three subregions, and collect the color
statistics for each of the subregions separately. By
doing this, we inherently keep track of the subre-
gions spatial layout and the related histograms.

Finally, the pixel-level modality is given by fore-
ground segmentation (Fig. 2), which provides a bi-
nary map to be matched with the predicted object
shadows; missing detection α and false alarm rate
λ are estimated and updated on-line, as in (8).

Initialization for this system is obtained by de-
tecting foreground blobs, in a generic and target-
independent way.

During tracking, dynamic fusion is performed
through the MCMC filter and the acceptance ratio
(20) for the Metropolis-Hastings algorithm.

Results are shown in Fig. 6, where we can see the
individual modalities and the pose estimation result,
also in presence of mutual occlusions.

For ground truth comparison, we use a subse-
quence of the CAVIAR OneShopOneWait1front se-
quence (frames 440 to 562) in order to show the
tracking performance for three different combina-
tions: foreground segmentation alone, color statis-
tics alone, and dynamic fusion. This subsequence
was selected in order to have a fixed number of tar-
gets, while exhibiting multiple occlusions.

For the three cases, Fig. 7 shows selected frames
of the tracking behaviour, and Fig. 3, 4 and 5
show the observed error distances with respect to
the ground truth.

Since the degrees of freedom are limited to 2D
translations for this scenario (without addressing
scale and orientation for sake of simplicity), we use
the centers of the bounding boxes for computing the
error distances, and limit the number of particles for
estimating the posterior state ŝt to 400.

A short description of the results follows:
• Initialization: Initial detection of all three tar-

gets without occlusions (Frame 445), and ini-
tial gathering of the reference color statistics
f∗ are performed.

• First occlusion: Shortly after the first partial
occlusion of targets 1 and 2 (Frame 477), the
foreground segmentation modality is not able
to maintain target identities, thus the likeli-
hoods of targets 1 and 2 lock onto the same
target. Because of the penalty terms, one of
the two targets gets lost, as can be seen in Fig.
3.
However, by using the color modality or the
dynamic fusion, identities are successfully
maintained. Looking at the error plots for the
fusion case (Fig. 5), the first peak of target 2 is
caused by the impact of mutual occlusion and
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Figure 3: Error distance using foreground segmen-
tation only.

the consequent penalty term.
• Second occlusion: The second partial occlu-

sion of target 0 and 2 (from frame 503 to 521)
results in a local error peak for target 0 shown
in Fig. 5. Another peak (around frame 540)
occurs because of the lack of scaling freedom
in our estimate, so that the target is becoming
smaller and the shape matching more impre-
cise.
This occlusion is successfully solved (Frame
554), both for the color statistics modality and
for the dynamic fusion.

After frame 557, it can be seen that the track-
ing system starts loosing target 2, which is going
to walk in front of a white background. In this
case neither the target itself, nor the background
wall show a relevant difference in color statistics,
with respect to the main torso region and the cho-
sen bin size of the color histogram; this leads to a
non-distinguishable situation for both modalities.

Finally, table 1 provides numerical evaluations
with rms values for the three cases. As we can see,
although color statistics on their own can give quite
good results, we can see from table 1, that combin-
ing both complementary modalities by means of dy-
namic fusion can increase the tracking performance
with respect to precision and jittering effects, lead-
ing to smoother trajectories, even in presence of
coarse models and simple dynamics.
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Figure 4: Error distance using color statistics only.
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Figure 5: Error distance using dynamic fusion of
both, foreground segmentation and color statistics.



Modalities Target 0 Target 1 Target 2(*) Target 2

Median
Fg. Seg. 4.53 2.54 4.22 94.39

Color 4.14 3.41 4.23 4.49
Fusion 3.46 1.81 2.76 2.81

Variance
Fg. Seg. 14.47 6.76 14.69 6221.88

Color 5.98 4.39 10.44 15.68
Fusion 11.61 1.04 6.62 12.99

Table 1: Median and variance of the observed error distances with respect to each target and modality
combination. Target 2(*): In addition, to allow a more feasible comparison, errors of target 2 are also
considered only until it was lost (=minus the last 4 frames) or the estimated pose locked onto the wrong
target. Bold values: minimum values per target for each of the 3 configurations.

Figure 6: Tracking results on a sequence from the CAVIAR database, showing the successful handling of a
temporary occlusion.

Figure 7: First row: matching done by using only foreground segmentation, second row: matching done
by using only color statistics, third row: matching done by using cross-level dynamic data fusion of both
modalities. Columns from left to right: frame no. 445, no. 477, no. 509, no. 554 of the CAVIAR sequence
(OneShopOneWait1front) used for error computation. (Figures 3, 4, 5). Encoding: target 0 (white), target
1 (red), target 2 (green)



5 Conclusions

We developed an integrated, multi-modal and multi-
level data fusion framework for object tracking,
in the context of Monte-Carlo filters for multiple
interacting targets. Furthermore, we proposed a
simple scale-invariant likelihood model for binary
pixel-level residuals. The benefits of complimen-
tary modalities at different processing levels, with
on-line adaptive models, have been shown through
experimental results concerning people tracking in
outdoor environments.

Future developments for this system include ex-
ploiting the computational power of GPUs for
pixel- and feature-level likelihood evaluation, pos-
sibly in conjunction with GPU-assisted particle fil-
ters.
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