
ITrackU: An Integrated Framework for Image-based Tracking and
Understanding

Giorgio Panin, Erwin Roth, Thorsten Röder, Suraj Nair, Claus Lenz
Martin Wojtczyk, Thomas Friedlhuber, Alois Knoll

Abstract— Within the ITrackU project, a modular software
architecture for model-based visual tracking and image under-
standing is being developed. The library is general-purpose with
respect to object models, state-space parameters, visual modal-
ities employed, number of cameras and targets, and tracking
methodology. This provides the necessary building blocks for a
seamless integration of a wide variety of both known and novel
tracking systems, involving different visual modalities (like as
color, motion, edge maps etc.) in a multi-level fashion, ranging
from pixel-level segmentation, up to local features matching and
maximum-likelihood object pose estimation. Application of the
proposed architecture is demonstrated through the definition
and practical implementation of relevant tasks for the CoTeSys
cluster, all specified in terms of a self-contained description
language.

I. INTRODUCTION

Visual tracking consists in integrating fast computer vision
and image understanding techniques, together with sequen-
tial estimation methodologies (tracking), for the purpose of
localizing one or more moving objects in a video sequence.
More or less detailed models can be used for this task, and
an efficient integration of all available information greatly
enhances the quality of the estimation result.

Model-based visual tracking has application in many fields
of interest, including robotics, man-machine interfaces, video
surveillance, computer-assisted surgery, navigation systems,
and so on. Recent surveys about the wide variety of tech-
niques already proposed have been attempted in the literature
[1].

The aim of this paper is to present an object-oriented,
unifying software architecture, whose main goal is a seam-
less integration of existing state-of-the-art visual tracking
approaches, as well as to develop new ones, within a common
framework. In this way designing, describing and specifying
any tracking system can be done in a self-contained fash-
ion, by using a compact description vocabulary and a few
specifications of related parameters (system configuration).

The present work is organized as follows: Section 2
presents a high-level description of the library, motivated by
a general view of the problem; the basic visual processing
tools and data structures are briefly discussed in Section 3,
while the model-related layer of the architecture is presented
in more details in Section 4; Section 5 focuses on the main
tracking pipeline for a single target and single sensor task,

Authors affiliation:
Technische Universität München, Fakultät für Informatik
Boltzmannstrasse, 3 - 85748 Garching bei München.
Email: {panin,eroth,roeder,nair,wojtczyk,firedlhu,knoll}@in.tum.de

organized in agents and data structures. Examples of individ-
ual systems instantiated within the proposed architecture are
given in Section 6, along with related experimental results;
conclusions and planned improvements are finally given in
Section 7.

II. OVERVIEW OF THE TRACKING LIBRARY

In order to present the library, we start from a general
discussion of model-based visual tracking. The general form
considered here for a single-sensor, single-target system is
resumed in Fig. 1.

Fig. 1. Single-target tracking flow diagram.

The main information data, flowing within the system at
time t, are:
• The sensor signal, It
• The measurement variable, zt

• The object state, st

In a probabilistic framework, the tracking module follows
the general Bayesian tracking scheme [2], using Bayes’ rule
in order to update the state statistics st, by integrating the
currently available measurement zt together with the set
Zt of all measurement up to time t, resumed by the last
estimation st−1.

This scheme, when extended to multiple objects, cameras
and visual modalities, directly leads to develop a set of base
classes that realize the desired functionalities in a pipeline
fashion:
• A raw image (sensor data) is obtained from the cameras

(input sensors)



• Images are processed in more or less complex ways
(visual processing units), in order to provide a more
or less abstract measurement z, of the most variable
nature (visual modalities) and complexity: color blobs,
motion fields, edge maps, LSE pose estimates, etc.

• In case of multiple objects and/or multiple measure-
ments with uncertain origin, a data association mech-
anism is required, before updating the state.

• Simultaneous measurements from multiple cameras or
modalities, associated to the same target, have to be
integrated in some way before providing them to the
tracker (data fusion)

• Fused/associated measurements are fed into sequential
estimators (trackers) in order to update the state statis-
tics of each independent object in a Bayesian framework
(prediction-correction).

• Predicted and updated states are provided as output for
the user, for displaying the result and, if required, for
providing an initial guess to the next visual processing
step (restrict search).

• At the beginning (t = 0) and in case of any track
loss detection, an optional re-initialization module is
called, providing an external prior information for the
Bayesian estimators.

Fig. 2. The library functional structure.

In the above description, we put into evidence the on-
line data and agents working within the pipeline; by taking
into account also the modeling items which may be required
for this complex task, we finally organize our structure as
depicted in Fig. 2, and detailed in the next Sections.

III. VISUAL PROCESSING AND DATA STRUCTURES

The first two layers include single image process-
ing/understanding tools as well as general-purpose functions,
together with the associated data structures.

Utility and general-purpose functions in these layers in-
clude matrix and image manipulation, algebra, visualization

tools, visibility testing, least-squares optimization algorithms,
and others as well.

Within the library, visual processing tools and data are
organized in two main namespaces:
• Processing functions (model-free and model-based),

operating at different levels: segmented pixel maps,
geometric features detection and matching, and object
pose estimation tools

• Processing data: storage structures for model and image
features: invariant keypoints (location and descriptors),
geometric primitives (lines, circles, elliptical blobs), etc.

Computer vision algorithms employ more or less generic
model features, according to the required level of abstraction
and specificity of the output: for example, color segmentation
may need only a reference histogram in HSV space [3],
while invariant keypoints like SIFT [4] require a database
of reference features from one or more views of the object,
and a contour-based LSE pose estimation [5] employs a full
wireframe model of the shape.

For each algorithm, the output result is stored in a vector
of specialized data structures: for example, a SIFT database
is stored as an array of structures, containing the 2D image
coordinates and the respective invariant descriptors. These
structures, together with more common types (Matrix, Im-
age) constitute the base layer of Fig. 2.

IV. MODEL LAYER

The object to be tracked, or the environment part (e.g.
a ground-fixed marker), and the sensor device are modeled
with respect of the most relevant aspects for tracking.

Fig. 3. Model informations for tracking.

A. Ground object shape

For each object, a shape model can be of any kind, ranging
from simple planar shapes like a rectangle, up to articulated
structures with a skeleton, for modeling a human hand or
a full body; the shape model can include rigid as well as
deformable parts.

In a general form, the base shape can be fully represented
or approximated by a base triangular mesh, moving an



deforming in space according to the respective degrees of
freedom. Articulated multi-body structures require additional
parameters (e.g. Denavit-Hartenberg), specifying the inter-
mediate frame locations and degrees of freedom between
connected rigid bodies; this information can be stored as an
additional skeleton model.

In this context, we call the base mesh and skeleton model
also ground shape of the object, which is externally provided
in a general-purpose CAD format (e.g. a VRML description).

B. Warp function and pose parameters

Pose parameters specify the allowed (or expected) degrees
of freedom of all body parts with respect to the ground shape,
and they are included in the object model as well. Object
motion and deformation is therefore compactly represented
by a more or less large vector p.

The choice of pose parameters leads to the definition of
the warp function, mapping points x from body space to
sensor space y (image pixels), under a given hypothesis p:

y = W (x, p) (1)

In a generic tracking system the sensing device is a
physical transducer, obtaining from the environment a raw
signal of variable nature (visual, acoustic, infrared, laser,
thermal, and so on), which we call sensor data.

For calibrated CCD cameras, the sensor model is specified
by the optical imaging parameters inside the intrinsic cali-
bration matrix Kint [6]. Therefore, the warp function can be
written in homogeneous coordinates as

ȳ = KintText(p)x̄ (2)

with Text the object-to-camera transformation matrix.
According to the choice of a calibrated or uncalibrated

camera model (2), as well as the dimensionality (2D or 3D)
of the pose, both matrices T,K can be differently specified.

Articulated models are described by piece-wise defined
transformations T (p, l) with l an integer index specifying the
rigid body which x belongs to. And finally, more complex
warps for deformable objects are point-wise defined, with
T (p, x) depending also on the local point x.

In many situations, first derivatives of the Warp function
w.r.t. the pose are also required

J(x, p) =
∂W

∂p

∣∣∣∣
(x,p)

(3)

where J is a (2×N) Jacobian matrix, with N the number
of degrees of freedom. Computation of J is included in this
class as well, and usually available in exact (analytical) form.

C. Object appearance model

Together with the geometric model for shape and motion,
many algorithms need also a model of the object appearance,
specifying in more or less abstract terms how the object
surface is expected to look like, from any given viewpoint.

An appearance model can as well be more or less complex
and object-specific, ranging from very simple description of
expected color statistics (“the surface at a given pose shows

about a 70% green and 30% yellow color distibution”),
to more detailed, point-wise information about the texture
pattern, up to multiple appearance models, accounting also
for light shading and reflectance effects (e.g. the AAM
approach [7], [8]).

Appearance models can generally be specified through one
or more reference images of the object of interest, possibly
together with texture coordinates of the base mesh.

If the appearance model includes only color or texture
statistics information, the reference images are directly used
in order to build the statistics (for example, an histogram
in HSV color space), which is used as visual feature for
tracking [3].

When the appearance model includes a precise texture
map, the reference images can be rendered by using standard
techniques (e.g. OpenGL) and more specific model features
can be obtained.

D. Visual features for tracking

The visual features class contains all of the model in-
formation required by a given modality. Examples range
from reference histograms in color space to local invariant
keypoints (e.g. SIFT [4]), model contour segments, a large
spatial distribution of textured surface points (template), and
so on.

A visual feature set for a given modality always consists
of an array of geometric primitives, each one specified by a
representative point in object space, together with a more or
less specific descriptor, that may consist of a local grey-level
pattern, a segment position and orientation, an elliptical blob
size and principal axis, etc.

Visual features are warped onto the sensor space under a
pose hypothesis p, and matched with corresponding features
from the image I , in order to perform a matching task,
to evaluate a probabilistic measure for tracking (Likelihood
function), or to directly maximize the likelihood in pose-
space.

A database of visible-from-camera features is automati-
cally obtained from the object ground shape and appearance,
and it can be pose-dependent: in fact, for some systems the
reference features can be pre-computed and updated only
after large rotational displacements of the camera view, while
in other situations [5] a visibility test and features selection
must be performed at each pose hypothesis.

In a tracking context, we also distinguish between off-
line and on-line model features, where the latter are updated
directly from the image stream under the estimated pose,
while the former are obtained from the ground shape and
appearance model only. Combining both informations gen-
erally leads to a better stability and robustness for tracking,
as demonstrated for example in [9] for the case of local
keypoints.

V. THE TRACKING PIPELINE (AGENTS AND DATA)

A. Visual processing and measurement

The input image is processed in more or less complex,
eventually model-based ways, in order to obtain a more



refined information about the target, called measurement
variable z.

As it can be seen from the literature, there are many dif-
ferent levels of complexity at which the visual processor can
operate. In our framework, we classify them in three most
significant categories, according to the degree of abstraction
of the resulting output z:

1) Pixel-level: the raw image itself, or any kind of pro-
cessing that produces information on a pixel basis, like
as a binary color segmentation, a point-wise motion
field, a pixel-wise edge map (e.g. the output of a Canny
algorithm), etc.

2) Feature-level: the visual processor detects primitive
shapes (connected segments, curves, elliptical blobs,
up to complex invariant keypoints) in the image,
matches them to the model features, and provides the
result in a variable dimension array z

3) Object-level: z is a direct estimate of the object in
pose-space p∗, obtained through an optimization algo-
rithm (typically a nonlinear least-squares estimation),
which also requires the model features in order to be
performed. We observe here that the optimization of
a cost functional C is in most cases equivalent to
a Maximum-Likelihood approach applied to a Gibbs
distribution [10]:

zt = p∗ = min
p
C(p, It) = max

p
[exp (−λC(p, It))]

(4)
In this case, we need to distinguish between this Like-
lihood function P (It| p) and the tracker Likelihood
P (z| s) defined next.

B. Sequential estimation module (Bayesian tracker)

Here the measurement variable zt is employed in order
to update the current state estimate st through a Bayesian
prediction-correction scheme. This scheme can be here im-
plemented with a Kalman Filter [11], an Extended Kalman
Filter or a Particle Filter [12], following the general Bayesian
tracking scheme

P
(
st|Zt

)
= kP (zt| st)

∫
st−1

P (st| st−1)P
(
st−1|Zt−1

)
(5)

where P (zt| st) is the current measurement Likelihood,
P (st| st−1) is the object dynamical model, and k a nor-
malization term.

In a single-target, single-measurement scenario, only one
tracker and one visual processor operate during the whole
sequence; in more general multitarget/multisensor environ-
ment multiple, parallel instances of each class are present,
and additional data association/fusion modules are required
in order to solve the target-to-measurement association is-
sue, as well as to exploit redundant informations from the
measurement set [13].

For Bayesian tracking, two additional models are required.

1) Dynamical model: The object state vector s normally
includes pose parameters p, possibly together with first or
second time derivatives (velocity, acceleration), all referred
to the camera frame. Object dynamics are usually specified
by means of a time-dependent prediction function

st = f(st−1,∆t, wt) (6)

where wt is a random variable with known distribution
(process noise). This form is equivalent to the dual form
P (st| st−1).

The dynamic model is used in the Extended Kalman Filter
in order to obtain the predicted state

s−t = f(st−1,∆t, 0) (7)

together with its Jacobian matrices

Ft =
∂f

∂s

∣∣∣∣ (st−1,∆t, 0); Wt =
∂f

∂w

∣∣∣∣ (st−1,∆t, 0) (8)

for covariance prediction.
The same form (6) is also used in Particle Filters for

simulating the drift process, by explicitly generating the
random component wt for Monte-Carlo sampling of the
particle set.

A pre-defined set of standard linear models is built inside
the library; all of these models can be used with any pose
representation (2D, 3D, articulated body, etc.), and the user
can introduce a custom dynamical model, always provided
in the abstract form (6).

2) Likelihood model: The Likelihood function of the
tracker is defined as a probabilistic measure of fit between
the measured variable zt associated to a given target, and
a state hypothesis st. It is expressed as well in one of two
equivalent forms:
• As a propability distribution P (zt| st), used by Particle

Filters in order to update the particle weights.
• As a measurement function zt = h(st, vt) with random

component vt of known statistics (measurement noise);
this form, with vt a Gaussian noise, is appropriate for
an (E)KF implementation.

Since the measurement can be of a very different type
with respect to the state, the Likelihood model can also
have a much variable complexity, which is again related to
the processing level used for tracking, (object- feature- or
pixel-level) and the visual modality employed (contour lines,
points, color, etc.).

Generally speaking, as we can see a higher complexity of
the visual processor is compensated by a lower complexity
of the tracker, and vice-versa.

In the Computer Vision literature, many likelihood models
have been proposed and, as one can see from the previous
description, for the same problem different choices are
possible, which are left to the experience of the designer.

VI. APPLICATION EXAMPLES AND EXPERIMENTS

In this Section, we provide a set of examples of individual
tracking systems that have been instantiated using our archi-
tecture, by means of a self-contained description language,
directly referring to the classes depicted in Fig. 2.



All of the experiments have been performed on a Desktop
PC with a dual-core 2.13GHz Intel processor and a pro-
grammable NVidia GPU, using standard FireWire cameras.
The library is also platform-independent, and all of the
experiments have been run with the same performances on
both Linux and Windows operating systems.

As a first case, we describe a Condensation contour tracker
[14] in 2D space. This corresponds to the following items in
our library:

A basic shape model, without appearance, is provided
in a CAD format. Visual features are obtained as a set
of points (x, y) sampled over the external model edges
(silhouette), with companion point indices (i→ i+ 1) [15]
for computing the image normals on-line.

Pose parameters are given by 2D planar roto-translation
and scale y = aR (θ)x + b, and first time derivatives are
included in the state model. Object dynamics are modeled
by a constant velocity with Gaussian random acceleration.
Pre-processing is done by a Canny edge detection, providing
a pixel-level measurement; by searching for corresponding
edge points to the predicted contour along the normals,
a multi-modal Likelihood is computed (see [14] for more
details). With this model, a SIR Particle Filter with deter-
ministic resampling is initialized and run. As output, the
sample average of the particle set s = (p, v) is computed,
and displayed on screen Re-initialization of the filter is
provided by a prior particle set P (s0) widely distributed
around the image center, with suitable covariances for the 4
pose parameters and velocities.

Fig. 4 shows some results obtained with the above de-
scribed system, for planar hand tracking; in this application,
a frame rate of 30 fps is obtained, where a set of 200 par-
ticles has been used, and each warp function and likelihood
computation does not require any visibility test.

Fig. 4. Contour-based Particle Filter for planar hand tracking.

Other examples of real-time tracking applications realized
through our library are synthetically presented in the follow-
ing.

Fig. 5. Color-based particle filter.

Fig. 5: a color-based Particle Filter [3] using a single ref-
erence image (appearance model), and a simple rectangular
shape with planar warp (translation and scale). The visual

feature is given by a two-dimensional reference histogram
in HSV color space, where the first two channels (H,S)
only are collected from the appearance image. Tracking is
realized by means of single-target SIR Particle Filter, by
projecting the contour shape onto the color image (pixel-
level measurement z) and computing the likelihood as the
Bhattacharyya distance between expected and observed color
histograms [3]. Dynamics are modeled as simple Brownian
motion, with a pose-only state vector.

Fig. 6. Integrating color and motion through dynamic data fusion.

Fig. 6: a Kalman Filter tracker integrating motion and
color; pose parameters are two-dimensional (x, y); two vi-
sual processing modules act in parallel, providing motion
segmentation with the motion history image [16], and color
segmentation using the Fisher linear discriminant vector [17]
in RGB color space. Both measurements z1, z2 are object-
level, computed as the mass center of the respective seg-
mented images. Dynamic data fusion [13] is performed here
by stacking the two measurements in a supermeasurement

Zt =
[
zt
1, z

t
2

]T
which is fed into a standard Kalman Filter for updating

the target state st.

Fig. 7. 3D Pose estimation with invariant keypoints - GPU-based
implementation.

Fig. 7: frame-by-frame 3D pose estimation of a planar
object, by matching invariant keypoints against a single
appearance model. The measurement for tracking is object-
level, obtained after a nonlinear LSE estimation of Euclidean
roto-translation parameters, represented as a 6-dimensional
Euclidean twist [18], with calibrated camera model. In this
context, the tracker is a standard Kalman Filter with constant
velocity dynamics. The implementation of invariant key-
points detection and matching [4] is done for speed purposes
on the GPU, following the paper in [19]. This example also
shows one multi-purpose hardware capability of the library.



Fig. 8. Contour-based tracking by optimizing local color statistics.

Fig. 8: Color-based contour tracking with keypoint re-
initialization. The contour tracker employs the color-based
CCD algorithm [20], implemented in the real-time version
[21], providing a frame-rate of 25fps; as described in [21],
re-initialization is provided through keypoint detection and
pose estimation, and track loss is detected by computing an
NCC index between off-line appearance and warped image
pixels at the currently estimated pose. Measurements are
object-level pose parameters, fed into a Kalman Filter with
CWNA motion model for state estimation. The camera model
is calibrated, and pose parameters are represented through the
twist vector.

Fig. 9. 3D Face tracking integrating contour and template visual modalities.

Fig. 9: Face tracking in 3D integrating contour and tem-
plate features [22]. This example shows a complimentary
data fusion [13], where the two visual modalities provide two
disjoint parts of the full pose vector, namely 3D translation
(contour) and rotation (template). The head contour is first
estimated through the CCD algorithm above mentioned,
using an elliptical model with 3 translational degrees of
freedom; head rotations are subsequently estimated with fast
Mutual Information template matching, working with the
remaining degrees of freedom.

Both features for tracking are off-line obtained from the
full textured 3D mesh provided by the user.

VII. CONCLUSION AND PLANNED IMPROVEMENTS

We presented a general architecture for model-based visual
tracking with the purpose of casting the problem in a com-
mon object-oriented framework, where a minimal number of
classes and layers show to be sufficient for entailing a wide
variety of existing approaches, as well as for developing
new ones. At the same time, the structure allows multiple
instances of base classes to work in parallel for distributed
tracking in multi-camera/modality/object tracking problems.

In this framework, off-line models of the object shape,
appearance, deformation and temporal dynamics need to be
externally provided, although in a common format through-
out different tasks. Future developments of the architecture

are planned in the direction of building in fully- or semi-
automatic ways the models required: for example, 3D shape
estimation from motion [6], automatic contour modeling
[23], appearance model training [8], and so on. The addi-
tional set of tools (generic recognition, classification, shape
morphing, etc.) for object modeling can be added to the base
structure of Fig 2 as part of the model layer.

REFERENCES

[1] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Comput. Surv., vol. 38, no. 4, p. 13, 2006.

[2] S. S. Blackman and R. Popoli, Design and Analysis of Modern
Tracking Systems. Artech House Radar Library, 1999.

[3] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based prob-
abilistic tracking,” in ECCV ’02: Proceedings of the 7th European
Conference on Computer Vision-Part I. London, UK: Springer-Verlag,
2002, pp. 661–675.

[4] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[5] T. Drummond and R. Cipolla, “Real-time visual tracking of complex
structures,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 932–946, 2002.

[6] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518,
2004.

[7] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” Lecture Notes in Computer Science, vol. 1407, pp. 484–498,
1998.

[8] I. Matthews and S. Baker, “Active appearance models revisited,”
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech.
Rep. CMU-RI-TR-03-02, April 2003.

[9] L. Vacchetti and V. Lepetit, “Stable real-time 3d tracking using online
and offline information,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, no. 10, pp. 1385–1391, 2004.

[10] S. Roth, L. Sigal, and M. J. Black, “Gibbs likelihoods for bayesian
tracking,” cvpr, vol. 01, pp. 886–893, 2004.

[11] G. Welch and G. Bishop, “An introduction to the kalman filter,” Tech.
Rep., 2004.

[12] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for on-line non-linear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
February 2002.

[13] Y. Bar-Shalom and X.-R. Li, Multitarget-Multisensor Tracking: Prin-
ciples and Techniques. YBS Publishing, 1995.

[14] M. Isard and A. Blake, “Condensation – conditional density propa-
gation for visual tracking,” International Journal of Computer Vision
(IJCV), vol. 29, no. 1, pp. 5–28, 1998.

[15] C. Harris, “Tracking with rigid models,” pp. 59–73, 1993.
[16] G. R. Bradski and J. W. Davis, “Motion segmentation and pose recog-

nition with motion history gradients,” Mach. Vision Appl., vol. 13,
no. 3, pp. 174–184, 2002.

[17] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford:
Oxford University Press, 1995.

[18] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction
to Robotic Manipulation. CRC, March 1994.

[19] G. Ziegler, A. Tevs, C. Theobalt, and H.-P. Seidel, “Gpu point
list generation through histogram pyramids,” Max-Planck-Institut für
Informatik, Saarbrücken (Germany), Research Report MPI-I-2006-4-
002, June 2006.

[20] R. Hanek and M. Beetz, “The contracting curve density algorithm:
Fitting parametric curve models to images using local self-adapting
separation criteria,” Int. J. Comput. Vision, vol. 59, no. 3, pp. 233–
258, 2004.

[21] G. Panin, A. Ladikos, and A. Knoll, “An efficient and robust real-time
contour tracking system,” in ICVS, 2006, p. 44.

[22] G. Panin and A. Knoll, “Real-time 3d face tracking with mutual
information and active contours,” in International Symposium on
Visual Computing (ISVC), Lake Tahoe, Nevada, USA, 2007.

[23] A. Blake and M. Isard, Active Contours: The Application of Techniques
from Graphics,Vision,Control Theory and Statistics to Visual Tracking
of Shapes in Motion. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 1998.


