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Abstract. In this paper, we propose a general-purpose methodology
for detecting multiple objects with known visual models from multi-
ple views. The proposed method is based Monte-Carlo sampling and
weighted mean-shift clustering, and can make use of any model-based
likelihood (color, edges, etc.), with an arbitrary camera setup. In partic-
ular, we propose an algorithm for automatic computation of the feasible
state-space volume, where the particle set is uniformly initialized. We
demonstrate the effectiveness of the method through simulated and real-
world application examples.

1 Introduction

Object detection is a crucial problem in computer vision and tracking applica-
tions. It involves a global search over the feasible state-space, and requires to
cope with an unknown number of targets, possible mutual occlusions, as well as
false measurements, arising from background clutter.

Using multiple cameras can greatly improve the detection results in terms of
precision and robustness, since the joint likelihood will be much more focused
on real targets, and mutual occlusions from a given view will be solved by the
others. Moreover, multiple cameras constrain the state-space of visible objects
to a smaller volume, where a target appears in all visual fields. This reduces the
search space of a great amount, and therefore facilitates the detection process.

For this purpose, a typical bottom-up approach usually consists of sampling
image features (e.g. segmenting color blobs) and matching them between cam-
eras, in order to perform a 3D triangulation and object localization: however,
this approach requires to explore all possible combinations of data that can
be associated to similar targets, possibly in presence of missing detections and
false alarms, as well as partial occlusions, which can make the problem of an
intractable complexity.

In a top-down approach, instead, a detection task can be seen as a global
optimization of a multi-modal likelihood function in state-space, which presents
strong local maxima around each target (detected by the optmization method),
as well as smaller peaks around false measurements. This optimization problem
involves generating and testing a number of state-space hypotheses, by projecting
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the relevant model features on each camera view, and comparing them locally
with the image measurements.

When two targets are too close with respect to the covariance of the mea-
surement noise, the related peaks merge to some extent, and are not anymore
distinguishable by the search method. Therefore, the measurement covariance
by itself sets a limit to the state-space resolution of the detector.

Evolutionary and Genetic Algorithms are well-known in the literature, in
order to cope with such multi-modal optimization problems [9]; however, their
computational complexity limits the application field, particularly when a real-
time (or near real-time) performance is required, such as object tracking.

In order to approach the problem from a general point of view, not restricted
to a particular form of the likelihood, or a given camera configuration, we choose
instead a Monte-Carlo based strategy, followed by unsupervised clustering of
state hypotheses, according to the respective likelihoods. This approach has the
advantage of neither requiring any prior assumption about the number of targets,
nor about the form of the likelihood, provided that a significant local maximum
is present around each target state.

The paper is organized as follows: Section 2 describes the general clustering
strategy, based on kernel representation and weighted mean-shift; Section 3 the
introduces the uniform sampling strategy for multiple camera views, on the
joint vieweing volume; Section 4 provides simulated and experimental results,
and Section 5 concludes the work with proposed future developments.

2 The particle-based detector

In order to detect targets, we basically look for local maxima (or modes) of a
given likelihood, provided by any visual property of each target, and a suitable
matching strategy between model and image features. In general, this function
can integrate multiple visual cues, as well as data from multiple cameras. Such
a general formulation, together with an arbitrary number and relative location
of targets, makes the estimation problem of a complex and nonlinear nature.

Therefore, we approach the problem by means of a general and flexible
method, such as Monte-Carlo sampling. In particular, we represent our like-
lihood through a discrete particle set (si, wi), where si are state hypotheses,
weighted by their likelihood wi. This representation is well-known in a tracking
framework [7], and can cope with nonlinear and multi-modal distributions.

In absence of any prior information about the possible location of targets, the
particle set is initialized with uniform distribution, covering the feasible state-
space volume where targets can be viewed by the multi-camera setup (Sec. 3).

Each peak of the likelihood will provide a cluster of high-weighted particles
around it, and therefore a weighted state-space clustering algorithm can be run,
in order to identify them. However, if the likelihood peaks are too large and
partially overlapping, the clusters will overlap as well, and the algorithm will
fail to separate them properly.
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In a computer vision application, the width of the likelihood modes depends
on the modality used (edges, color, etc.), and on the related covariance. This
parameter can be externally set (or internally computed), and it reflects the un-
certainty of the measurement process in feature- or state-space: a high-resolution
measurement has low covariance, with narrow peaks well-located around the tar-
gets, but also many local maxima in the neighborhood; on the other hand, a low-
resolution measurement will have a higher covariance, larger and less localized
peaks.

In order to identify the modes, we need a smooth representation that can be
locally optimized, such as a kernel-based representation [2][4]. More in detail, if
x is a one dimension variable, a weighted kernel density is represented by

p (x| θ) =
1
N

N∑
i=1

wi

h
k

(
x− xi

h

)
(1)

In this formula, k is the kernel, which has a maximum value in x = 0, and quickly
decays in a neighborhood of the origin; h is called bandwidth, and regulates the
width of the kernel around each point xi. The number of modes N is also a
parameter of this distribution, overall represented by the set of values

θ = (N,h, x1, ..., xN , w1, ..., wN ) (2)

A typical choice for the kernel is the Gaussian distribution

k (x) =
1√
2π
e−

x2
2 (3)

for which h = σ is the standard deviation, so that (1) represents a Mixture of
Gaussians. In a multi-dimensional space, the kernel representation generalizes
to

p (x| θ) =
1
N

N∑
i=1

wi

detH
K
(
H−1 (x− xi)

)
(4)

where the multi-variate kernel K is obtained as the product of univariate ones

K (x) =
D∏

d=1

k (xd) (5)

with D the space dimension. In the Gaussian case, Σ = HHT is the covariance
matrix of the multi-variate kernel.

Concerning the clustering method, in order to keep the most general set-
ting, we make use of unsupervised clustering, through the weighted Mean-Shift
algorithm [2]. Mean-shift is a kernel-based, non-parametric and unsupervised
clustering method, that finds local maxima of the kernel density by gradient as-
cent, starting from each sample point, and assigns to the same cluster all paths
that converge to the same peak; therefore, it simultaneously finds the number
and location of modes, and assigns the sample points to each cluster as well.
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By restricting the attention to isotropic kernels (H = hI), the density can
be locally optimized by computing the weighted mean-shift vector

mh (x) =

∑n
i=1 wig

(∥∥x−xi
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∥∥2
)
xi∑n

i=1 wig
(∥∥x−xi

h

∥∥2
) − x

 (6)

where g = −k′ its first derivative of the kernel, and afterwards updating the
position x→ x + mh. The iteration is stopped when the update vector becomes
smaller than a given threshold: ‖mh‖ < ε.

Chosing the correct bandwidth h can be critical, in order to ensure that the
correct number of particle clusters will be found. For our purposes, we simply
choose h proportional to the minimum distance between detectable targets in
state-space (resolution of the detector), which is of course application-dependent:
for example, if the detected targets are small objects, the minimum distance will
be smaller than for people detection.

During mean-shift clustering, it still may happen that small, spurious clusters
of a few sample points are detected. These clusters are stationary points (where
the mean-shift gradient is zero) but usually located on non-maxima, such as
saddle points. Therefore, they are removed by a simple procedure: if a cluster
center, located on a local maximum, is perturbed by a small amount, and the
mean-shift algorithm is run again from this location, then it will converge again
to the same point. Otherwise, the cluster center must be located on a saddle
point.

3 Redundant multi-camera setup: sampling from the
view-volume intersection

In a multi-camera context, we need first to initialize the particle set with a
uniform distribution in 3D space. This requires defining the sampling volume
for this distribution, in particular concerning the positional degrees of freedom
(x, y, z translation).

In general, we consider here redundant multi-camera settings (Fig. 1), as
opposed to complimentary ones. In a redundant configuration, the fields of view
overlap to a large extent, so that the object can simultaneously be seen from all
cameras, at any pose. This has the advantage of a more informative measurement
set, which allows 3D tracking of complex objects. By contrast, a complimentary
setup consists of almost non-overlapping camera views, where the object to be
tracked can be completely seen only by one camera at a time.

In particular, when dealing with a redundant configuration, we need to sam-
ple hypotheses uniformly from the subset of state-space configurations that are
visible from all cameras. This requires computing the joint viewing volume of m
cameras. For this purpose, each camera provides 6 clipping planes, which overall
define a truncated pyramid: 4 lateral planes defined by the 4 image sides, and
the focal length, while the two frontal planes define the minimum and maximum
depth of detectable objects.
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Fig. 1. Redundant, multi-camera configuration for object tracking.

These planes can be expressed (in camera-centered or world-centered coor-
dinates) by means of 3 points in space. For example, the left clipping plane
contains the upper-left and lower-left corners of the image, plus the camera cen-
ter. In camera coordinates, then we have

cxu,l = (−rx
2
,−ry

2
, f) (7)

cxl,l = (−rx
2
,
ry
2
, f) (8)

cc = (0, 0, 0)

These points can be transformed to world coordinates, by applying the respective
camera transformation matrix TW,c

W x = TW,c ·c x (9)

Therefore, the left clipping plane of camera c, πc,1 is given in homogeneous
coordinates by the null-space of the (3 × 4) matrix [6] (dropping the reference
frame W )

π = null

xT
u,l

xT
l,l

cT

 (10)

so that all visible points from camera c must lie in the half-space defined by

πT
c,1x ≤ 0 (11)

where the sign of π can be chosen, for example, in order to make sure that
the image center (0, 0, f) (expressed in world coordinates) is contained in the
half-space. The same procedure can be applied to the other clipping planes in a
similar way.

If we denote by πc,i, i = 1, ..., 6 the world-related planes of camera c, its
viewing polyhedron is defined by the homogeneous inequalities

Acx ≤ 0; Ac ≡

πT
c,1

. . .
πT

c,6

 (12)
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and finally, the overall intersection is given by the convex polyhedron, defined
by

Ax ≤ 0; A ≡

 A1

. . .
AC

 (13)

This equation could be used in principle to directly select a uniform sample of
visible points inside it. For this purpose, most popular methods in the literature
refer to Markov-Chain Monte-Carlo (MCMC) strategies, starting from the well-
known work [5]. However, due to its computational complexity and the presence
of several parameters in the algorithm, in the present work we propose a simpler
approach, that consists in uniformly sampling from the 3D bounding box of
the polyhedron, and discarding all samples which do not satisfy (13). This will
produce uniformly distributed points, at the price of discarding many samples,
and therefore requiring a longer (and less predictable) time before reaching the
desired number of valid points.

In order to compute the bounding box of the polyhedron, we also need to
explicitly compute its vertices in 3D space, from the implicit formula (13). This is
known as the vertex enumeration problem, and can be solved via the primal-dual
method of [1].

A final note concerns the choice of the two main parameters for our algorithm
(namely, the kernel size and the number of hypotheses), for which we employ
the following criterion:

– The kernel width h determines the resolution of our detector, since two
likelihood peaks closer than h lead to a single, detected mode in the mean-
shift optimization.

– The number of hypotheses n determines the spatial density of the sample,
which depends on the kernel size h: we need to make sure that at least one
sample point falls into any sphere of radius h, in order for the mean-shift
algorithm to work and not getting stuck into zero-density regions. Therefore,
if VS(h) is the volume of a sphere of radius h, and VB is the volume of the
bounding box for sampling (which is larger than the polyhedron volume),
we can choose n = VB/VS .

4 Applications and experimental results

In Fig. 2, we show an example result of the sampling procedure, applied to a
3-camera configuration. The three viewing volumes (indicated with different col-
ors) intersect in the central polyhedron, which is filled by uniformly distributed
points. Its bounding box is also shown in black.

As a first experiment, we run the proposed system on a simulated scenario:
a set of randomly chosen targets provide “virtual measurements”, by generating
for each target o a measurement zo around the true state s̄o, plus Gaussian noise
vo

zo = s̄o + vo (14)
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Fig. 2. Uniform sample from the joint viewing volume of a 3-camera configuration.

with the same covariance matrix V for all targets. This model corresponds to a
Mixture of Gaussians likelihood

P (z| s) ∝
∑

o

exp(−1
2

(zo − s)T
V −1 (zo − s)) (15)

for any state hypothesis s within the joint volume. The state here is represented
by 3D position, s = (x, y, z).

Four targets are selected at random within the viewing volume. In this exam-
ple, all targets are separated in space by more than 100mm, and the kernel size
is h = 30, so that the detector has no difficulties in distinguishing them. A set of
n = 2000 sample points is drawn within the volume, and their likelihood values
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are computed. After performing mean-shift clustering, the detected modes are
shown with different colors on the right side of Fig. 3.

Fig. 3. Result of the simulated experiment, with 4 targets and a Gaussian likelihood
on each target. Left: true targets (black dots) and the uniform Monte-Carlo set. Right:
result of weighted mean-shift clustering, and respective cluster centers (the red cluster
center is not visible, because almost coincident with the true target position).

As it can be seen, the detected modes are in the correct number, and their
location is in a good accordance with the real target positions.

Subsequently, we tested the system on real camera images. As image likeli-
hood, we compute the Bhattacharyya distance between color histograms, often
used for object tracking [4][8]

B (q, p (s)) =

[
1−

∑
b

√
qbpb

] 1
2

(16)

where q is a reference histogram, collected from an image of the object, and p(s)
is the observed histogram, from image pixels underlying the projected object
area, under pose hypothesis s (Fig. 4, left side). The sum is performed over
(D ×D) histogram bins (D = 10 is a common choice in Hue-Saturation space).

On a multi-camera setup, by assuming independence of the camera measure-
ments, the corresponding likelihood is

P (z|s) ∝
∏
c

exp
(
−B

2 (q, pc (s))
2σ2

)
(17)

where pc(s) is the image histogram at pose s, projected on camera c, and σ2 is
the measurement noise covariance (the same for all cameras and targets).
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In Fig. 4, we can see the detection result for 4 real targets. The object model
is given by a yellow sphere of radius 65mm, and the reference histogram is
collected from a single image of the object. On the left side of the picture, we
can see the 3 camera images with superimposed projections of the estimated
target locations; on the right side, the 3D positions of the detected targets in
the common viewing volume, together with the particle clusters after mean-shift
optimization, are shown.

Fig. 4. Left: Camera images, with re-projection of the detected targets. Right: detected
targets in 3D space, and particle clusters after mean-shift optimization.

5 Conclusion and future work

We presented a Monte-Carlo methodology for generic multi-camera, multi-target
detection. The proposed method can be applied to a variety of likelihood func-
tions in computer vision, as well as to generic, calibrated camera setups.

One limitation of the proposed system is the number of targets that can
simultaneously be detected, still limited to a few units: a maximum of 7-8 targets
have successfully been detected with the simulated experiment of Sec. 4 which,
as explained at the end of Sec. 3, depends on the spatial resolution desired (i.e.
the kernel bandwidth h).
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A possible improvement of the system may use an adaptive version of mean-
shift algorithm [3], where the bandwidth parameter is selected and modified
according to the data points, in order to give the best clustering results.
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