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Abstract— A failsafe control strategy is presented for online
safety certification of robot movements in a collaborative
workspace with humans. This approach plans, predicts and
uses formal guarantees on reachable sets of a robot arm
and a human obstacle to verify the safety and feasibility of
a trajectory in real time. The robots considered are serial
link robots under Computed Torque schemes of control. We
drastically reduce the computation time of our novel verification
procedure through precomputation of non-linear terms and use
of interval arithmetic, as well as representation of reachable
sets by zonotopes, which scale easily to high dimensions and
are easy to convert between joint space and Cartesian space.
The approach is implemented in a simulation, to show that real
time is computationally within reach.

I. INTRODUCTION

Control of robots in workspaces shared with humans is in-
creasingly topical as the presence of robots in manufacturing
grows. Humans and robots must often work together to take
advantage of the intelligence and manipulation skills of the
human and the superior power, speed and repeatability of the
robot. Guaranteeing human safety while obtaining maximum
efficiency and minimum downtime is no trivial task, and in
the absence of a failsafe strategy to comply with stringent
international standards, factories often require expensive or
bulky solutions such as protective cages and light curtains.

ISO10218-1 specifies the current regulations for the be-
haviour of machines which share a collaborative workspace
with humans and stipulates: “The robot shall stop when
a human is in the collaborative workspace. . . the robot
may resume automatic operation when the human leaves
the collaborative workspace. Alternatively, the robot may
decelerate, resulting in a category 2 stop. . . fault of the
safety-rated monitored stop function shall result in a category
0 stop.” [1] (Categories of stop are defined in Def. 4). Power
and load must also be reduced to within heuristic values
estimated to minimise damage to humans working with
heavy machinery [2]. Even so, it is not formally guaranteed
that these values will be enough to prevent injury.

Previous work on guaranteeing safety in human-robot
co-working has focussed mainly on making the robots
themselves inherently harmless. The DLR’s Light-Weight
Robot (LWR) uses compliance control [3], however, even
without this, the damage to the human on impact is very
low during blunt unconstrained impact, according to various
injury scales [4]. The cases of constrained collision or sharp
impact, even for the LWR, still present problems and each
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application needs certification. Furthermore, in applications
where industrial robots with greater power and consequently
greater inertia are required, one cannot necessarily rely on
the inherent compliance of the robot.

Where strategies for collision avoidance between robots
and humans have been considered, they have either been
statistical, non-robust or rely on assumptions that would be
unrealistic in the application considered. For example, [5]
computes trajectories avoiding moving obstacles bounded by
a maximum speed with the concept of dynamic envelopes.
However, the maximum speed of the obstacles is in the order
of 0.01ms−1, which is too slow to be relevant to human mo-
tion. Examples of strategies without formal guarantees are [6]
and [7], in which the authors demonstrate a reactive collision
avoidance method where a counteracting force proportional
to relative distance and relative speed of the obstacle is used.
Similarly, [8] propose and realise an approach where speed
of the robot is reduced according to the minimum distance
and relative velocity between the human and 1-D links.

Offline simulation with human models is used in [9] to
determine movement and configurations of the robot that
are not only safe, but ergonomic for the human. Offline
simulation reduces time-expensive online calculation, espe-
cially when using complex models of obstacles. Modelling
human arm motion in relation to human-robot interaction
is performed using Hidden Markov Models by Ding et al.
in [10], [11]. However, simulation and statistical analysis
have the inherent drawback that they cannot account for all
possible eventualities in finite time; indeed, reachable sets
are proposed by the authors of [11] to account for unknown
motions.

Reachable sets have been used successfully to guarantee
safe trajectories for autonomous vehicles [12] and power
networks [13], among other applications. The reachable set
of a system is the set of all possible states of the system
after a certain time, given an initial set and some known but
uncertain dynamics, and allows for sensor error and noise,
and disturbances. Its applicability to any hybrid dynamic
system (i.e. mixed discrete and continuous dynamics) makes
it a promising choice for robot safety applications.

This paper introduces an algorithm for planning and
verifying safe paths and stopping trajectories for serial link
robot arms which share workspaces with humans, as well as
novel techniques for verifying efficiently whether nonlinear
constraints are met. This control strategy formally guarantees
non-contact between a moving robot part and a human in
the workspace, given knowledge of the robot parameters
and environment. It is able to comply with the relevant



ISO standards [1], [2] and offers a low cost and low-space
alternative to existing safety measures such as cages.

The remainder of the paper is structured as follows:
presented in Sec. II are the aim and overview of the approach,
which can be summarised as Planning, Prediction and
Verification. Computed Torque control of robots is briefly
discussed in Sec. III. Sec. IV recapitulates the theory of
reachability analysis and describes the adaption to human-
robot safety. Sec. V explains how a safe path is planned in
our Safety Control strategy and in Sec. VI, it is shown how a
safe path is verified. The results of a simulation are presented
in Sec. VII, and finally, conclusions are drawn in Sec. VIII.

II. PROBLEM STATEMENT AND APPROACH

Our goal is a self-certifying Safety Control for a robot that
plans, predicts and verifies safety of partial trajectories to the
desired goal, only allowing a trajectory if it is certain that it is
collision free as suggested in [14]. We certify the trajectory
piecewise as shown in Fig. 1. The calculations during the
time interval [tk, tk+1] plan, predict and verify the safe tra-
jectories of the system for the next time interval [tk+1, tk+2],
starting from the state measured at tk. During [tk, tk+1], the
robot follows the safe path that has been planned and verified
during the previous timestep as presented in Fig. 2. If, for
any reason, the alternative paths for [tk+1, tk+2] cannot be
verified, (e.g. the verification calculations take longer than
the allotted time step, or no safe paths exist), the system
mode will default to the safe path previously verified during
timestep [tk−1, tk]. For a path to be verified as “safe”, two
criteria must be met:
• the possible range of desired torques, velocities and

joint positions, allowing for all possible error, are within
the prescribed limits Tacceptable, Qlimits and Vlimits

respectively.
• the human is not be able to touch the robot while it is

moving., i.e. the reachable set of the human Rhuman

and the reachable set of the robotRrobot during the path
to be verified must not intersect as long as the robot is
not stationary.

To formalise the above criteria, we introduce reachable sets:

Definition 1 (REACHABLE SET). Given a system with state
x(t), input u(t) and dynamics ẋ(t) = f(x(t), u(t)), where t
is time, and the possible initial states x(0) and inputs u(t)
are bounded by sets, x(0) ∈ X0, u(t) ∈ U(t). The reachable
set at t = r is:

R(r)={
x(r) =

∫ r

0
f(x(t), u(t))dt

∣∣∣∣ x(0)∈X0, u([0, r])∈U([0, r])

}

Further, the reachable set of a time interval is:

R([0, r]) =
⋃

t∈[0,r]

R(t)

Where q ∈ Q ⊂ Rn, q̇ ∈ V ⊂ Rn are the robot joint
positions and velocities respectively, we define the state of

the system as:

x = [q>, q̇>]> ∈ X ⊂ R2n

We further introduce the following mappings on the reach-
able set: mapCS , mapping from the state space to the union
of points in the Cartesian space occupied by the robot,
and projJL, projV L and mapTL, being the projections
from state space to joint space, joint velocity space and the
mapping to torque space respectively1:

Definition 2 (MAPPINGS).

Y = mapCS(x) : X → P(R3)

q = projJL(x) : X → Q
q̇ = projV L(x) : X → V

τ = mapTL(x, u) : X × U → T ⊂ Rn

P(R3) is the power set of R3.

Where q̈des is the desired acceleration (see Sec. III),
R(t)robot is the reachable set of the robot at time t and
Vstationary is the set of joint velocities within which the
robot is considered stationary, the robot is considered sta-
tionary at a time r when:

q̈des = 0 ∧ projV L(R(r)robot) ⊆ Vstationary
Definition 3 (VALID TRAJECTORY). Where R(t)human and
R(t)robot are the reachable sets of the human and robot
respectively, a trajectory is called a valid trajectory if the
following should hold:

{t ∈ R+ |¬(q̈des = 0 ∧ projV L(R(t)robot) ⊆ Vstationary)} :

mapCS(R(t)robot) ∩mapCS(R(t)human) = ∅
∧ projJL(R(t)robot) ⊆ Qlimits

∧ projV L(R(t)robot) ⊆ Vlimits

∧ mapTL(R(t)robot,U(t)) ⊆ Tacceptable
The valid trajectory stops the robot before its reachable set
intersects that of the human, while keeping joint positions,
velocities and torques within limits.

tk

tk+2,des

tk+2,safe

tk+1 + stoptk+1

Fig. 1. Illustration of the control strategy. Solid line is the current, fixed
trajectory, verified during timestep [tk−1, tk]. Dashed line is the desired
trajectory, which is unsafe, and dot-dashed line is a replanned safe trajectory.

We introduce 3 kinds of stops:

1when these mappings are used as set-based mappings, sets are replaced
by their corresponding power sets.



Definition 4 (CATEGORIES OF STOPS). The definition of
categories of stops is taken from [15] and is as follows:
• Category 0 stop: removal of all power to the actuators.
• Category 1 stop: deceleration to stationary state ef-

fected by actuators; subsequent removal of power from
actuators.

• Category 2 stop: no removal of power from robot;
deceleration to stationary state effected by actuators.

Our controlled stops are category 2 stops with constant
deceleration, because initiating category 0 or category 1 stops
wastes operator time and power in an environment where
humans continually move in and out of the collaborative
workspace. Category 2 stops are also believed to be more
intuitive to the human as a smooth trajectory can be planned.

Fig. 2. Outline of Safety Control Strategy

III. COMPUTED TORQUE CONTROL OF ROBOTS

In this paper, serial link robots with joint space Computed
Torque Control as described in [16] are considered. Com-
puted Torque Control describes a range of closed-loop robot
control schemes in which the control input is the desired
acceleration. The known equation of motion of a serial-link
robot is:

τ = H(q)q̈ + C(q, q̇)q̇ + F (q̇) + g(q) (1)

where q, q̇ are the vectors of joint positions and joint ve-
locities respectively. H(q) is the inertia matrix, C(q, q̇) is
the Coriolis matrix, F (q̇) are the torques due to friction and
g(q) are the torques due to gravity. We further introduce the
feedback error e = qdes − q, where qdes is the desired joint
position; ė and

∫
e dt are defined similarly. A controller using

PID Computed Torque Control takes as input ν, which is the
desired acceleration along with the feedback errors:

ν = q̈des +Kpe+Kv ė+Ki

∫
e dt

Ki, Kp and Kv are the integral, position and velocity gains
respectively, and are of size n× n where n is the length of
q. The computed values are indicated by an overbar [16]:

τ = H(q)ν + C(q, q̇)q̇ + F (q̇) + g(q)

We define the set-based sum and product:

Definition 5 (SET-BASED SUM AND PRODUCT). Set based
sum (Minkowski Sum) and product are defined on A,B ⊆ Rn

as follows:

A⊕B := {a+ b | a ∈ A, b ∈ B}
A⊗B := {ab | a ∈ A, b ∈ B}

The difference between the calculated matrices and the
physical robot matrices may be due, among other things,
to uncertainty in measurement of mass parameters and un-
certainty when modelling friction. The computed torque may
be expressed as equation (1) including an interval of torques
due to these modelling errors τME , which may be determined
experimentally and verified, for example, as in [17].

τ ∈ H(q)ν + C(q, q̇)q̇ + F (q̇) + g(q)⊕ τME (2)

Equate (1) and (2): the Coriolis, friction and gravity values
cancel, and leave:

H(q)q̈ ∈ H(q)ν ⊕ τME

= H(q)
(
q̈des +Kpe+Kv ė+Ki

∫
e dt
)
⊕ τME

(3)

H(q) is positive definite and Hermitian [16], hence H−1(q)
exists [18]; premultiplication of (3) yields:

q̈ = q̈des +Kpe+Kv ė+Ki

∫
e dt⊕H−1(q)⊗ τME

We calculate H−1(Qlimits), the union over all q ∈ Qlimits

of the inverse H matrix. Thus the governing equation of the
system of the robot under Computed Torque control is:

q̈ ∈ q̈des +Kpe+Kv ė+Ki

∫
e dt⊕H−1(Qlimits)⊗ τME

= q̈des +Kpqdes +Kv q̇des +Ki

∫
qdes dt

−Kpq −Kv q̇ −Ki

∫
q dt⊕H−1(Qlimits)⊗ τME

(4)

IV. PREDICTION

The prediction aspect of the algorithm applies techniques
for computing reachable sets of linear differential equations
to serial link robots. The robot under Computed Torque
Control is described by a linear differential inclusion of the
form:

ẋ ∈ Ax⊕ U(t) (5)

To compute the reachable set over a certain time period,
the calculations are performed iteratively from an initial set,
and enclosed in an overapproximative hull. These techniques
are described in [19].

The reachable sets are overapproximated by zonotopes, a
way to represent convex volumes in n dimensions. Zonotopes



are convenient to work with due to their ease of computation
of the required operations while calculating the sets of the
linear system and when translating from the joint space to
the Cartesian space.

Definition 6 (ZONOTOPE). A zonotope is defined as:

Z :=
{
x ∈ Rn

∣∣∣ x = c+

p∑

i=1

βig
(i), βi ∈ [−1, 1]

}

A zonotope can be represented as a centre position vector
c ∈ Rn, and p generator vectors g(i) ∈ Rn.

Zonotope addition and matrix-zonotope multiplication are
described in [19, eq. 5].

A. Computation of Reachable Sets for Computed Torque
Control

Converting (4) to the canonical form for the computation
of reachable sets (5) results in:



q
q̇
q̈




︸︷︷︸
ẋ

∈


02n,n I2n

−Ki −Kp −Kv




︸ ︷︷ ︸
A




∫
q
q
q̇




︸︷︷︸
x

+


 02n , 1

q̈des +Ki

∫
qdesdt+Kpqdes +Kv q̇des




︸ ︷︷ ︸
ū

⊕


02n , 1

δU




︸ ︷︷ ︸
U

δU = H−1(Qlimits)⊗ τME

Here, the input vector has been separated into the constant
input ū and the uncertain input U (modelling uncertainties).
For PD control the state is just the lower two thirds of the
PID state: [q>, q̇>]> and A and u are adjusted accordingly.
Ii is the identity matrix of size i, 0i , j is a matrix of zeros
of size i, j .

B. Translation to Cartesian Space

In order to check intersection, both robot and human
reachable sets are mapped to Cartesian space.

linear system and when translating from the joint space to
the Cartesian space.

Definition 6 (ZONOTOPE). A zonotope is defined as:

Z :=
{

x ∈ Rn
∣∣∣ x = c +

p∑

i=1

βig
(i), βi ∈ [−1, 1]

}

A zonotope can be represented as a centre position vector
c ∈ Rn, and p generator vectors g(i) ∈ Rn.

Zonotope addition and matrix-zonotope multiplication are
described in [19, eq. 5].

A. Computation of Reachable Sets for Computed Torque
Control

Converting (5) to the canonical form for the computation
of reachable sets (6) results in:

⎡
⎢⎣
q
q̇
q̈

⎤
⎥⎦

︸︷︷︸
ẋ

∈

⎡
⎢⎣02n,n I2n

−Ki −Kp −Kv

⎤
⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎣

∫
q
q
q̇

⎤
⎥⎦

︸︷︷︸
x

+

⎡
⎢⎣ 02n , 1

q̈des + Ki

∫
qdesdt + Kpqdes + Kv q̇des

⎤
⎥⎦

︸ ︷︷ ︸
ū

⊕

⎡
⎢⎣02n , 1

[δU ]

⎤
⎥⎦

︸ ︷︷ ︸
U

δU = H−1(Qlimits) ⊗ τME

Here, the input vector has been separated into the constant
input ū and the uncertain input U (modelling uncertainties).
For PD control the state is just the lower two thirds of the
PID state: [q⊤, q̇⊤]⊤ and A and u are adjusted accordingly.
Ii is the identity matrix of size i, 0i , j is a matrix of zeros
size i, j .

In order to check intersection, both robot and human
reachable sets are mapped to Cartesian space.

B. Translation to Cartesian Space

base coordinate system

joint uncertainties
due to generators
of Zq

link zonotope
Zlink enclosing Olink

exact reachable set
of link due to joint
uncertainties

overapproximative
zonotope Zenclose

enclosing reachable
set of link

Olink at joint
position q = c

Fig. 3. Uncertainties in joint positions lead to uncertainty in the position
of the link, which can be overapproximated by a zonotope

First, we obtain Zq = projJS(Zx) ⊂ Q . The Forward
Kinematic Function f(q) : Rn → SE(3) gives the trans-
formation of the base coordinate system to the coordinate

system of link i from joint angles q. SE(3) is the special
Euclidean group of translations and rotations in R3. An
element of SE(3) represents a transformation of a coordinate
system affixed to a rigid link and can be represented in
homogeneous coordinates by a transformation matrix:

F (q) =

⎡
⎢⎣ R(q) T (q)

0 0 0 1

⎤
⎥⎦

R(q) ∈ SO(3) is a 3 x 3 matrix representing the rotation
(SO(3) is the group of rotations in R3) and T (q) ∈ R3

the translation of the coordinate system to be transformed.
f(q) (and therefore the entries of the matrix F (q)) is highly
non-linear, therefore to obtain some overapproximative ma-
trix of intervals M, where {F (q) ∈ R4×4|q ∈ Zq} ⊆ M, a
linearisation and overapproximation procedure is necessary.

We refer to the centre of zonotope Zq , c ∈ Q as the joint
position and the generators g(j), 1 ≤ j ≤ p as the joint
generators. All expressions refer to the kth link.

We linearise F (q) using a Taylor expansion about the joint
position c with a Lagrangian Remainder:

F (q) ∈ F (c) +
∂F

∂q

∣∣∣∣
c

(q − c) ⊕
{

(q − c)⊤ ∂2F

∂q2

∣∣∣∣
q∗
(q − c)

∣∣∣∣∣ q∗ = αc + (1 − α)q , α ∈ [0, 1]

}

︸ ︷︷ ︸
higher order terms approximated by Lagrange remainder L(c, q)

(7)

Here, ∂F
∂q

∣∣∣∣
c

and ∂2F
∂q2

∣∣∣∣
q∗

are the tensors of partial derivatives

and partial second derivatives of the change in transformation
matrix with respect to joint angles (not to be confused with
the Robot Jacobian J(q)). They are evaluated at c and q∗

respectively, where q∗ is defined as in (7), and this is a
consequence of the mean value theorem [20]. Offline, we
overapproximate L(c, q) over all of Q and obtain the fourth
order tensor of intervals:

H =

{
∂2F

∂q2

∣∣∣∣
q

∣∣∣∣∣ q ∈ Qlimits

}

Finally, using (7) and where g(j) are the joint generators
as defined above, we define:

M = F (c)︸︷︷︸
constant matrix

p⊕

j=1

{
∂F

∂q

∣∣∣∣
c

gj ⊕ g⊤
j ⊗H⊗gj

∣∣∣∣∣ gj = βg(j), β ∈ [−1, 1]

}

︸ ︷︷ ︸
matrix of intervals

So that q ∈ Zq =⇒ F (q) ∈ M.
We have precomputed the zonotope Zlink ⊂ R3, which

encloses Olink, the union of all the points occupied by the
link in the link coordinate system, see Fig. 3. We wish to
apply the uncertain transformation M to Zlink to obtain
the zonotope in Cartesian space that encloses the link in its

Fig. 3. Uncertainties in joint positions lead to uncertainty in the position
of the link, which can be overapproximated by a zonotope.

First, we obtain Zq = projJS(Zx) ⊂ Q , where Zx

is the zonotope enclosing some reachable set of the robot.
The forward kinematic function F (q) : Rn → SE(3)
gives the transformation of the base coordinate system to
the coordinate system of link k from joint angles q. SE(3)
is the special Euclidean group of translations and rotations
in R3. An element of SE(3) represented in homogeneous
coordinates by a transformation matrix:

F (q) =


 R(q) T (q)

0 0 0 1




R(q) ∈ SO(3) is a 3× 3 matrix representing the rotation
(SO(3) is the group of rotations in R3) and T (q) ∈ R3

the translation of the coordinate system to be transformed.
The entries of the matrix F (q) are highly non-linear, there-
fore to obtain some overapproximative matrix of intervals
M, whereM⊇ {F (q) ∈ R4×4|q ∈ Zq}, a linearisation and
overapproximation procedure is necessary.

We refer to the centre of zonotope Zq , c ∈ Q as the joint
position and the generators g(j), 1 ≤ j ≤ p as the joint
generators. All expressions refer to the kth link of n links.

We linearise F (q) using a Taylor expansion about the joint
position c with a Lagrangian Remainder:

F (q) ∈ F (c) +
∂F

∂q

∣∣∣∣
c

(q − c) ⊕
{

(q − c)> ∂
2F

∂q2

∣∣∣∣
q∗
(q − c)

∣∣∣∣∣ q
∗ = αc+ (1− α)q , α ∈ [0, 1]

}

︸ ︷︷ ︸
higher order terms approximated by Lagrange remainder L(c, q)

(6)

Here, ∂F
∂q

∣∣∣∣
c

and ∂2F
∂q2

∣∣∣∣
q∗

are the tensors of partial derivatives

and partial second derivatives of the change in transformation
matrix with respect to joint angles (not to be confused with
the Robot Jacobian J(q)). They are evaluated at c and q∗

respectively, where q∗ is defined as in (6), and this is a
consequence of the mean value theorem [20]. Offline, we
overapproximate L(c, q) over all of Q and obtain the fourth
order tensor of intervals:

H =

{
∂2F

∂q2

∣∣∣∣
q

∣∣∣∣∣ q ∈ Qlimits

}

Finally, using (6) and where g(j) are the joint generators
as defined above, we define:

M = F (c)︸︷︷︸
constant matrix

p⊕

j=1

{
∂F

∂q

∣∣∣∣
c

gj ⊕ g>j ⊗H⊗gj
∣∣∣∣∣ gj = βg(j), β ∈ [−1, 1]

}

︸ ︷︷ ︸
matrix of intervals

So that q ∈ Zq =⇒ F (q) ∈M.
We have precomputed the zonotope Zlink ⊂ R3, which

encloses Olink, the union of all the points occupied by the



link in the link coordinate system, see Fig. 3. We wish to
apply the uncertain transformation M to Zlink to obtain
the zonotope in Cartesian space that encloses the link in its
position. We splitM into a constant matrix M and a matrix
of symmetric intervals S,Sij = [−sij , sij ], SoM = M⊕S .
Then, as a matrix multiplied by a zonotope is a zonotope and
a matrix of symmetric intervals multiplied by a zonotope can
be overapproximated with another zonotope [19], we find
Zenclose:

M⊗Zlink ⊆M⊗Zlink ⊕ S ⊗ Zlink ⊆: Zenclose

Zenclose is calculated independently using M for each
link and an overapproximation of the entire robot in R3 ,
mapCS(Zx), is built from n zonotopes.

C. Reachable Set of the Human

Having proven that reachable sets can be computed for
a robot under Computed Torque Control, it remains to
compute the reachable set of the human obstacle to check
for intersection. This expands upon the idea in [11] that the
reachable sets of human motion be used to supplement a
Hidden Markov Model where unexpected motion is detected.
Our method, however, involves computing the reachable set
of all possible motion with no probabilistic element in the
algorithm. In contrast to the robot, human parameters are
more uncertain2 as are measurements e.g. from a camera or
from a light curtain. Furthermore, the input is completely
uncertain, so the entire set of accelerations possible for the
human must be taken. Consequently, the reachable set of the
human expands rapidly. The challenge is to implement the
formal verification fast enough so that the robot will not be
constantly stopping, or worse still, be unable to move at all.

Light curtains are a popular and relatively inexpensive way
to detect the presence of obstacles in robot workspaces. In
the simplest case, the human is detected by a collection of
light curtains, where n(i) and d(i) are the unit normal and
distance to the origin of the ith of l light curtains, and tr is
the maximum combined time of the light curtain response
including the time for the safety relay to activate, which
is typically between 10-65 ms depending on model and
resolution3. vmax is the maximum speed of the human. As
the position of the human along the light curtain is unknown,
the reachable set of the human is the union of all half-spaces
on the non-robot sides of the planes defined by the light
curtains, offset by the maximum penetration of the human
through the light curtain towards the robot. Rhuman(t) is
computed as:

l⋃

i=1

{
x ∈ R3

∣∣∣∣ n(i)>x ≥ d(i) − vmax(tr + t)

}
(7)

Maximum upper limb movements are typically overap-
proximated by the Hand Speed Constant 1.6 ms−1 [2],

2consider variance in length, position and orientation of human limbs,
joint axes etc. as well as different accelerations and maximum velocities.

3e.g. pilz.com, techniconiec.com, cedes-sa.com, recovered 26.09.14

however, if the strategy is to be ISO compliant, vmax should
be set at the speed of a walking human from [2], 2.0 ms−1.

As the state x is simply the Cartesian coordinates of the
reachable set, A in (5) becomes a 3× 3 matrix of zeros:

ẋ = [−vmaxn , 0]

Where a more complete model of the human is avail-
able, for example through camera systems such as the
SafetyEYE4, the human is considered in terms of links
and joints with degrees of freedom, limits of joint values,
speed and acceleration. The human reachable set can then
be represented as a series of zonotopes corresponding to the
links on a simplified, overapproximative model of a human.
Describing such a complex model of the human and the
mathematical techniques behind it in detail is not within the
scope of this paper.

V. PLANNING

In order to avoid collision when an unsafe scenario is
predicted, either the planned spatial path or the velocity
must be modified [21]. For example, Zanchettin and Rocco
[8] describe a strategy whereby the path is consistent and
the speed is reduced in relation to the human’s speed and
proximity to the robot (sensed by a camera).

Here, the Safety Control works in parallel with the low-
level robot controller, as shown in Fig. 2. The cycle time
of the Safety Control (Major Timestep) is larger than that
of the low-level control (Minor Timestep), in order to have
adequate time for planning, prediction and verification, but
must be small enough so that the system remains stable
and that the error from overapproximation remains small.
The trajectory planner in the Safety Control has at least two
modes, stopping and following precomputed trajectory, but
may include others such as a reduced or increased speed
trajectory, or a trajectory with a different spatial path.

If the Safety Control fails, the low-level control executes
a category 0 or 1 stop. This is shown in Fig. 2 and complies
with ISO 10218-1 [1]

A. Trajectory Planning

When the robot is in controlled stop mode, the Safety
Control computes a master trajectory from the current state
to the goal state. As this trajectory has six constraints – the
speed, position and acceleration at both ends – it may take
the form of a polynomial in time of degree 5 or greater
(i.e. the desired position of the ith joint qi,des(t) is of the
form

∑n
k=0 ai,kt

k where ai,k are chosen to satisfy the six
constraints and n ≥ 5); other functions for master trajectories
are also possible.

A reduced speed or increased speed trajectory, or a new
spatial trajectory, may be generated whereby the speed is
reduced but the spatial path of the master trajectory is
preserved. Following one Major Timestep at the chosen
trajectory, a controlled stop is planned. The Major Timestep
plus the controlled stop constitute the candidate safe path, as
explained in Sec. II.



B. Controlled Stop

The controlled stop is a category 2 stop with constant
deceleration as in Def. 4. For a variety of stopping trajec-
tories, the path of the robot is predicted and it is checked
whether mapCS(R(t)robot) ∩ mapCS(R(t)human) = ∅ at
every timestep up until and including the first timestep at
which the robot is stationary as described in Sec. II; such
a trajectory is a safe braking trajectory. The safe trajectory
with the longest braking time (and consequently the smallest
desired acceleration) is selected, as this is most likely not to
exceed the maximum torques. This is illustrated in Fig. 4.

It is then checked whether the latter three conditions of a
Valid Trajectory as defined in Def. 3 are fulfilled, i.e. that
the joint positions and velocities are within limits and the
torques within acceptable bounds. If not, as in the bottom
example of Fig. 4, then the motors cannot provide sufficient
torque to execute this trajectory and a failure signal is given.
If positions, velocities and torques are within limits and the
reachable sets of the robot do not intersect with those of the
human for both the controlled stop and the entire trajectory
before it, as in the top example in Fig. 4, then this is a valid
stopping trajectory; it is saved as the new safe path.

0              0               0               0              1 

0.052        0.056        0.060          0.064        0.068 

0              1               1               1              1 

braking time

stops in time?

torques within limits?

0.024        0.028        0.032          0.036        0.040braking time

stops in time?

torques within limits?

Fig. 4. Finding braking trajectory: select the trajectory with slowest
possible stopping time (ringed value). Then check demanded torques; in
the top example they are within limits, but not in the lower example.

Due to the conditions imposed, i.e. a constant deceleration
and the preservation of the instantaneous velocity direction,
it may be that a valid controlled stopping trajectory exists,
which is not found. Furthermore, the overapproximation in
the torque introduced by the partitioning of the state space
and precomputation of the inertia matrix and remainder
vector may indicate that the torque limits are breached when
in fact the demanded torques are within limits. Currently,
the computation times of a non-linear system make it infea-
sible to compute optimum stopping trajectories and verify
formally online in time, without these limits imposed.

VI. JOINT POSITION, VELOCITY AND TORQUE LIMITS

To verify that joint torques do not exceed motor torques
requires a dynamic model of the robot which can be checked
at each step. The non-linearity of the dynamic model and
the complexity of the equations of the inertia, Coriolis,
friction and gravity matrices mean that the translation of the
reachable set of the input into the torque space is not possible
in real time.

For this reason, the state space is partitioned
into a set of c cells Ci, which are comprised of
intervals [xk,min, xk,max] in each dimension k of

the state space. Ci ∩ Cj = ∅ ∀ i 6= j ∈ {1, ... , c} and⋃c
i=1 Ci =Qlimits × Vlimits ⊂ X . For simplicity, denote

projJL(Ci) by [qi], and similarly projV L(Ci) by [q̇i].
Using interval arithmetic as described in [22] one can
overapproximate (1) to obtain the inertia interval matrix
H([qi]) and remainder interval vector rem([qi], [q̇i]), which
are evaluated offline for each cell Ci:

rem([qi], [q̇i]) = C([qi], [q̇i])[q̇i]⊕ F ([q̇i])[q̇i] + g([qi])

[τmin, τmax] = H([qi])q̈ ⊕ rem([qi], [q̇i])

S, the union of cells Ci of the state space which intersect
with the reachable set, is found online and the hulls of all
relevant inertia matrices and remainder vectors are taken:

[τmin, τmax] =
⋃

i∈S
H([qi])[q̈min , q̈max]⊕

⋃

i∈S
rem([qi], [q̇i])

Here, the union of matrices and vectors of intervals are
defined element-wise: [A ∪B]ij = Aij ∪Bij .

This gives an interval vector which is an overapproxima-
tion of the torques in the reachable set produced by an accel-
eration (also an interval vector). This can be compared with
the maximum torque to check whether limits are exceeded.

The detected cells are also used to check whether the joint
positions and velocities are within limits. If R(t)robot 6⊆⋃c

i=1 Ci, the joint positions and velocities are outside the
limits Qlimits and Vlimits. In this case, the trajectory being
verified is invalid.

VII. IMPLEMENTATION SIMULATION WITH A LIGHT
CURTAIN AND PUMA560

Fig. 5. Setup of the simulation. On the left are the reachable sets of the
robot, on the right are those of the human. Here, the robot stops in time
and the sets do not intersect while the robot is moving.

We present a simulation involving a Unimation PUMA
560 Robot and a Techniconiec SLC 430 Type 4 light curtain5

to sense human movement, illustrated in Fig. 5. The PUMA
560 is chosen due to its well-known and available dynamic
and kinematic model [23]. This model uses the Robotic
Toolbox [24] and the Interval Laboratory [25] as well as the
Continuous Reachability Analyser6. The robot controller is
assumed to use position and velocity (PD) Computed Torque
Control; the master trajectory is a quintic polynomial in time

5http://techniconiec.com/techguides/Tech%20Schmersal%20Light%20
Curtains.pdf, recovered 26.09.14

6available: www6.in.tum.de/Main/SoftwareCORA



as described in Sec. V, with acceleration set to zero at both
ends. There are four possible trajectories: stop, follow desired
trajectory, reduce speed and restore original speed. The
linear system has 12 dimensions and the simulation is run on
MATLAB R2014b on a 2.8GHz Intel Core i7 processor with
16GB 1600 MHz DDR3 RAM running Mac OSX 10.9.4.

The parameters used for this are a Minor Cycle time
of 4ms (a typical cycle time of modern robot controllers,
e.g. Stäubli CS8C Controller). The dynamic and kinematic
models are taken from [23]. Joint limits are taken from the
Unimation PUMA 560 manual and speed and torque limits
are estimated at:

q̇i (rad/sec) ∈
[
− π

2
,
π

2

]
, τ (Nm) ∈




−90 90
−100 100
−80 80
−20 20
−20 20
−20 20




The uncertainty of the input is based on the modelling errors
as described in Sec. III; the interval τME is taken to be
0.1% of the interval of maximum torques given above. The
gains Kp and Kv are 5 and 60 respectively, for each joint.
The state, when resampled at each new Major Timestep, is
a random state from within the reachable set. The human is
detected by one light curtain. In equation (7), n is the x-axis
unit vector and d is 0.95m, tr is taken as 50ms and vmax is
2.0 ms−1. Vstationary is ±0.05 rad/sec on each joint.

The state space is partitioned into 11025 cells for pre-
computation of the H matrices and rem vectors for the
torque, friction terms are neglected. This took approximately
10 hours of computing time on the same computer as that on
which the simulation is run. The simulation itself consisted
of 8 pairs of trajectories, where the start position of the
first was the goal position of the second and vice-versa.
Four simulations were run: A and B had Major Cycle time
100ms whereas C and D had Major Cycle time 80ms. A and
C verified only two trajectories (follow desired trajectory,
stop) whereas B and D also used reduce speed and restore
original speed. For B and D, not all trajectories were
computed every timestep, e.g. reduced speed would only be
computed if follow desired trajectory could not be verified
safe; this reduced computation time as parallelisation was
not implemented. The results are in Table I.

A wider option of trajectories in B and D appear to
increase their effectiveness at following the desired trajectory
although computation times have greater mean and standard
deviation than A and C. If different paths were verified in
parallel, the computing time need not necessarily increase
with more alternative paths as long as more processors are
available. A decrease of 20% in the Major Timestep appears
to make a significant change to the effectiveness of the safety
control. Because the Safety Control reacts quicker, human
motion can be detected earlier and the reachable sets of the
human during verification are smaller in C and D than A
and B. Consequently, aversive action such as stopping or
reducing speed need not be taken as often, and the safe

trajectory can follow the desired trajectory.

TABLE I
RESULTS OF THE SIMULATION

A B C D

Average increase in total
trajectory duration (trajectories
successfully completed in
all simulations A – D only)

64.2% 25.5% 57.9% 22.3%

Mean computation time per
Major timestep (ms) 400 530 373 501

Standard deviation computation
time per Major timestep (ms) 104 145 102 135

Successfully completed master
trajectories (16 attempted) 11 14 12 16
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Fig. 6. Blue: Reachable set of human and of robot at start of timestep
and after following intended trajectory then executing fastest controlled stop
that satisfies torque limits. The robot cannot stop in time. Scale in metres.
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Fig. 7. Reachable sets of Human and of Robot at start of timestep and
after following a safe trajectory, stopping in time. Scale in metres.

Figure 6 illustrates how the human reachable set intersects
with the robot reachable set if the follow desired trajectory
is taken; this can be avoided by following reduce speed,
as shown in Figure 7. The video attachment to this paper
demonstrates how the different simulations A, B, C and D
cope with the same trajectory.



VIII. CONCLUSIONS

This paper presents a workable method for an ISO
Standards-compliant safety control strategy to safeguard hu-
mans in a collaborative workspace. This algorithm is easy
to implement in parallel to the existing low-level robot
controller and may be used in situations where humans
frequently cross into the workspace of industrial robots such
as assembly lines in food production and car production to
save time and space on the production line. Other benefits
include introducing flexibility in the production line, as
robots can be moved without restructuring the whole factory,
as well as upholding standards of worker safety.

Due to the formal methods used in this approach, the
algorithm automatically guarantees each movement as safe
and therefore, in contrast to other safety control schemes,
“certifies” its own safety automatically online.

Currently, although the offline computation of the inertia
matrices and remainders has brought computation time down
to typically within about 10 times the Major Cycle time,
this is not yet enough to run the control online. Parallel
processing, improved processors and optimisation of the code
is expected to bring times within real-time. The recognition
and computation of the reachable set of the human promises
ample opportunity for further development. Lastly, the appli-
cability of the algorithm described depends on the availability
of an accurate dynamic model; ways to adjust for parametric
uncertainty must be investigated for applicability in industrial
settings.
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