
Server-sided Automatic Map Transformation in RoboEarth

Alexander Perzylo�, Björn Schießle∗, Kai Häussermann∗, Oliver Zweigle∗, Paul Levi∗, Alois Knoll�

Abstract— RoboEarth aims at providing a distributed cloud-
based web platform from robots for robots that is publicly
accessible and enables robots to autonomously share knowl-
edge among each other and to generate new knowledge from
previously stored data. As a result robots don’t have to gain
the same knowledge over and over again, but can build upon it
right from the start. Currently, shareable data are abstract
task descriptions, object models and environment maps. In
this paper we describe RoboEarth’s approach to automatically
and transparently generate 2D maps for localization and
navigation, which are extracted from shared 3D maps and
suited for a specific robot configuration. The parameters of the
map generation process get inferred from a robot’s semantic
self-description. Using RoboEarth for knowledge generation
enables simple platforms with low computational power to
execute complex tasks in complex environments. Furthermore
the approach effectively simplifies the time consuming process
of generating new maps every time a new robot platform with
different specifications is used.

I. INTRODUCTION
In future days mobile intelligent robots might become

daily companions in our lives. In this scenario they will
probably start with populating environments like hospitals
and nursing homes for the elderly. They will be asked
to perfom complex tasks like mobile manipulation, which
necessitates localization and navigation among other things.
The RoboEarth platform is being developed to prove that
a common knowledge base coupled with the concept of
cloud robotics speeds up learning and adaption to new
circumstances [1] [2].
RoboEarth assists robots in achieving their goals by provid-
ing means to autonomously share re-usable knowledge using
an open system, which can be accessed from all over the
world using the World Wide Web. Robots may request task
descriptions, that enable them to execute a task they haven’t
been programmed for beforehand. In the RoboEarth context
they are called action recipes. Objects that are referenced
from within action recipes are linked with corresponding
detection models that can be downloaded from RoboEarth
in order to enable robots to interact with those objects.
For determining whether a certain type of robot is capable
of using an action recipe we use the RoboEarth language
to state the robot’s capabilities and the action recipes’
requirements. This permits to check if and what components
are missing on a robot for it to be able to execute the
action recipe. Missing components can be searched for on

� Alexander Perzylo and Alois Knoll are with the Technische Univer-
sität München, Department of Robotics and Embedded Systems, D-85748
Garching bei München, Germany.

∗ Björn Schießle, Kai Häussermann, Oliver Zweigle and Paul Levi are
with the Universität Stuttgart, Department of Image Understanding, D-70569
Stuttgart, Germany.

RoboEarth again [3].
As involved objects are often found at specific locations,
the robot might also need to download environmental maps
from RoboEarth. This includes maps for localization and
navigation and semantic maps, which basically are lists of
localized objects. By obtaining missing maps the robot learns
where to look for objects and how to get there.
Next to a shared database system, RoboEarth provides web
services for solving issues, for which the robot doesn’t
have the needed computational power or lacks required
algorithms, e.g. logical reasoning about the knowledge stored
in RoboEarth.
In this paper we want to introduce one of RoboEarth’s web
services: the RoboEarth Map Service. Given a pre-shared
3D map for a certain environment, which was submitted by
an arbitrary robot, any robot providing a semantic model of
itself can request 2D maps for localization and navigation in
that environment. The RoboEarth map service automatically
generates the maps by analyzing the robot’s self-description
and inferring the pose of the robot’s base laser scanner and
overall bounding box. If suitable maps are already stored in
RoboEarth, due to the robot having requested maps for the
same environment before, they will be directly sent to the
robot. Otherwise a 3D map for the requested environment
is searched for. If it is found, the RoboEarth map service
extracts a 2D slice out of the 3D map at the height above
ground of the base laser scanner. This slice is stored again in
RoboEarth as 2D map intended to be used for localization.
A second operation performs a 2D projection of parts of
the 3D map that are determined by the bounding box of the
robot. This 2D map might contain obstacles the robot’s base
laser scanner cannot see and is intended to be used for path
planning and navigation.

II. RELATED WORK

In order to allow indoor navigation, many robotic systems
use range sensors, which take measurements in a plane
parallel to the floor (for an overview see Thrun [4]).
However, the information provided by a 2D scanner is
usually insufficient, because of dynamic objects or noise.
The existence of humans or other dynamic objects is typical
for real world environments and makes the modeling of
the environment and the navigation a challenging task. To
handle completely unstructured environments, 3D sensors
where proposed for navigation to build 3D or 2.5D maps
for navigation [5], [6], [7], [8]. Because the navigation
process that bases on 3D or 2.5D maps is computationally
very expensive, a combination of 3D sensors and 2D SLAM
algorithm was introduced [9], which bases on ”leveled

range scans”. This approach enables the system to use 3D
perception to cope with dynamic objects and noise and
furthermore, to use less complex 2D navigation algorithms.
However, a computationally intensive process still remains
locally on the robots. Thus, our approach includes the
concept of cloud computing with the basic idea to offload
the demanding map generation process to RoboEarth.
Particularly in the domain of robotics, there exists an
increasing interest in cloud computing. The researchers of
[10] propose a framework, which allows robots to generate
3D maps of their environments on a cloud infrastructure,
instead of locally on their on-board computers, whereas
the researchers of [11] propose a more general concept
to perform speech recognition, face detection, and other
tasks on a cloud service. Furthermore, the concept of [12]
involves a software framework, which attempts to offload
data and computationally intensive workloads from robots
to a distributed system shared by multiple clients. The
framework allows to perform heavy computing tasks and
enables the exchange of relevant data of the robot.
In general all presented available cloud robotic approaches
are very specific related to their practices, robots and
interfaces. In contrast RoboEarth’s map service is a more
general and open approach, which may be used for numerous
different applications.

The remainder of this paper is structured as following.
Section III presents a brief overview about RoboEarth and
the general architecture of the framework. Furthermore, the
chapter describes how the map service is integrated into
RoboEarth to allow robots from all over the world to use it.
Section IV focuses on the proposed description format for the
robots and the corresponding hardware description. Section
V explains the technical process of extracting and storing
2D maps from a given 3D map. Section VI describes a
demonstration and the successful evaluation of our proposed
framework. Finally, Section VII concludes the paper and
gives a brief outlook on future work.

III. ROBOEARTH WEB PLATFORM

RoboEarth provides data storage and computational power
for robots all over the world as a service based on the
principles of cloud computing [13]. It enables robots to
share reusable knowledge about actions, objects and environ-
ments and leverage the computational power of RoboEarth
to execute algorithms which would exceed the capabilities
of a single robot. This enables robots to perform tasks,
detect objects and operate in environments they have never
experienced before.

A. General architecture of RoboEarth

To store a huge amount of data and to provide the
necessary computational power the system is build using the
principles of cloud computing. For the underlying system
the Apache Hadoop framework [14] for reliable, scalable
and distributed computing is used. This allows for easily
upgrading the system regarding hard disk capacity and

Web/REST Interface (Python Django)

Distributed Storage
(Hadoop)

Reasoning Server
(Sesame)

Data Processors

Data Processing
Daemon

kinect2revisiondp 1 ... dp N

External
Interfaces

Interface 1

OSM

...

Interface N

Fig. 1. Overall architecture of the RoboEarth web platform. The platform
is based on the principles of cloud computing and uses the Apache Hadoop
framework as a central component for general data storage. Semantic
descriptions are stored in a Sesame repository, which provides querying and
reasoning capabilities. RoboEarth also offers an infrastructure for server side
data processors and services and implements a web interface which grants
access to humans and robots.

computational power, whenever it might become neccessary.
Furthermore the framework provides well known and tested
components to store and compute a large amount of data
records. The NoSQL database HBase is based on the princi-
ples of Google’s BigTable [15] which is designed to operate
on petabytes of data across thousands of commodity servers.
For computational tasks Hadoop implements MapReduce,
originally designed by Google [16].

Figure 1 illustrates the overall architecture of the web
platform of which Apache Hadoop is a central component.
Another important part of the system is the Sesame frame-
work [17] which provides means to store and query semantic
descriptions and do server side reasoning. In particual, this
enables RoboEarth to handle queries specified with the
Sesame RDF Query Language (SeRQL) [18] to select the
right data sets and improve the capabilities of server side
services and data processors.
With server side services and data processors RoboEarth
enables robots to access the computational power of the
web platform. RoboEarth provides well defined REST-style
interfaces to its services in order to trigger specific computa-
tions, e.g. the 2D map extraction as described in this paper.
The data processors work in the background to derive new
knowledge of uploaded data to enrich the stored data sets.
A web interface provides the necessary tool to access the
data stored in RoboEarth and its services both for human
beings and for robots. The interface for robots complies
with the concept of the stateless REpresentational State
Transfer (REST) [19]. This enables robots to communicate
with RoboEarth through well defined HTTP request without
additional overhead.

B. Integration of the 2D map extraction service

The 2D map extraction service is implemented as a server
side service. Data get exchanged in the JavaScript Object
Notation (JSON) format [20] using a REST-style interface.
JSON is a standardized text-based format for human-readable
data interchange. To query the map extraction service the
user has to send an HTTP POST request to the URL of the
service which contains the following data:

• The unified ID of an environment stored in RoboEarth
or an SeRQL query, which queries for the right envi-
ronment when the exact UID is unknown.

• The ID of the requesting robot’s semantic description
stored in RoboEarth, so that the map service can
analyze the hardware setup of the robot in order to
parametrize the 2D map extraction process. Alterna-
tively, the robot’s semantic description (SRDL file) can
be directly attached to the query, in case it is not stored
on RoboEarth, yet.

• The Uniform Resource Identifier (URI) of the robot’s
base laser scanner used for localization.

Once the query is received by RoboEarth, the requested
environment’s model is retrieved. It is checked whether the
data set already contains adequate 2D maps. If this is the case
the web service immediately returns the result. If RoboEarth
doesn’t find 2D maps which satisfy the requirements of the
robot, the 2D map extraction service is executed to generate
the corresponding maps. The newly generated maps will be
stored on the RoboEarth platform to serve future requests
and the result is returned to the requesting robot.

IV. ROBOT SELF-DESCRIPTION

A 2D map used for laser-based localization is obviously
bound to the height above ground of the laser device.
Therefore, its height coordinate is a needed parameter for
map generation. In order for the whole process to run
automatically after being triggered by a robot’s request, the
robot has to provide a model of itself, that allows to infer
the pose of the device.
The projection of a 2D map out of a given 3D map, which
is to be used for navigation planning, takes into account
the bounding box of all of the robot’s physical parts. As
a prerequisite their dimensions have to be represented in the
robot’s self-description as well.
Kinematic models for many robots have been created using
the Unified Robot Description Format, which was chosen to
serve as a basis for the automatic generation of a semantic
robot description, that is used by the robot as a parame-
ter for requesting maps for localization and navigation at
RoboEarth. The semantic robot model has to be encoded in
the Semantic Robot Description Language, which allows to
perform logical reasoning on the encoded knowledge.

A. Unified Robot Description Format (URDF)

The Unified Robot Description Format (URDF) is an XML
dialect used to describe the physical layout of a robotic
platform. It mainly consists of unordered lists of links and
the joints connecting them [21]. In this context links are the
robot’s pysical parts of which it is composed. This leads to
a tree structure with exactly one root element allowed. For
every robotic link a collision element can be defined that
holds a geometric entity, which encases the related link and
is used for collision detection.
There are other optional elements not mentioned here, as
they are not important to the system described in this paper.

B. Semantic Robot Description Language (SRDL)

Like the RoboEarth language [3] [22], that is used to de-
scribe abstract tasks, object models and environment maps in
the RoboEarth context, the Semantic Robot Description Lan-
guage (SRDL) [23] [24] uses the Web Ontology Language
(OWL) [25] to define its vocabulary. Its purpose is to provide
a common language for talking about robot properties and
capabilities. The needed knowledge about the robot’s config-
uration in order to successfully request environment maps for
localization and navigation from RoboEarth can be generated
from a robot’s URDF file. For this purpose an automatic
converter tool was developed as part of the work presented in
this paper. Listing 1 shows a small part of the Amigo robot’s
semantic description covering a joint connecting the robot’s
base and its base laser scanner. The spatial displacement
between the two is specified by a 3D rotational matrix
called RotMatrix3D 15. Object property orientation links
the matrix with the joint while object property relativeTo
indicates that the matrix contains the relative displacement
related to another matrix called RotMatrix3D 5. This is the
matrix of the directly preceding joint.

Listing 1. Excerpt of SRDL description of an Amigo robot showing the
joint, which connects the Amigo robot’s base with its base laser scanner.
The orientation of the base laser scanner is defined by an instance of
a RotationMatrix3D called RotMatrix3D 15, which has to be interpreted
relative to its parent joint as indicated by object property relativeTo.

<owl:NamedIndividual rdf:about="&rb;
amigo_base_laser_joint">

<rdf:type rdf:resource="&srdl2-comp;FixedUrdfJoint"/>
<srdl2-comp:urdfName>base_laser_joint</srdl2-comp:

urdfName>
<srdl2-comp:precedingLink rdf:resource="&rb;amigo_base"/>
<srdl2-comp:succeedingLink rdf:resource="&rb;

amigo_base_laser"/>
<knowrob:orientation rdf:resource="&rb;RotMatrix3D_15"/>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="&rb;RotMatrix3D_15">
<rdf:type rdf:resource="&knowrob;RotationMatrix3D"/>
<knowrob:relativeTo rdf:resource="&rb;RotMatrix3D_5"/>
<knowrob:m00 rdf:datatype="&xsd;double">1.0</knowrob:m00>
<knowrob:m01 rdf:datatype="&xsd;double">0.0</knowrob:m01>
<knowrob:m02 rdf:datatype="&xsd;double">0.0</knowrob:m02>
<knowrob:m03 rdf:datatype="&xsd;double">0.3</knowrob:m03>
...
<knowrob:m33 rdf:datatype="&xsd;double">1.0</knowrob:m33>
</owl:NamedIndividual>

V. MAP GENERATION

The process of generating 2D maps out of a 3D map
obviously requires a 3D map of the requested environment to
be present in the RoboEarth database. At this point in time
the RoboEarth map service supports Octomaps as a source
for 3D map data. The 3D octomap might have been uploaded
by a robot with 3D perception capabilities, e.g. using a tilting
laser scanner or a Kinect sensor. One can also imagine to
manually pre-create 3D maps.
There are two kinds of maps the RoboEarth map service can
generate. First, a 2D map used for localization and second,
a 2D map used for navigation planning.

A. Octomap

Octomaps are 3D occupancy grid maps [26]. They are
composed of cubic grid cells that are arranged in an octree
structure, so every cell has exactly eight succeeding cells
that make up the same volume compared to their parent cell.
Child cells only have to be initialized, when there was a
perception covering the corresponding area. For every cell
a probability value is given that can be interpreted as being
free, occupied or unknown. By investigating the leafs of the
tree, it is possible to run through the volume of the mapped
environment.

B. Localization Map

A localization map is used by the robot to determine its
position within the mapped environment. By providing a
service for retrieving the localization map, RoboEarth spares
the robot the effort of exploring the environment itself and
enables the robot to get started with its tasks right away.

Apart from a 3D map for the requested environment the
RoboEarth map service expects two arguments: one is the
robot’s semantic self-description, which has to be encoded
in SRDL and can be serialized into an OWL file, and the
other one is the Uniform Resource Identifier (URI) of the
laser scanner the robot uses for localization. The URI refers
to an OWL individual, which is part of the semantic robot
description. Listing 2 shows an excerpt of the robot’s self-
description containing the robot instance and two of the
robot’s links. In particular, these are the first and the last
links in the chain of connected links from the root element of
the tree-like structure to the link, which represents the base
laser scanner. For retrieving the pose of the laser scanner
all intermediate joints in this chain have to be considered,

Listing 2. Excerpt of SRDL description of an Amigo robot showing
the robot instance amigo robot1, the root link instance amigo base link,
which is referenced by the robot instance, and the laser scanner instance
base laser scanner.

<owl:NamedIndividual rdf:about="&rb;amigo_robot1">
<rdf:type rdf:resource="&rb;amigo"/>
<srdl2-comp:succeedingLink rdf:resource="&rb;

amigo_base_link"/>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="&rb;amigo_base_link">
<rdf:type rdf:resource="&srdl2-comp;UrdfLink"/>
<srdl2-comp:urdfName>base_link</srdl2-comp:urdfName>
<srdl2-comp:succeedingJoint rdf:resource="&rb;

amigo_base_link_joint"/>
<srdl2-comp:succeedingJoint rdf:resource="&rb;

amigo_base_plate_joint"/>
</owl:NamedIndividual>

...

<owl:NamedIndividual rdf:about="&rb;amigo_base_laser">
<rdf:type rdf:resource="&srdl2-comp;UrdfLink"/>
<srdl2-comp:urdfName>base_laser</srdl2-comp:urdfName>
<srdl2-comp:succeedingJoint rdf:resource="&rb;

amigo_lasertop_joint"/>
<srdl2-comp:succeedingJoint rdf:resource="&rb;

amigo_logo_joint"/>
</owl:NamedIndividual>

Fig. 2. 3D Octomap (left) and corresponding 2D slice (right) taken out of
the Octomap at the height of the robot’s base laser scanner (approximately
30cm above ground). The exact height is automatically inferred from
the robot’s self-description , which is encoded in the Semantic Robot
Description Language (SRDL).

because the joints’ rotational matrices encode the relative
displacement to the directly preceding joint (see listing 1).
By multiplying the joints’ matrices in the same order the
joints are connected with, starting from the robot’s root link,
the pose of the laser scanner is computed.
The height component of the calculated pose is used to deter-
mine those leafs of the 3D Octomap’s octree, which represent
the grid cells, that make up the plane scanned by the laser
scanner. Each cell encodes an occupancy probability, which
is discretized into the three states of free, occupied and
unknown occupancy according to a threshold value. Finally,
the generated map is saved to a Portable Graymap (PGM)
image file and corresponding meta data are stored in a YAML
file. The generated maps are presented to the robot as regular
results of its initial query.

C. Navigation Map

The automatic generation of 2D maps is triggered if
a robot requests them from RoboEarth and they are not
available yet. As a requirement there must be a 3D map
available in the RoboEarth database that covers the requested
environment. The robot will also receive the 3D map as part
of its query’s result. It could directly use 3D navigation
algorithms and eventually update the 3D map stored in
RoboEarth. But if the robot lacks the needed algorithms or
computational power it can rely on the generated 2D map
intended to be used for path planning and navigation.
The advantage of generating this special kind of 2D oc-
cupancy grid map is that it takes potential obstacles into
account, which cannot be sensed by a base laser scanner. Sit-
uations, when such a laser scans between the legs of tables,
chairs or beds might lead to sub-optimal path planning and
could even cause unwanted collisions with upper tabletops
or similar superstructures. The left side of figure 3 depicts
a 2D map as used by a base laser scanner. The right part
shows the projected 2D map that factors obstacles in, which
have been found through 3D perception and could interfere
with the robot’s intentions.

The robot’s self-description that has to be sent as an
argument of the map request is analyzed to determine the
overall bounding box of the robot’s physical parts. Having

Fig. 3. Extracted 2D slice used for localisation (left) and projected 2D
map used for navigation planning (right). The projection’s parameters are
determined by the robot’s overall size as specified in its self-description.
The highlighted regions show that a localisation map built from a base
laser scanner’s sensor data might miss certain obstacles. E.g. a base laser
scanner might only sense the legs of a table but miss the tabletop. The
projected map reflects the tabletop as an obstacle.

identified the lower and upper height coordinates of the
robot’s overall dimensions, they are fed to the map extraction
tool. It identifies the significant cells of the Octomap’s
3D grid within the robot’s height and performs a simple
algorithm to project the 3D information down to 2D.
For every grid cell in the resulting 2D map, all of the
Octomap’s cells that represent the vertically elongated area
around this location are examined. The state is defined
through comparing a threshold value with the maximum
occupancy propability found and is set to one of the three
states free, occupied or unknown occupancy
The generated map is serialized into a file conforming to
the Portable Graymap format. Meta data are stored into
an accompanying YAML file. The newly generated map
is presented as a result to the requesting robot along with
all other map types that might be available for the specific
environment.

VI. EXPERIMENT

The RoboEarth map service was implemented for an
internal workshop of the RoboEarth project, which was
held at the Technical University of Munich, Germany, in
February 2012, where a PR2 robot and the Amigo robot [27]
were used to autonomously execute a previously unknown
task in an unknown environment sharing knowledge using
the RoboEarth platform. Figure 4 shows the two robots
performing their task.
In a mock-up hospital room, the PR2 was ordered to serve a

drink to a patient, who was resting in a bed. At the beginning
the drink was inside of a closed cabinet. A semantic map
revealed the most likely location of the bottle. So the PR2
had to open the cabinet’s door while learning its articulation
model. After successfully doing so the PR2 updated the
cabinet’s model by linking the articuation model. It shared
the newly annotated model through RoboEarth.
The Amigo robot had to repeat the same task in a similar
but slightly different environment. As Amigo’s hospital room
featured the same cabinet it could accomplish the task
without having to learn the articulation model again.
In both cases a 3D Octomap of the mock-up hospital room

Fig. 4. A PR2 and an Amigo robot performing the same serve drink task
in similar mock-up hospital rooms at two different locations. Both robots
re-use knowledge stored in RoboEarth and use its map service for instantly
being able to localize and navigate.

was created before. For one room a tilting laser scanner was
used to build the 3D map, for the other room a Kinect sensor
was used. Although the 3D map built from the tilting laser
scanner was more accurate than the one from the Kinect
sensor, the latter still could be used by the RoboEarth map
service to generate 2D occupancy grid maps for the Amigo
robot to successfully localize and navigate in the hospital
room.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper we presented the RoboEarth map service,
which is part of the RoboEarth platform. It can be freely
accessed using HTTP commands and the World Wide Web
and it also provides a human-friendly interface1. RoboEarth’s
map service assists robots with localizing and navigating
in unknown environments. Robots can query RoboEarth for
maps of a specific environment and receive all available
maps. If a map for localization or navigation is missing,
the RoboEarth map service automatically generates them
by taking the robot’s configuration into account and using
3D maps, if available. The robot’s configuration has to be
contained in a semantic self-description, which itself could
be automatically converted from an URDF file. The whole
system was tested in a real world experiment and proved its
feasibility and usefulness.
Parts of the RoboEarth system are available in the RoboEarth
stack as open source ROS packages [28]. They can be
accessed at the public RoboEarth SVN repository2. The 2D

1http://api.roboearth.org
2https://ipvs.informatik.uni-stuttgart.de/

roboearth/repos/public

http://api.roboearth.org
https://ipvs.informatik.uni-stuttgart.de/roboearth/repos/public
https://ipvs.informatik.uni-stuttgart.de/roboearth/repos/public

map extraction tool used by the RoboEarth map service
is also available inside of a ROS wrapper package called
re 2dmap extractor.

B. Future Work

In order to overcome limitations of the RoboEarth map
service, we want to alter the semantic robot model to become
a more dynamic representation that reflects changes in the
robot’s current state. For instance, if a robot has a raisable
torso, the current state should be part of the semantic model,
so that it would be possible to reason about it. As a result
a map for navigation could be updated if it proves to be
necessary.
This would help to react on changes on the client side. But
we also want to increase flexibility on the server side. For this
reason a subscribable notification mechanism that informs
robot’s on changes on the 3D map data has to be created.
This again would allow for updating the local maps, which
are being used by the robot.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Union Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement number
248942 RoboEarth.

REFERENCES

[1] O. Zweigle, R. van de Molengraft, R. D’Andrea, and K. Häussermann,
“RoboEarth: connecting robots worldwide,” in Proceedings of the
International Conference on Interaction Sciences: Information Tech-
nology, Culture and Human. ACM, 2009, pp. 184–191.

[2] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. Montiel, A. Perzylo et al.,
“Roboearth,” Robotics & Automation Magazine, IEEE, vol. 18, no. 2,
pp. 69–82, 2011.

[3] M. Tenorth, A. Perzylo, R. Lafrenz, and M. Beetz, “The RoboEarth
language: Representing and Exchanging Knowledge about Actions,
Objects, and Environments,” in IEEE International Conference on
Robotics and Automation (ICRA), Saint Paul, USA, 2012, accepted
for publication.

[4] S. Thrun, “Robotic mapping: A survey,” Exploring artificial intelli-
gence in the new millennium, pp. 1–35, 2002.

[5] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb,
and R. Chatila, “Autonomous rover navigation on unknown terrains:
Functions and integration,” The International Journal of Robotics
Research, vol. 21, no. 10-11, pp. 917–942, 2002.

[6] P. Bellutta, R. Manduchi, L. Matthies, K. Owens, and A. Rankin,
“Terrain perception for demo iii,” in Intelligent Vehicles Symposium,
2000. IV 2000. Proceedings of the IEEE. IEEE, 2000, pp. 326–331.

[7] P. Allen, I. Stamos, A. Gueorguiev, E. Gold, and P. Blaer, “Avenue:
Automated site modeling in urban environments,” in 3-D Digital Imag-
ing and Modeling, 2001. Proceedings. Third International Conference
on. IEEE, 2001, pp. 357–364.

[8] M. HEBERT, M. DEANS, D. HUBER, B. NABBE, and N. VAN-
DAPEL, “Progress in 3-d mapping and localization,” in International
symposium on intelligent robotic systems, 2001, pp. 145–154.

[9] C. Brenneke, O. Wulf, and B. Wagner, “Using 3d laser range data
for slam in outdoor environments,” in Intelligent Robots and Systems,
2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Con-
ference on, vol. 1. IEEE, 2003, pp. 188–193.

[10] “A-star social robotics laboratory, singapore (asoro),” http://www.
asoro.a-star.edu.sg/research main.html.

[11] “Nao robot,” http://www.aldebaran-robotics.com/.
[12] R. Arumugam, V. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F.

Kong, A. Kumar, K. D. Meng, and G. W. Kit, “Davinci: A cloud
computing framework for service robots,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on, may 2010, pp. 3084
–3089.

[13] B. Schießle, K. Häussermann, and O. Zweigle, “Deliverable D6.1:
Complete specification of the RoboEarth platform,” Tech. Rep., De-
cember 1, 2010, http://www.roboearth.org/wp-content/uploads/2011/
03/D61.pdf.

[14] A. C. Murthy, C. Douglas, D. Cutting, D. Das, D. Borthakur,
E. Collins, E. Soztutar, H. Kuang, J. Homan, M. Konar, N. Daley,
O. O’Malley, P. Hunt, R. Angadi, S. Agarwal, K. Shvachko, M. Stack,
T. W. N. Sze, T. Lipcon, T. White, and Z. Shao, “Apache Hadoop,
a framework for reliable, scalable and distributed computing,” http:
//hadoop.apache.org.

[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” in OSDI’06: Seventh
Symposium on Operating System Design and Implementation, 2006.

[16] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in OSDI’04: Sixth Symposium on Operating System
Design and Implementation, 2004.

[17] openRDF.org, “Sesame,” 2007. [Online]. Available: http://www.
openrdf.org/

[18] J. Broeskstra and A. Kampman, “Serql: A second generation rdf query
language,” SWAD-Europe Workshop on Semantic Web Storage and
Retrieval, pp. 13–14, 2003.

[19] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[20] D. Crockford, “RFC4627 - The application/json Media Type for
JavaScript Object Notation (JSON),” http://www.ietf.org/rfc/rfc4627.
txt?number=4627, July 2006.

[21] W. Garage, “XML robot description format (URDF),” http://www.ros.
org/wiki/urdf/XML, accessed March 10, 2012.

[22] M. Tenorth and M. Beetz, “Deliverable D5.2: The RoboEarth Lan-
guage - Language Specification,” Tech. Rep., August 02, 2010, http:
//www.roboearth.org/wp-content/uploads/2011/03/D52.pdf.

[23] L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot descrip-
tion languages,” in IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May, 9–13 2011.

[24] M. Tenorth, “SRDL2 Tutorial,” http://www9.informatik.tu-muenchen.
de/kb/wiki/index.php/SRDL2 Tutorial, accessed March 10, 2012.

[25] W3C OWL Working Group, “OWL 2 Web Ontology Language
Document Overview,” W3C, W3C Recommendation, Oct. 2009, http:
//www.w3.org/TR/2009/REC-owl2-overview-20091027/.

[26] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems,” in Proc. of the ICRA 2010 Work-
shop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, Anchorage, AK, USA, May 2010, software available at
http://octomap.sf.net/.

[27] E. U. o. T. Control Systems Technology Group, “AMIGO specifi-
cations,” http://www.roboticopenplatform.org/wiki/AMIGO, accessed
March 10, 2012.

[28] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in ICRA Workshop on Open Source Software,
2009.

http://www.asoro.a-star.edu.sg/research_main.html
http://www.asoro.a-star.edu.sg/research_main.html
http://www.aldebaran-robotics.com/
http://www.roboearth.org/wp-content/uploads/2011/03/D61.pdf
http://www.roboearth.org/wp-content/uploads/2011/03/D61.pdf
http://hadoop.apache.org
http://hadoop.apache.org
http://www.openrdf.org/
http://www.openrdf.org/
http://www.ietf.org/rfc/rfc4627.txt?number=4627
http://www.ietf.org/rfc/rfc4627.txt?number=4627
http://www.ros.org/wiki/urdf/XML
http://www.ros.org/wiki/urdf/XML
http://www.roboearth.org/wp-content/uploads/2011/03/D52.pdf
http://www.roboearth.org/wp-content/uploads/2011/03/D52.pdf
http://www9.informatik.tu-muenchen.de/kb/wiki/index.php/SRDL2_Tutorial
http://www9.informatik.tu-muenchen.de/kb/wiki/index.php/SRDL2_Tutorial
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://octomap.sf.net/
http://www.roboticopenplatform.org/wiki/AMIGO

	INTRODUCTION
	Related Work
	RoboEarth Web Platform
	General architecture of RoboEarth
	Integration of the 2D map extraction service

	Robot Self-Description
	Unified Robot Description Format (URDF)
	Semantic Robot Description Language (SRDL)

	Map Generation
	Octomap
	Localization Map
	Navigation Map

	Experiment
	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	References

