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Abstract— In order to be able to replace a human operator,
a robotic manipulation system needs to deal with a variety of
possible actions. These actions may be more or less constrained
in their motion profile and in the accuracy of the transport
goals. The robotic system can make use of some of this
variation to simplify the control to improve the efficiency of the
generated motion. Nevertheless, the human’s intention behind
the manipulation may not change. We introduce the Elastic
Power Path to optimize paths with respect to efficient control
in the context of abstractly represented tasks.

Our experiments show, that the proposed Elastic Power Path
is an efficient method to achieve this aim. The magnitude and
the number of turnarounds of the accelerations along the path
are significantly reduced.

I. MOTIVATION

A human, who repeats an action, does usually not use the
same paths all the time, but a variety of paths. However,
the human has a certain intention regarding the action. This
intention is not changing during the repetitions. It can be
encapsulated in the characteristic properties of an abstract
task representation. When a robotic system is supposed to
perform a task instead of the human, it needs to consider
the characteristic properties of the task. At the same time,
the system can make use of the freedom in planning, since
it is not restricted to a certain path. A variety of paths
fulfilling the characteristic properties are possible. Of course,
it is desirable to select the most efficient one to enable an
easy and efficient control. Furthermore, energy can be saved
and the strain on the hardware can be reduced. Hence, each
joint of the robot should move slowly and smoothly. Abrupt
turnarounds of the acceleration should be avoided. But how
should the path look like to support efficient dynamics?

To sum up, we want to make use of the freedom in
planning which comes along with the abstract representation
of tasks. We want to optimize the path with respect to
efficiency in control.

We introduce the Elastic Power Path for this purpose. In
analogy to an elastic band, the Elastic Power Path has a cer-
tain elasticity. When an elastic band is stretched, additional
energy is required. In the context of efficiency, we want to
minimize this additional energy. The less stretched the band,
the closer desired optimum is. This depends, of course, on
the elasticity of the band. Analogously to an elastic band, the
Elastic Power Path can be stretched and relaxed. Its elasticity
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Fig. 1. Different path configurations are shown for a manipulation between
two areas (yellow). Which path is the most efficient one with respect to
control?

depends on the dynamics of the robot along the path. The
more efficient the dynamics, the closer the Elastic Power Path
is to its optimum. Our aim is an optimal path with respect
to efficient dynamics. We measure the required power in the
style of a hiker climbing up and down hills. The required
power is increasing, if more hills have to be climbed or if
higher hills have to be climbed. The speed and acceleration
profiles play an important role regarding the power. In the
context of path optimization for a manipulator, we focus on
the speed and acceleration of the joints. The less often the
direction of the acceleration is reversed and the smaller its
magnitude, the less power is needed.

It is important to point out, that we do not analyze all
possible configurations of the robot in the entire workspace.
The concept of the Elastic Power Path allows an efficient
optimization for the desired task: Just promising configura-
tions of the robot are considered during the optimization.
Moreover, the optimization does not depend on a specific
manipulator structure. It is not necessary to find appropriate
joints in the manipulator structure for each (sub-)motion.

We presented already an analysis tool, which uses the ab-
straction of the human actions to generate paths with efficient
motion profiles [1]. The comparison of a robot’s dynamics
for different paths showed, that certain path properties are
preferred to support efficient control. Furthermore, we ob-
served, that the intuitive solution did not necessarily agree
with the results optimizing for efficiency. This shows, that
it is worth to investigate in a concept for path optimization
with respect to efficient control.

We build on the concept of Functionality Maps [2] which
represent observed manipulation tasks in an abstract manner.
Different properties of manipulation tasks are stored there,
as, e.g., the type of manipulation or characteristic areas (Lo-
cation Areas), which are start or end points of manipulations.

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

978-1-4673-5642-8/13/$31.00 ©2013 IEEE 1268



The paper is structured as follows: After an overview of
the related work, the approach is presented. In the approach,
the elasticity of the path is explained first. Afterward, the
Elastic Power Path is introduced. The description of the
optimization of the path is the last part of the approach. The
data, the implementation and the results of our experiments
are described thereafter. We end with conclusions.

II. RELATED WORK

It is important to point out, that we do not aim to search
a path (e.g., [3], [4]). We want to optimize a path of an
abstractly represented task with respect to efficient control.

Path optimization has been done with respect to different
criteria. For example, points on the path were optimized
to increase the distance to obstacles [5]. Kinematics sin-
gularities were considered in [6]. Smith et al. proposed an
optimal path planning for surveillance with temporal-logic
constraints [7]. Other authors include dynamics in the opti-
mization process. In [8], the authors dealt with the compli-
cated dynamics of large space manipulators. Rieswijk et al.
incorporated actuator and jerk constraints in [9].

If we want to optimize the path with respect to efficient
control, a path optimization with respect to a minimal
distance between the start and end points in 3D space could
be an intuitive solution. As we have shown in previous
experiments [1], the shortest path is not necessarily the
most efficient one with respect to efficient dynamics. Hence,
we propose the Elastic Power Path to optimize the path
configuration with respect to efficient control.

The name of our concept “Elastic Power Path” might
cause an association with the “Elastic Strip Framework” [10],
especially in the context of path planning. Both concepts
have the elasticity of the path in common. However, the
aims are different. We want to use the elasticity of the
path to improve the efficiency in control. In [11], [12], a
minimization of energy (the instantaneous kinetic energy of
the robot) is processed among others. A special Jacobian is
used there. In contrast, our optimization is independent of
any Jacobian J . Moreover, δx and δθ are unknown (e.g.,
in δx = J(θ)δθ). Furthermore, we use a global optimization
method to overcome local minima. The aim of our path op-
timization is efficient control under the consideration of the
abstract characteristic properties of a desired manipulation.

III. APPROACH

We want to optimize a path for a manipulator with respect
to efficient dynamics. A clear definition about the used
variables and definitions is important. Therefore, we give a
short overview of them.

We describe the robotic system in the DH-convention
suggested by Denavit and Hartenberg [13] in the form shown
in [14]. The manipulator system consists of D joints.

Each joint d contributes a certain linear velocity vector vd

to the overall velocity v of the end-effector:

v =
∑

d

vd (1)

The linear velocity vd of a rotational joint d can be computed
by

vd = ωd × (Pee − Pd) (2)

with Pee as the position of the end-effector, Pd as the position
of joint d and ωd as the rotational velocity caused by joint d:

ωd = θ̇d · Ẑd (3)

with Ẑd as 3-dimensional unit vector of the z-axis of joint d
and θ̇d as magnitude of the angular rate (see, e.g., [14]).

The acceleration is labeled with 4vd, indicating its mean-
ing as difference between two consecutive speed values.

A. Elasticity of the Path

Our basic idea can be illustrated through an elastic band
with linear elasticity. The elasticity can be described through
Hooke’s law, similarly to a linear spring:

F = −k · x (4)

with x as the displacement from the equilibrium position, k
as the spring constant and F as the resulting force.

We use the elasticity of the path as illustration of our
idea, therefore, we assume that the displacement is within
the elastic range. In context of the elasticity of the path,
the spring constant k depends on the efficiency of the sys-
tem’s dynamics. The displacement x describes the distance
between the current configuration of the path points and their
ideal configuration.

Hook’s law of elasticity can be seen as optimization
function, which optimizes the system’s configuration with
respect to energy. In contrast to a real elastic band, the
optimization function of the Elastic Power Path is much more
complex. First, the elasticity depends on the efficiency of the
dynamics. Many local minima can occur in the optimization
function. Second, the ideal configuration of the path points,
resp., the displacement x is unknown. Therefore, the force F
cannot be computed directly. This results in a chicken-and-
egg problem: The displacement x is unknown, consequently,
the force F cannot be computed and vice versa.

B. The Elastic Power Path

Similarly to Hook’s law, we want to optimize the path
configuration of a manipulator system with respect to energy.
In our context, the energy is consumed by the manipulator
to perform the desired task. As motivated at the beginning
of the paper, we want to minimize the required energy.

The manipulator spends the energy to move its joints.
Hence, the movement of the joints should be performed
at smooth and low speed. This requires, in turn, a smooth
acceleration profile. The acceleration should not only be
smooth, but it should also have a low magnitude. Moreover,
zero crossings should be avoided, since a change of the
acceleration sign refers to a large energy loss. The movement
in the previous direction has to be decreased or even stopped
(braking), while a movement into the other direction has to be
built up. Moreover, braking means that energy is necessary to
stop the movement in the previous direction, which resulted
absurdly from an earlier investment of energy.
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We model the required energy in the style of a hiker
climbing up and down hills. Hence, we compute the power
the hiker would need to climb up and down all desired hills.
In general, the power P is computed through

P =
4E
4t

(5)

with time t and the kinetic Energy E as

E =
1
2
mv2. (6)

Using the derivative of the kinetic Energy E, the power P
can be computed by

P =
4E
4t

= m · v · 4v + 0.5 · (4v)2

4t
. (7)

In our case, the relevant acceleration is 4vd,i, which is
the maximal acceleration contributed by joint d within 4ti.
4ti is the required time to climb up and down hill i. The
hiker starts and ends his/ her tours at consecutive zero points
in the acceleration profile (pi and pi+1). Each 4vd,i reflects,
then, one peak in the acceleration curve. If the acceleration
curve proceeds below zero-level, it is mirrored on the zero-
level to ensure that all peaks are counted equally later. It is
important to point out, that the zero points do not change.
Fig. 2 illustrates this procedure.

The power Pd,i can be computed for each hill i in the
acceleration profile of joint d. However, the relevant part
of Pd,i is the fraction in our case, since m is always constant.
Hence, just a change of a variable in the fraction enables
a change of the magnitude of P . m just scales the result.
Consequently, we want to minimize the following Objective
Function Od for each joint d along all points pi on the path:

Od =
∑

i

2 · |vd,i| · | 4 vd,i|+ (4vd,i)2

4ti
. (8)

We use absolute values due to the described mirroring
of 4vd,i on the zero-level to create the hills. The absolute
values of vd,i are used to enable an equal counting of all
peaks. The original fraction has been multiplied with a factor
of two for esthetic reasons.

The overall Objective Function O is the sum of the
Objective Functions Od for each joint d:

O =
∑

d

Od =
∑

d

∑
i

2 · |vd,i| · | 4 vd,i|+ (4vd,i)2

4ti
.

(9)

C. Optimization of the Path

Our aim is to optimize the path in the context of an
abstractly represented task. As already mentioned in the Mo-
tivation, we want to build on the concept of the Functionality
Map [2]. This Map contains, e.g., the characteristic places
of manipulations (Location Areas) and information about the
type of the manipulation. Here, we make use of the Location
Areas and the distinction between a manipulation of a pushed
object on the table and a manipulation of a lifted object.
These characteristic properties have to be preserved during

Fig. 2. The figure shows the original acceleration profile in blue. The
negative values in the curve are mirrored at zero-level (dashed blue curve).
Each zero point (vertical magenta lines) forms a border of a4ti. The black
numbers are the original time steps. They refer to the time step x, when
the corresponding point px is reached along the path. It is clearly visible,
that the original time steps do not necessarily form the borders of 4ti in
the Objective Function O (Eq. 9).

Fig. 3. The original points of the path are depicted on the left (magenta
crosses). The corresponding spheres are visualized on the right in blue. Each
point is just allowed to move within its corresponding sphere.

the optimization. For example, the path of a pushed object
should be a path of a pushed object after the optimization of
the path, too. Similarly, the path of the lifted object should
still refer to a path of a lifted object.

Hence, we limit the possible configuration of the path. Of
course, the start and end point of a path are hardly allowed to
change. Moreover, points close to the start, resp., end point
should lead to the start, resp., end point. The closer a point to
the start or end point, the less freedom should be available for
the path configuration. Therefore, we introduce a sphere Sx

around each point px of the path. The sphere comprises the
area, within which the point px is allowed to be placed during
the optimization. The radius rx of the sphere Sx depends on
the position of px within the path. The further away px from
the start and end point, the larger rx.

If the original points px are uniformly distributed along
the path, the radius rx can be computed as follows:

rx =

{
C · x if x ≤ X

2 ,

C · (X − x+ 1) otherwise.
(10)

C is a constant basic distance, X refers to the overall number
of points along the path and x is the index of px. The index x
is increasing along the path and it starts with x = 1 at the
start point. Fig. 3 illustrates the spheres along a path. The
initial points on the half circle are just chosen to ensure a
path for a lifted object. The final points px do not need to
stay on a circle, since they can be placed arbitrarily within
each sphere Sx. In the case of a pushed object, we have to
ensure, that each point stays at the original height above the
plane on which the object is pushed. Therefore, the sphere Sx
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Fig. 4. Data set I (left) and II (right): The lines/ curves between the blue
Location Areas refer to trajectories of lifted objects (red) and trajectories of
pushed objects (green). The robot’s base positions are symbolized in yellow.

is reduced to a circle at the desired height above the plane.

IV. EXPERIMENTS

Our experiments are based on a object manipulation
scenario. The used data consists of two data sets, which were
extracted in [2]. Both data sets are illustrated in Fig. 4.

A. Implementation

The implementation is done in C/C++. The stochastic
approach for global minimization was presented in [15]. We
use the implementation by Oliver Ruepp [16].

The manipulator consists of three rotational joints perpen-
dicular to each other (D = 3). All links have a length of
300 mm (DH-Parameter: d1, d2, a3)

The possible change of a position on the path is limited
to the corresponding sphere Sx. We allow each joint d to
change its position partially within the sphere. Hence, the
contributed part of a joint is limited to rx/D. The Jacobian
is used to transfer the allowed part rx/D to the configuration
space. This transferred allowed part gives us the new range,
within which the joints can be moved. The optimization
is processed within these new ranges. The constant basic
distance is chosen as C = D · 10.0 mm. This choice limits
the change of the start and end points, while allowing a large
search space for the points in the middle of the path. The
path consists of X = 5 points. We choose a relatively small
number of points, since we want to optimize the overall
path in a very short computation time. Intermediate points
can be computed after the optimization by a simple partial
movement of the joints if desired.

In order to keep the paths of pushed objects on the original
height ho above the plane, we add a residual Rx for each
point px to the Objective Function O:

Rx =

{
0 if ‖ho − hx‖ ≤ th ∨
A · ‖ho − hx‖ otherwise.

(11)

hx is the current height of the point px above the plane. We
introduce a tolerance th around the desired height ho. The
placement of points outside the region of the tolerance is
punished with a factor of A = 10.0. We use the normal
vector of the corresponding table plane to compute the
desired and current height of the points. Of course, Rx = 0
for objects which are not pushed during the manipulation.

Fig. 5. Result of the Objective Function, data set I. The figure shows
clearly, that the values of the Objective Function decrease from their blue
initial values to the orange final values after the optimization (push/ lifted
= pushed/ lifted object along the path, LA = Location Area).

The estimation of the inverse kinematics is also done
through the stochastic approach for global minimization
in [15]. The original path points are uniformly distributed
along a line (if the object is pushed) or along a half circle
which is positioned upright above the table (if the object is
lifted). We estimate the three best configurations for the start
point to position the manipulator as close as possible to the
desired start point. The path optimization is processed for all
three configurations. The best one is taken at the end.
Just the grasp has to be extremely precise (tolerance below
5 mm) in our application. Once the object has been grasped,
we can extend the tolerance. The points after the start point
are considered as reached by a certain configuration, if
the distance of the real end-effector position to its desired
position is smaller than a tolerance t. The points of data set I
are reached with a tolerance t of 50.0 mm. The tolerance had
to be extended to 75.0 mm for the data set II, to ensure, that
all end-effector positions are within the tolerance.
In our experiments, we want to compare the dynamics of
the robot along the original path and along the optimized
path. In order to show the performance of our system, we
need to determine configurations at the original points, which
should already be advantageous with respect to dynamics
and not arbitrarily. Hence, we determine just an arbitrary
start configuration of the manipulator and search for consec-
utive configurations which are close to their corresponding
ancestors along the path.

The tolerance th for the desired height above the table is
set to 5.0 mm. Similarly to the tolerance t, tolerance th had
to be extended to 25.0 mm for data set II, to ensure, that all
end-effector positions are within the tolerance.

B. Results

The overall results of the optimization are depicted in
Fig. 5 and 6. They show clearly, that a modification of the
path configuration leads a significant improvement of the
efficiency in dynamics in nearly all cases.

More details of the results are shown in Fig. 7-10. They
show the change of the acceleration peaks for each single
joint along the path. A look at the change of the acceleration
peaks is most of the times enough to see the improvement
after the optimization clearly (see, e.g., Fig. 7).

Just the optimization of the path of the pushed object
between Location Area (LA) 1 and 2 requires an additional
look at the change of the speed to see the improvement
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Fig. 6. Result of the Objective Function, data set II. The figure on the
bottom shows the same results as the figure on the top. However, the figure
on the bottom has a smaller data range on the vertical axis for a better
illustration of the smaller values. As is can be seen, most of the values can
be significantly reduced. This shows, that the modification of most of the
paths has a strong effect. Just one path (lifted object between LA 2 and 3)
can hardly be improved with respect to dynamics.

Fig. 7. Acceleration values per joint and per acceleration time step ax

along the path (in rad/s2). The acceleration time step ax refers to the
time between point px and point px+2. For each acceleration time step ax,
the acceleration values at the beginning and the end of the optimization are
shown (initial, resp., final values). The depicted acceleration values are the
4vd,i values which are relevant for the final Objective Function O (Eq. 9)
at their time of occurrence x. Hence, the peaks of the hills in the acceleration
profile are shown. The acceleration peaks of the path for the pushed object
between Location Area (LA) 1 and 2 show a significant reduction of the
acceleration of the third joint at a2 (top figure). Moreover, the blue peak of
the acceleration at a1 is not existing any more after the optimization. This
means, that the original hill is merged with another hill, in this case the
hill with the the peak at a2. If hills have been merged, an undesired zero
crossing has disappeared. Such a merge of hills is one of the desired aims
of our approach. Some of the depicted acceleration values are very small, so
that they are hardly visible (e.g., joint 2 on the top). Very desirable results
are shown on the bottom: Most of the peaks are clearly reduced.

Fig. 8. Acceleration values per joint and per acceleration time step ax (top),
similarly to Fig. 7 and the corresponding speed values (bottom). The
improvement of the peaks of the acceleration becomes just clear in the
comprehensive survey with the speed values. Instead of an acceleration
peak of the first joint at the beginning at a1, the peak is shifted to a2. This
is useful, since the corresponding speed value s2 is significantly smaller
than s1 (resp. the yellow final values). Hence, the result of |vd,i| · | 4 vd,i

in Eq. 9 has a smaller magnitude than the original one at initialization.

Fig. 9. Acceleration values per joint and per acceleration time step ax,
similarly to Fig. 7. Especially the peak of the joint 1 for the lifted object
between LA 1 and 2 is significantly decreased at a1. Therefore, the slightly
increasing peak of the same joint at a2 is an acceptable price to pay and
can be easily compensated in the overall result of the Objective Function.
All acceleration peaks of the other paths of lifted objects in data set II are
clearly reduced, too (not depicted).

(Fig. 8). Sometimes, an acceleration peak might be increased
slightly to enable a significant reduction of another peak as,
e.g., in Fig. 9. The paths of the pushed objects in data set II
are not only optimized with respect to dynamics, but also
the distance between the desired and the real height above
the table are improved (see Fig. 10 and 11).

The change of the path configuration itself is illustrated
in Fig. 12 for a path of data set I. It is clearly visible, that
the position of the points in the middle of the path has been
changed within a large radius (see Section III-C).

The runtime of the method and the stability of the
results are good. We want to achieve very accurate start
configurations with respect to the desired start position in
3D. Hence, we accept a relatively long runtime for the
estimation of a start configuration with about 20 seconds.
We use the stochastic optimization approach to be able to
compute several different start configurations and to be able
to apply the implementation independently of the build-up
of the robot. In general, any other procedure to estimate/
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Fig. 10. Acceleration values per joint and per acceleration time step ax,
similarly to Fig. 7. As it can be seen, nearly all of the acceleration peaks
along the paths of pushed objects in data set II are significantly reduced.
Additionally, the new points are also better positioned with respect to the
table plane than the original points, as Fig. 11 shows.

Fig. 11. Remaining residual (in mm) with respect to the table on which the
objects are pushed. The residual is shown for each point along the paths of
pushed objects in data set II. As it can be seen, the proposed optimization
method reduces also the remaining residuals along the path. As described,
the residuals are included in the Objective Function. This explains the large
magnitude of the values of the Objective Function in Fig. 6 for the paths
of the pushed objects in comparison to the paths of lifted objects.

compute the inverse kinematics could be used as well. The
optimization of the path itself took less than one second
per path. We optimize the paths of the three best start
configurations and take the best result after the optimization
(Section IV-A). About the half of the other two results is
just slightly worse than the corresponding best result (until
+1 in the result of the overall Objective Function). The
other half has clearly worse results (between +10 and +30 in
the result of the overall Objective Function). Since we use
the stochastic optimization approach to estimate the inverse
kinematics, a repetition of the experiments might lead to
slightly varying results. We repeat the experiments three
times, hardly any change of the results is observable.

To sum up, we achieve very desirable results in our
experiments, since the efficiency in control is significantly
improved most of the times.

V. CONCLUSION

We proposed a method for the optimization of path con-
figurations with respect to efficient control. The introduced
concept of the Elastic Power Path reflects the elasticity of the
path as well as the aim to minimize the necessary energy.

Fig. 12. Exemplary original path (blue) in comparison to the new points
(magenta) along the path Lifted LA 1-2, data set I. The possibility to change
the position of the middle point at a large extent is clearly used here.

The experiments show, that the number and the magnitude
of the peaks in the acceleration profile can be significantly
reduced to improve the efficiency. Hence, the system is able
to make use of the freedom in path planning which comes
along with the abstract representation of tasks.

In future work, further properties stored in the Function-
ality Map [2] can be included in the optimization. Moreover,
the influence of obstacle avoidance could be analyzed.
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