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Abstract— Robots are meanwhile able to perform several
tasks. But what happens, if one or multiple of the robot’s joints
fail? Is the robot still able to perform the required tasks? Which
capabilities of the robot get limited and which ones are lost?

We propose an analysis of manipulator structures for the
comparison of a robot’s capabilities with respect to efficient
control. The comparison is processed (1) within a robot in
the case of joint failures and (2) between robots with or
without joint failures. It is important, that the analysis can be
processed independently of the structure of the manipulator. The
results have to be comparable between different manipulator
structures. Therefore, an abstract representation of the robot’s
dynamic capabilities is necessary. We introduce the Maneu-
verability Volume and the Spinning Pencil for this purpose.
The Maneuverability Volume shows, how efficiently the end-
effector can be moved to any other position. The Spinning
Pencil reflects the robot’s capability to change its end-effector
orientation efficiently.

Our experiments show not only the different capabilities
of two manipulator structures, but also the change of the
capabilities if one or multiple joints fail.

I. MOTIVATION

Today, robots are able to perform different tasks as,
e.g., work in the kitchen. The structure of the used robots
can be very different, reaching from, e.g., a simple three
Degrees-of-Freedom (DoF) manipulator to complex systems
like humanoid robots. Hence, the robot’s capabilities can
vary strongly. Some of the robots might have extensive
capabilities, whereas others have just a limited ones. The
efficiency during the desired motion can be different as well.
In an ideal case, the robot moves smoothly and slowly. The
workload should be distributed equally among all joints.

Our aim is the comparison of different manipulator struc-
tures with respect to efficient control. We want to use one
approach which leads to a result that is independent of the
structure of the robot. At the same time, the change of the
manipulator’s capabilities should be analyzable if one or
several of its joints fail. Is the robot able to reach the desired
positions at all? Which capabilities of the manipulator remain
at which quality and which ones are lost?

Hence, we are interested in an abstraction of the robot’s
capabilities, which enables an inter-robot and intra-robot
comparison of the efficiency in dynamics. The possibly high
dimensionality of the manipulator structure has to be reduced
to a representation at a manageable dimensionality. Fig. 1
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Fig. 1. Analysis of manipulator structures under joint failure (light blue
circle: robot’s base): What happens, if, e.g., the red-marked second joint of
the blue manipulator fails? Is the robot still able to move the box as a task
might require? If yes, which effort is necessary? Can the robot still turn
the object? How would the yellow robot be affected under a similar joint
failure? Would it keep better capabilities than the first one?

illustrates an exemplary scene with two manipulators, which
are supposed to perform the same task under joint failure.

We introduce the Maneuverability Volume and the Spin-
ning Pencil as abstract representation of the robot’s capabil-
ities for the inter-robot and intra-robot comparison.
The Maneuverability Volume is a parallelepiped, which rep-
resents the robot’s capabilities to move efficiently into a set
of directions. The starting point of our idea is the following:
If a joint is moved by a fixed angular rate, it contributes
a certain velocity to the end-effector, which is represented
by a base velocity vector. The base velocity vectors of all
joints can be combined to the desired overall velocity of the
end-effector. Of course, it is desirable, that the base velocity
vectors point into significantly different directions to enable
an efficient motion into a large set of directions. Hence, the
vectors should span a large volume to cover a large area.
Moreover, the vectors are spanned by the fixed angular rate,
which is the same for all joints. Therefore, the magnitudes
of the base velocity vectors allow an easy comparison of
the efficiency of different joints. A joint which contributes
a vector of a large magnitude is more efficient than another
joint contributing a vector of a smaller magnitude.
The robot’s capability to change its end-effector position
efficiently is represented by the described Maneuverability
Volume. We want to be able to separately analyze the
robot’s capabilities to change the end-effector orientation
efficiently. In an ideal case, the robot is able to turn its end-
effector without changing its position. Otherwise, a change
of orientation requires also a correction of the position. For
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example, the robot could have to rotate an object without
changing the position (e.g., a jug needs to be turned to
fill coffee into a cup). We can imagine the axis of the
desired rotation as the rotation-axis of a spinning top. If an
undesired change in position comes along with the change
in orientation, we need to model it. We take the change in
position of the end-effector as the spinning top’s diameter.
A spinning top in form of a spinning pencil is desirable,
since the pencil reflects the advantageous thin shape of the
spinning top. Hence, we represent the robot’s capability to
change its end-effector orientation by the Spinning Pencil.

We are interested in the analysis of the manipulator
structure in a task-specific context. The representation of the
task is important to us, since it is the basis on which we work.
We want to use an efficient, abstract representation of a task.
Therefore, we develop the concept of Functionality Maps and
Location Areas in [1] further. We make use of the Location
Areas as representations of positions, where actions typically
start or end. In some areas, only simple tasks are performed.
These tasks can even be performed by a robot with limited
capabilities. In contrast, complex manipulations can take
place at other areas. Consequently, the task determines the
areas where manipulations are performed and the capabilities
which are required from the robot. For example, a Location
Area in a cupboard is used to place an object mainly
from one direction, which is the front. In contrast, complex
manipulations can be performed at a Location Area on a
table. The robot needs better capabilities on the table than
at the cupboard. The capabilities which are required by the
desired, abstract task need to be integrated into the analysis.

The paper is structured as follows: After an overview of
the related work, the approach is presented. In the approach,
the Maneuverability Volume and the Spinning Pencil are
described first. The Maneuverability Analysis under joint
failures follows afterward. The extension of the approach to
multiple Location Areas is the last part of the approach. The
implementation, the data and the results of our experiments
are described thereafter. We end with conclusions.

II. RELATED WORK

The Jacobian Matrix is often incorporated into the analysis
of manipulators. For example, the manipulability measure
in [2] is based on the determinant of the Jacobian Matrices.
Kim and Khosla [3] investigate further in the Jacobian as
dexterity measure of a manipulator. They introduce the mea-
sure of isotropy, which can be used to develop a manipulator
which is close to an isotropic configuration for a given posi-
tion in 3D space. Reachability and joint limits are considered
for the kinematic design of serial link manipulators in [4].

Asada [5] proposes a dynamic analysis of a manipulator’s
workspace based on a graphical representation of inertia
ellipsoids. Lee [6] compares manipulability ellipsoids and
manipulability polytopes. The Dynamic Capability Equations
in [7] describe the acceleration and force capabilities of a
robot at a particular configuration under the consideration
of the limitations of the manipulator’s motor torques. The

translational and rotational quantities are mapped into repre-
sentations of actuator torques with same units.

Dimensionality reduction techniques are presented for
different robotic applications, e.g., grasping. In [8], a dimen-
sionality reduction is used for hand-independent dexterous
robotics grasping. The spatial and temporal context of human
grasping actions is studied in [9].

In contrast to the described approaches, we aim to analyze
any arbitrary manipulator with respect to the change of the
efficiency of its dynamics under possible joint failures in
the context of an abstractly represented task. As already
described in the Motivation, we are interested in the inter-
and intra-robot analysis of the efficiency of the robot’s
motion, the variety of directions in which the end-effector
can be moved efficiently and the capability to change the
orientation of the end-effector without a change in position.
The manipulator can have an arbitrary number of joints.
Therefore, it could be highly redundant, too. It is important
to notice, that we do not aspire to model torque bounds
or something similar. The analysis of parallel manipulators
(e.g., [10]) is not our aim, we focus on serial link manipu-
lators.

III. APPROACH

We describe the robotic system in the DH-convention
suggested by Denavit and Hartenberg [11] in the form
shown in [12]. The orientation of the robot’s end-effector
is described as Z-Y-X Euler angles [12]. The overall number
of joints is N .

A. Maneuverability Volume

At a (reachable) position, the robot can move its end-
effector into a larger or a smaller set of directions depending
on the design and the current configuration. The content of
the set depends on the motion of each joint, since each joint i
contributes a certain linear velocity vector vi to the overall
velocity v =

∑
i vi of the end-effector. All vectors in this

paper are given in a global coordinate frame, if not labeled
otherwise. The linear velocity vi of a rotational joint i can
be computed by

vi = ωi × (Pee − Pi) (1)

with Pee as the position of the end-effector, Pi as the position
of joint i and ωi as the rotational velocity caused by joint i:

ωi = θ̇i · Ẑi (2)

with Ẑi as 3-dimensional unit vector of the z-axis of joint i
and θ̇i as magnitude of the angular rate (see, e.g., [12]).

If we consider a fixed angular rate θ̇fix for each joint i,
the magnitude of the rotational velocity ωi,fix is the same
for all joints, since Ẑi is a unit vector. The resulting linear
velocity is called base velocity di of a joint i. It depends on
the current configuration:

di = (θ̇fix · Ẑi)× (Pee − Pi) (3)

or
di = ωi,fix × (Pee − Pi) (4)
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Fig. 2. Parallelepiped (part K of the Maneuverability Volume): A robot
with three rotational joints is drawn in magenta. Its joints can turn around
the black dotted zi-axes. Each joint contributes one of the blue base velocity
vectors di, when it moves with the speed θ̇fix. E.g., the largest vector d1
is contributed by joint 1. The three blue base velocity vectors di span the
light blue/ light red parallelepiped. The red dot is the robot’s base.

A desired end-effector speed can be combined by the base
velocities:

v =
∑
i

vi =
∑
i

(gi · di) (5)

with a scalar gi. Of course, it depends strongly on the
vectors of the base velocity, whether and at which effort
a desired end-effector speed can be achieved. If low joint
speeds are desired, the base velocity vectors should have a
large magnitude (resulting in a small effort gi in Eq. 5).
Moreover, the vectors di (and their counterparts, pointing
in the opposite direction) should be perpendicular to each
other. A combination of the vectors di can, then, efficiently
reach any direction in space. At the same time, the robot is
further away from a singular configuration. Such a singularity
would be reached, if at least two vectors point into the same
direction.

Three base velocity vectors span a volume (paral-
lelepiped), which increases, when the vectors are rather
perpendicular to each other and when the magnitude of the
vectors is enlarged. A parallelepiped can be computed by a
triple product V = trip(d1, d2, d3) = (d1 × d2) · d2. The
parallelepiped K of three base velocity vectors is therefore:

K = trip(d1, d2, d3) (6)

An advantageous parallelepiped has a large value K.
Moreover, an evaluation of the maneuverability inde-

pendently of the length of the base velocity vectors di
is interesting, since we can ensure that the base velocity
vectors are perpendicular to each other as good as possible.
First, a normalization is executed: d̂l = dl

‖dl‖ . Afterward,
just the angles between the vectors are considered in the
parallelepiped L:

L = trip(d̂1, d̂2, d̂3) (7)

The combination of both parallelepiped K and L gives us
the desired measurement of maneuverability, which we call
the Maneuverability Volume mV :

mV = ωk · trip(d1, d2, d3) + ωl · trip(d̂1, d̂2, d̂3) (8)

with the weightings ωk and ωl to enable different priorities
of the desired properties. An examplary parallelepiped K is
illustrated in Fig. 2.

Fig. 3. Spinning Pencil. Two different 1-DoF manipulators are illustrated.
The thin black line in the blue Spinning Pencil shows the length and the
orientation of the pencil. Both pencils have the same length and point into
the same direction. The different magnitudes of the diameters are due to
the fact, that the end-effector on the left conquers a much larger distance
to change its orientation than the end-effector on the right.

The Maneuverability Volume can be spanned by three
vectors. If the robot has more than three joints, we com-
bine the base velocity vectors di to three final velocity
vectors di,f . We just need to check all combinations of the
vectors di to the final di,f to find the most advantageous
Maneuverability Volume. For example, six base velocity
vectors di should be combined to three final velocity vectors.
One final velocity vector d1,f can consist of one, two, three
or four different vectors di, so that the remaining two final
velocity vectors di,f consist of at least one vector di. Each
vector di can just be assigned to one of the final velocity
vectors di,f . Consequently, our analysis takes place in the
3D-space, where the manipulations takes actually place. A
projection to another space is not necessary.

In contrast to the traditional approach with the determi-
nant of a Jacobian, we are include in our Maneuverability
Volume (1) an additional emphasis on the desired 90° angle
between the base velocity vectors and (2) a new extension
to manipulators with more than three DoF.

B. Spinning Pencil

The next step is the analysis of a manipulator’s capability
to change its end-effector orientation efficiently. It is desir-
able, that the orientation can be changed around any axis
at the position of the end-effector, while the position of the
end-effector is not changing. For example, a jug needs to be
turned around a certain axis to fill a cup with coffee, while
the center of the jug should stay at its original position. As
already described in the Motivation, we imagine a spinning
top, which reflects these properties: The spinning top rotates
around a certain axis. In the case of a manipulator, the end-
effector can turn around one (or more) of its joint axis.
Depending on the robot’s configuration, a change of the
orientation can automatically and unpreventably result in an
undesired position change. The distance between the position
of the end-effector before and after the rotation is chosen as
the diameter of the spinning top. A small diameter is, of
course, desirable. Hence, we introduce the Spinning Pencil,
since the pencil reflects the small diameter. Fig. 3 illustrates
the principle of the Spinning Pencil.
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We want to analyze the robot’s capabilities to change the
orientation of its end-effector efficiently, while keeping the
desired position Pee. Therefore, we turn joint i by an angle γ.
In an ideal case, the end-effector stays at Pee independently
of the magnitude of γ. Otherwise, the end-effector moves
to a new position Pn,i. The euclidean distance between the
old position Pee and the new one Pn,i is labeled with ei =
Pn,i−Pee. We compute the mean µe and the variance σe of
all ei (all joints i), which should be small in an advantageous
Spinning Pencil.

Of course, the robot should be able to change the end-
effector’s orientation around any arbitrary axis running
through the original position Pee. However, the robot’s
capability to turn depends on the z-axes of its joints. Hence,
z-axes which point nearly in the same direction provide
almost the same axis for the change of orientation. The more
different the orientation of the z-axes, the more axes are
provided for the orientation change. In the ideal case, the z-
axes are perpendicular to each other. Therefore, we compute
the normalized z-axis eeẐi of each joint i in the frame of
the end-effector. Afterward, we analyze the angles between
the z-axes eeẐi.

Once again, we want to process the analysis in 3D space,
where the manipulations actually take place. Since the ma-
nipulator can be redundant, it might be necessary to analyze
more than three z-axes. Hence, we analyze the possible
combinations of z-axes. We compute the determinant of three
normalized axes, since it reflects the angles between the
axes: If all three axes are perpendicular to each other, the
determinant reaches its maximum of one. The smaller the
determinant, the less perpendicular the axes are to each other.
Therefore, we take a combination c of three z-axes eeẐi and
compute the determinant s1,c:

s1,c = det(eeẐc1,ee Ẑc2,ee Ẑc3) (9)

with c1, etc., as labeling of the three chosen z-axes eeẐi. The
determinant s1,c is computed for all n1 =

(
N
3

)
combinations.

All determinants s1,c are summed up and normalized with
the overall number of combinations n1:

s1 =
∑
c s1,c
n1

(10)

It is possible, that at least some z-axes lie in a plane. In
this case, the determinant in Eq. 9 becomes zero. Therefore,
we analyze the angle between two z-axes additionally. The
dot product is used for this purpose. Similarly to s1,c, we
compute the dot product s2,c for all combinations of two
z-axes:

s2,c =ee Ẑc1 ·ee Ẑc2 (11)

The results of s2,c are projected into the range of 0-90°. The
final s2 consists of the sum of all s2,c, which is normalized
with the total number of combinations n2 =

(
N
2

)
:

s2 =
∑
c s2,c
n2

(12)

The values of s1 and s2 should be large in an advantageous
case. In contrast, the mean µe and the variance σe should be

minimized. Therefore, we combine all parts of the Spinning
Pencil sP as follows:

sP = ω1 · s1 + ω2 · s2 + ω3 ·
1.0

µe + σe
(13)

with ωi as weighting of the respective property. All terms
of the sP should be large in an advantageous case. The
third term 1.0

µe+σe
is increasing, when the mean µe and the

variance σe are decreasing as desired.
In contrast to traditional approaches with the Jacobian, we

consider also (1) rotation axes lying in a plane and (2) the
undesired effect of a position change which can come along
with a change in orientation.

C. Maneuverability Analysis under Joint-Failures
Next, we want to analyze the remaining maneuverability

of a manipulator, if one or more of its joints fail. First,
we compute the original maneuverability. We combine the
Maneuverability Volume and the Spinning Pencil in the
Maneuverability Analysis MAl at Location Area l:

MAl = ωm ·mV + ωs · sP (14)

with a weighting ωm and ωs to enable different preferences
of both properties (sum of ωm and ωs equals 1.0).

After the computation of the original MAl, the Maneu-
verability Analysis is processed for the manipulator with the
broken joint. The manipulator with the broken joint has sim-
ply one DoF less than the original one. The DH-parameters
need just to be changed around the broken joint: A direct
transformation from the joint before the broken joint to the
joint after the broken joint is needed. The joint angle θb of
the broken joint b can be treated as a fixed parameter. We just
need to process the above Maneuverability Analysis for the
new manipulator, since it can be computed for manipulators
with any number of joints. Therefore, the procedure can also
be easily extended to a manipulator with multiple broken
joints.

D. Application on Multiple Location Areas
Up to now, we described the approach for one Location

Area. Most of the times, the robot has to be able to work at
multiple Location Areas. The requirements on the maneuver-
ability depend on the type of Location Area. Therefore, we
introduce a weighting ωl of each Location Area l depending
on the level of the required maneuverability. A high maneu-
verability requirement corresponds to a high weighting of
the Location Area.

The final objective function MA contains the Maneuver-
ability Analysis MAl of each Location Areas l:

MA =
∑
l

ωl ·MAl (15)

with the weighting ωl of Location Area l. The higher the
final value MA, the better the maneuverability

IV. EXPERIMENTS

The context of our experiments is a manipulation task. We
analyze the robot’s capabilities under the failure of none, one
or multiple joints.
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Fig. 4. Data set I (left) and II (right): The lines/ curves between the blue
Location Areas refer to trajectories of lifted objects (red) and trajectories of
pushed objects (green). The robot’s base positions are symbolized in yellow.

A. Data and Implementation

The implementation is done in C/C++. The estimation of
the inverse kinematics is done through a stochastic approach
for global minimization presented in [13]. We use the im-
plementation by Oliver Ruepp [14]. The data consists of two
data sets, which were extracted from observations of humans
in [1]. Both data sets are illustrated in Fig. 4.

We process the Maneuverability Analysis for two different
6-DoF manipulators. The first one is an arbitrary robot,
which has simply consecutive rotational joints perpendicular
to each other and all links have a length of 300 mm (DH-
Parameter: di, a5). The other manipulator is a widely known
Unimation PUMA 560. The robot’s base positions are shown
in Fig. 4. The orientation of the base is chosen in a manner,
such that the joint axis of the first joint is perpendicular to
the expected main plane of manipulation (e.g., table plane).

We use a fixed angular rate of θ̇fix = 1.0 rad to compute
the Maneuverability Volume. Moreover, we focus on the
parallelepiped K of the Maneuverability Volume (Eq. 8).
Therefore, it is prioritized with a weighting ωk = 0.8 in
contrast to ωl = 0.2. For the Spinning Pencil, the angle γ is
set to 180°, considering the maximally crossed distance in
the turn of a joint in the worst case. The weightings in Eq. 13
are chosen as ω1 = 1

12 , ω2 = 1
12 and ω3 = 5

6 , which leads
to an equal weighting of the first two terms and an emphasis
on the third term in the equation. The third term is important
to us, since it supports the desired thin Spinning Pencil.
We set a strong priority on the Maneuverability Volume
in the Maneuverability Analysis MAl with ωm = 0.75
and ωs = 0.25, since we prioritize the capability to move
the object in the manipulation experiment.

Concerning the weighting of the Location Areas, we
choose the following priorities. Characteristic area 2 in data
set I is chosen as the most important area with a weighting
of 0.5. It is located on the table and can, therefore, be used
for more, and also more complicated manipulations than
the other Location Areas. These act as places of storage
and have a weighting factor of 0.25. The weighting of the
Location Areas in data set II is related to the number of in-
and out-coming trajectories. The more in- and out-coming
trajectories, the higher the weighting.

B. Results

We perform experiments with no, one, two and three
broken joints. The end-effector is able to reach a desired
position, if the remaining distance between the desired and
the real position is smaller than a tolerance t. The remaining
distance is a city block distance p = pp + α · po with the
distance pp in 3D position (unit: mm) and the distance po
in orientation (unit: rad). The variable α is used to com-
pensate the different scales of pp and po (α = 300 in our
experiments). The tolerance t is set to 25 in the experiments
with no, resp., one broken joint. A higher tolerance t = 150
is necessary in the experiments with two or three broken
joints, in order to be able to reach the desired positions at all
before the remaining maneuverability can be analyzed. This
shows already, that the failure of multiple joints influences
the capabilities of the robots significantly, since the robot is
often not even able to reach a desired position. If several con-
figurations are possible at the desired position, we analyze
all of them and take the most advantageous one according
to the Maneuverability Analysis. Hence, our experiments are
not limited to the analysis of a single configuration.

At first, the Maneuverability Analysis is processed for the
entirely working robots in comparison to the robots with
one broken joint. As the results in Fig. 5 and 6 show, each
robot has joints, which are essential to reach the desired
positions. In contrast, a failure of another joint might hardly
affect the performance. It is interesting, that joint 4 of the
arbitrary robot is essential for both tasks. Moreover, a failure
of one of the last three joints of the PUMA hardly affects
the performance as in both data sets. In the following, we
focus on the discussion of data set II, since both robot’s
have approximately the same magnitude of the results in the
Maneuverability Analysis, what enables a better comparison
of the joint failures. An evaluation of data set I would be
done similarly.

As already mentioned, the tolerance for a hit is enlarged
for the experiments with two or three broken joints. This is
important for the discussion of the results for the robots with
two broken joints in Fig. 7. For example, Fig. 6 shows, that
the PUMA does not reach its desired position if joint 1 fails.
Therefore, the PUMA should not be able to reach its desired
positions if joint 1 and a further joint are broken. Due to the
necessary extension of the tolerance, the PUMA is able to
reach its desired position if, e.g., joint 1 and 4 are broken.
Fig. 7 shows the joints, which are essential even under the
extended tolerance.

Of course, we expect that a higher number of working
joints increases the magnitude of the result in the Maneuver-
ability Analysis. The comparison of the experiments with a
different number of broken joints confirms this widely (see
Fig. 8). One has to consider the larger tolerance for a hit in
the experiments with two or three broken joints. Therefore, it
is possible, that the robot can reach points in the additional
tolerance with new configurations. The new configurations
can be advantageous with respect to the Maneuverability
Analysis. Hence, the result of the Maneuverability Analysis
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Fig. 5. Complete manipulator vs. manipulator with one broken joint for
the arbitrary robot (left) and the PUMA (right), data set I. As it can be
seen, there are essential joints: If these joints fail, the robot cannot reach
the desired positions any more, since MA = 0 (joint 4 of the arbitrary
robot; joint 2, resp., 3 of the PUMA). The failure of others can reduce the
maneuverability (e.g., joint 3 of the arbitrary robot), whereas the failure of
some others hardly affects the maneuverability in our requirements (e.g.,
joint 4 of the PUMA). We have put an emphasis on the capability to move
the end-effector rather than to turn it in our requirements. Therefore, it is
quite consequential from the PUMA’s structure, that the failure of one of
the last three joints of the PUMA reduces the robot’s maneuverability less
significantly than the failure of the first three joints. The last three joints are
significantly closer to the end-effector than the first three (see link lengths
of the PUMA). Hence, the first three joints can be used to bridge a large
gap to a desired position, whereas the last three joints can hardly perform
this. It becomes clear, that especially the joint 2 and 3 are essential for the
PUMA to reach the desired positions in data set I.

Fig. 6. Complete manipulator vs. manipulator with one broken joint for
the arbitrary robot (left) and the PUMA (right), data set II. Similarly to
Fig. 5, the essential joints for the task become visible.

Fig. 7. Capability of the arbitrary robot (left) and the PUMA (right) to
reach the desired positions with two broken joints. As it can be seen, joint 2
and 4 is very essential for the arbitrary robot to reach the positions even
with the extended tolerance.

of the arbitrary robot with two broken joints can be better
than with one broken joint.

Fig. 9-13 show some of the resulting Maneuverability

Fig. 8. Average result of the Maneuverability Analysis with respect to the
number of broken joints for the arbitrary robot (left) and the PUMA (right).
Most of the times, a higher number of broken joints leads to a reduced
maneuverability as expected. The higher value of the Maneuverability
Analysis for the arbitrary robot with two broken joints can be explained
through the higher tolerance for the hit of a desired position in the
experiments with two or three broken joints.

Fig. 9. Simplified Maneuverability Volume mV (left) and Spinning
Pencil sP (right) for the arbitrary robot when all joints are working. The
Location Area at the top right has low priority, therefore, the disadvan-
tageous mV and sP at LA 3 does hardly carry weight. The correspond-
ing mV has just one long side and the sP is just spanned up in a plane.

Volumes and Spinning Pencils in a simplified, but more
illustrative manner. We just show the parallelepiped K as
Maneuverability Volume. The remaining parallelepiped L
puts an additional emphasis on the angles between the edges,
which are already illustrated in K. The illustration of the
Spinning Pencil is different from Fig. 3: Our aim is an
intuitive, compact interpretation of the figures. Hence, we
draw the joint axis of each joint. We wish that a large pencil
corresponds to a large value of the Spinning Pencil. There-
fore, we set the length of the pencil to β

ei
. A disadvantageous

large ei results, then, in a short pencil. We use β = 50000.
The change of mV and sP in the case of the failure of

one, resp., three joints of the arbitrary robot becomes clear
in Fig. 9-11. The robot is loosing its capabilities, especially
at the prioritized Location Areas at the bottom. Furthermore,
Fig. 11 shows the additional tolerance, which the robot needs
to reach the positions at all: The blue circles in Fig. 9 and
10 symbolize the original tolerance. For the purpose of a
better illustration, these circles are larger than the original
tolerance. The circles in Fig. 11 are proportionally enlarged
according to the additional tolerance, which the robot needs
to reach the desired position.

Fig. 12 and 13 illustrate results of the PUMA similarly
to the previous figures. Since the detail of both figures
is the same as for the figures of the arbitrary robot, the
larger magnitudes of the simplified mV and sP for the
PUMA become visible. Nevertheless, the final results of both
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Fig. 10. Simplified mV (left) and sP (right) for the arbitrary robot with
broken joint 1. At the important Location Areas at the bottom, the robot
can just reach strongly disadvantageous mV . Even though the sP is not
significantly affected by the joint failure, the bad mV at the bottom reduces
the possible maneuverability significantly as the statistics in Fig. 6 show.

Fig. 11. Simplified mV (left) and sP (right) for the arbitrary robot with
broken joint 4, 5 and 6. As the larger blue circles at the top Location Areas
already indicate, the robot has problems to reach the desired positions. At
the same time, the mV are reduced, especially at the bottom left, and the sP
are getting smaller.

Fig. 12. Simplified mV (left) and sP (right) for the PUMA when all
joints are working. The detail of Fig. 9 and this figure is the same to enable
an easier comparison, even though the mV and sP do not fit in this figure
any more.

Fig. 13. Simplified mV (left) and sP (right) for the PUMA with broken
joint 3. The robot is not able to reach the less important Location Areas at
the top any more, but it can position its end-effector at the prioritized areas
at the bottom. The sP is still relatively advantageous there.

entirely working robots in Fig. 6 are nearly the same for both
robots. This due to several reasons. First, multiple parts of
the PUMA’s Spinning Pencils point (nearly) into the same
direction. Second, we put an emphasis on mV , which is not
as large for the PUMA as its Spinning Pencils. Third, the
large Maneuverability Volumes at the top are located at a
less important Location Areas. Therefore, they influence the
final result less significantly.

We repeat the experiments with none, one and two broken
joints a second time to check the repeatability of the results.
The Stochastic Optimizer in the estimation of the inverse

kinematics can lead to slightly different configurations at the
desired positions. The repetition of the experiments show,
that these differences affect the magnitude of the results of
the Maneuverability Analysis just slightly with an average
difference of 0.005, including five outliers with a difference
higher than 0.02

V. CONCLUSION

We proposed an analysis of the maneuverability of dif-
ferent, arbitrary manipulators under possible joint failures
in task-specific contexts. We introduced the Maneuverability
Volume and the Spinning Pencil for the abstract representa-
tion of the efficiency of the robot’s capabilities. The results
of our experiments show, (1) whether the specified task areas
can be reached under joint failure, (2) the magnitude of
the reduction of the original maneuverability under joint
failure, (3) the essential joints for the desired task and (4)
the illustrative comparison of the capabilities of robots.

In future work, this approach can be extended to manip-
ulators with translational joints and more complex systems
like humanoid robots. Moreover, the presented approach can
be included into the advantageous design of manipulators
with respect to the efficiency in control.

REFERENCES

[1] S. Petsch and D. Burschka, “Representation of manipulation-relevant
object properties and actions for surprise-driven exploration,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Francisco, California, USA, 2011, pp. 1221–1227.

[2] T. Yoshikawa, “Manipulability of robotic mechanisms,” The Interna-
tional Journal of Robotics Research, vol. 4, no. 2, 1985.

[3] J.-O. Kim and P. K. Khosla, “Dexterity measures for design and
control of manipulators,” in IEEE/RSJ International Workshop on
Intelligent Robots and Systems, Osaka, Japan, 1991, pp. 758–763.

[4] C. J. J. Paredis and P. K. Khosla, “Kinematic design of serial link
manipulators from task specifications,” The International Journal of
Robotics Research, vol. 12, no. 274, pp. 273–287, 1993.

[5] H. Asada, “Dynamic analysis and design of robot manipulators using
inertia ellipsoids,” in IEEE International Conference on Robotics and
Automation, 1984, pp. 94 – 102.

[6] J. Lee, “A study of the manipulability measures for robot manipula-
tors,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 1997, pp. 1458–1465.

[7] A. Bowling and O. Khatib, “The dynamic capability equations: A new
tool for analyzing robotic manipulator performance,” IEEE Transac-
tions on Robotics, vol. 21, no. 1, pp. 115 – 123, 2005.

[8] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dimensionality reduction
for hand-independent dexterous robot grasping,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, San Diego,
California, USA, 2007, pp. 3270–3275.

[9] J. Romero, T. Feix, H. Kjellström, and D. Kragic, “Spatio-temporal
modeling of grasping actions,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Taipei, Taiwan, 2010, pp. 2103–
2108.

[10] K.-M. Lee and D. K. Shah, “Kinematic analysis of a three-degrees-of-
freedom in-parallel actuated manipulator,” IEEE Journal of Robotics
and Automation, vol. 4, no. 3, 1988.

[11] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices,” Journal of Applied Mechanics, pp.
215–221, 1955.

[12] J. J. Craig, Introduction to Robotics - Mechanics and Control. Prentice
Hall, 2005.

[13] C. Papazov and D. Burschka, “Stochastic global optimization for
robust point set registration,” Computer Vision and Image Understand-
ing, vol. 115, December 2011.

[14] O. Ruepp, “Recovery of structure and motion from monocular im-
ages under poor lighting and texture conditions,” Ph.D. dissertation,
Technische Universität München, 2012.

1961


