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Abstract

The design of complex systems in robotics requires modern engineering approaches
and intuitive task paradigms. Approaches based on teach-in concepts and textual
programming languages with steep learning curves result in long development cy-
cles that are not suitable for flexible and modular factory environments. Application
specialists require accessible robotics interfaces in order to create new custom solu-
tions compared to the expert knowledge in both domains that is currently required.
The removal of safety fences and the availability of light-weight robot structures
leads to the desire for direct interaction with a human operator and raises the issue
of advanced and multimodal command paradigms. Modularity, fault-tolerance, and
redundancy require easy integration of different sensor and actuator components as
well as fast replacement of similar devices.

This work introduces an instruction paradigm that goes beyond typical program-
ming interfaces and toward a more intuitive interaction style with a robot system.
A suitable system architecture and a general programming paradigm are necessary
design goals in such a concept. Motion planning algorithms can be used in order
to automate tasks such as pick-and-place operations, especially for frequently ad-
justed target positions in changing scenarios. However, complex environments may
provoke inefficient and drastically varying paths. Computationally efficient moti-
on planning must avoid exhaustive exploration of configuration space and actively
balance the exploitation of available information. A newly developed motion plan-
ner actively balances these two opposing forces in order to increase efficiency and
achieve significant performance improvements compared to other state-of-the-art
sampling-based planners.

Verbal and non-verbal communication play an important role when instructing
complex systems in an intuitive way. Accessible descriptions are realized by a com-
bination of task-based control algorithms with multimodal interfaces and cognitive
reasoning modules. The developed online control architecture for distributed sys-
tems also addresses safety aspects by integrating various sensor components. Mul-
tiple constraints can be included and sorted by priority in order to achieve desired
behaviors patterns. Abstraction of kinematics, dynamics, geometry, and hardware
aspects result in flexible systems with replaceable components. Reengineering bet-
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iv Abstract

ween systems is reduced due to the development of an open source framework with
common robotics algorithms.

In summary, this work provides valuable contributions to the field of motion
planning algorithms, a task-driven instruction paradigm independent of a specific
robot system, and an open source framework introducing concepts of model-based
engineering.



Zusammenfassung

Der Entwurf komplexer Robotiksysteme erfordert moderne Entwicklungsansätze
und intuitive Aufgabenbeschreibungen. Ansätze, die auf Teach-In-Konzepten und
textuellen Programmiersprachen mit steilen Lernkurven basieren, führen zu langen
Entwicklungszyklen, die nicht für flexible und modulare Fabrikumgebungen geeig-
net sind. Applikationsspezialisten benötigen zugängliche Robotikschnittstellen um
neue angepasste Lösungen zu erschaffen, verglichen mit dem derzeit benötigten Ex-
pertenwissen in beiden Domänen. Die Entfernung von Sicherheitszäunen und die
Verfügbarkeit von Leichtbauarmen führen zum Wunsch nach direkter Interaktion
mit einem menschlichen Benutzer und eröffnen die Frage nach fortgeschrittenen
und multimodalen Befehlsparadigmen. Modularität, Fehlertoleranz und Redundanz
benötigen einfache Integration von verschiedenen Sensor- und Aktorkomponenten,
sowie die schnelle Austauschbarkeit von ähnlichen Geräten.

Diese Arbeit führt ein neues Instruktionsmodell ein, das über klassische Pro-
grammiermethoden hinaus geht in Richtung einer intuitiven Zusammenarbeit mit
einem Roboter. Eine geeignete Systemarchitektur und ein generelles Programmier-
muster sind nötige Designziele in solch einem Konzept. Bahnplanungsalgorithmen
können eingesetzt werden um Aufgaben wie Pick-and-Place Operationen zu au-
tomatisieren, insbesondere für häufig angepasste Zielpositionen in sich verändern-
den Szenarios. Komplexe Umgebungen können jedoch ineffiziente und stark vari-
ierende Pfade hervorrufen. Berechnungseffiziente Bahnplanung muss vollständige
Konfigurationsraum-Exploration vermeiden und aktiv die Ausnutzung verfügba-
rer Informationen ausbalancieren. Ein neuentwickelter Bahnplanungsalgorithmus
balanciert diese beiden gegenwirkenden Kräfte aktiv, um eine Effizienzsteigerung
und signifikante Leistungssteigerungen gegenüber anderen modernen stichproben-
basierten Planern zu erreichen.

Verbale und nichtverbale Kommunikation spielen eine wichtige Rolle in der In-
struierung komplexer Systeme auf intuitive Weise. Zugängliche Beschreibungen
werden durch eine Kombination von aufgabenorientierten Kontrollalgorithmen mit
multimodalen Schnittstellen und kognitiven Entscheidungsmodulen erreicht. Die
entwickelte Online-Kontrollarchitektur für verteilte Systeme beschäftigt sich auch
mit Sicherheitsaspekten durch die Integration verschiedener Sensorkomponenten.
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vi Zusammenfassung

Mehrere Bedingungen können berücksichtigt und nach Priorität sortiert werden, um
gewünschte Verhaltensmuster zu erreichen. Abstraktion von Kinematik-, Dynamik-,
Geometrie- und Hardwareaspekten führt zu flexiblen Systemen mit austauschbaren
Komponenten. Neuentwicklungen unter Systemen werden vereinfacht durch eine
quelloffene Bibliothek mit verbreiteten Robotikalgorithmen.

Zusammenfassend leistet diese Arbeit wertvolle Beiträge im Bereich Bahnpla-
nungsalgorithmen, ein aufgabengetriebenes Instruktionsmuster das unabhängig von
spezifischen Robotersystemen ist, sowie ein quelloffenes Framework das Konzepte
modellbasierter Entwicklung einführt.
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Chapter 1
Introduction

Robotic applications are among today’s most complex systems, with solutions over-
lapping a vast amount of diverse domains and requirements. Robot systems are of-
ten deployed in critical areas where any downtime in production cannot be tolerated.
Critical real-time constraints have to be met during execution and the system must
include precautionary measures in case of failures or even provide redundancy. Op-
erators have to possess expert knowledge in specific production or application do-
mains as well as in the field of robotics. Environments easily managed by humans
present tremendous challenges for robots and the realization of all requirements de-
mands the compliance with the most recent methods and principles of software and
systems engineering.

Current industrial settings typically prevent direct cooperation between human
workers and robot systems due to safety regulations and heavy machinery. The sce-
narios in which manipulators are used often involve large production volumes with
repeated movements. These programs are largely developed and optimized over a
number of weeks and integration in installations is often reduced to a minimum, with
a limited set of input/output signals as a means of synchronization between different
components. New developments however show that more flexible programming can
support the development of individual solutions and small batch production models.
Interaction between several robotic installations as well as with human coworkers
can further enhance production efficiency.

Systems like the television studio application presented in Fig.1.1 demonstrate
how advanced sensor integration can simplify automation and help overcome un-
certainties in detection and positioning of manipulation objects. Similar shots are
used in every broadcast and mobile manipulators can be used in order to replace
human camera operators. In this example, traditional solutions such as distance sen-
sors are infeasible due to the green screen of the virtual studio. The walls cannot be
marked in any way for the same reason and localization has to be highly accurate.
In order to accomplish this, the floor is equipped with a number of extremely accu-
rate sensors and the platform’s manipulator can be used in order to compensate for
position errors. The large number of obstacles in the environment and the ability for
operators to create new custom movements requires the availability of collision de-
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2 1 Introduction

(a) (b)

Fig. 1.1 Robotics application in a television studio. Operators are able to create new movements
with a simple interface. Sensors in the floor are used in order to locate the mobile manipulator.
a real-world overview including multiple obstacles in the environment (Photograph provided by
Robotics Technology Leaders GmbH), b synchronized representation used for collision detection
and visualization

tection systems due to safety aspects. The challenge lies in integrating all hardware
and software components of such a complex distributed system (Fig. 1.2) while still
providing an intuitive way of programming it.

A lot of fundamental solutions and approaches in robotics have been well-known
for decades, with many available textbooks on the specification and calculation of
kinematics and dynamics [117, 89, 38, 137] alone. After introduction of the first
algorithms in this area a few decades ago, a lot of time was invested into creating
more efficient and extremely specialized versions of these routines due to limited
hardware performance. Yet, even today, hardly any concrete specifications and im-
plementations are available or have been adopted into industry standards. Hardware
manufacturers implement their own set of proprietary instructions based on these
foundations. However, flexible solutions that can replace different components with-
out monopolies and production downtime are desired. Most projects—especially
in research—start from scratch, time and again, therefore often resulting in poorly
conceived, fragile, and in particular untested implementations that cannot be shared
with the community. There are no standardized hardware drivers available and many
incompatible middleware solutions with proprietary network protocols are intro-
duced rather than focusing on proper interface specifications. Efforts for standard-
ization are in many cases unknown to larger audiences or fail to be adopted among
different domains. The complexity of these solutions typically prevents current in-
dustrial operators from creating new custom applications. Special training with a
steep learning curve is required in order to gather expert knowledge and implement
even the most basic tasks.
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PC

PCEmbedded
Device

Fig. 1.2 Example of a distributed target system with a series of actuators and sensors. Each com-
ponent typically uses different interfaces and protocols, thus requiring custom device drivers. The
network communication between machines and the used operating systems should respect poten-
tial real-time requirements

1.1 Software Development

A nearly infinite amount of libraries and solutions for different areas are available
in robotics. The bulk of the projects is focused on the field of middlewares and dis-
cusses the encapsulation of different parts in a system and how these can commu-
nicate efficiently according to their individual requirements. Typically this results
in the introduction of isolated components and the developer’s task is to fill in the
necessary functionality. Little help is given in the actual development of these com-
ponents; the vast amount of incompatible vector and matrix classes in high-level
programming languages is just one example. Uniform specifications, compatible
data structures, basic algorithms, and mature hardware drivers are often scarce and
have to be implemented from scratch. This lack of standardization also presents a
large barrier for industrial partners and therefore only intensifies these points.

Only the introduction of open and consistent standards leads to mass-market ac-
ceptance and adoption across academic and industrial borders. Proprietary specifi-
cations in 3D computer graphics may serve as an example to this dilemma. Early
manufacturer dependent interfaces that were optimized for specialized hardware
components allowed programmers to realize their ideas faster and with higher per-
formance than by writing their own rudimentary implementations. However, only
the adoption of open standards enabled software engineers to run their code on the
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graphics hardware of their choice and led to an open market for manufacturers. A
similar development can now be observed with physics simulations and other gen-
eral calculations running on this type of hardware. Standardized interface specifica-
tions can endorse the development of a large variety of solutions to a single problem
and more efficient algorithms can thus be introduced and actually compared to each
other. This also includes proper abstraction layers for hardware components and
operating systems.

Even today, industrial applications are usually limited to teach-in methods. Typi-
cally, every hardware manufacturer maintains its own proprietary programming lan-
guage and these are only suitable to fulfill a very limited set of task requirements.
Special training and modifications are required after switching to different equip-
ment due to incompatible interfaces, thus facilitating vendor lock-in. On the other
hand, few techniques developed in research are mature enough to be adopted outside
of laboratories and the implementations are often not stable enough for operation in
production settings. Required however are generative programming, including code
generation, verification, automatic deployment, reusability, and simple configura-
tion. With this in place, task description can switch to a higher level of abstraction
and may allow for programming by less specialized staff.

1.1.1 Current Software Engineering Approaches in Robotics

Most of the current approaches to software engineering in robotics can be catego-
rized into three main categories. The first class tries to provide functionality of a
specific domain in the form of software libraries that can be used in manual im-
plementations. Many open solutions for a broad spectrum of specialized fields are
available, including simultaneous localization and mapping (SLAM) [108], motion
planning [121], as well as kinematics, dynamics, hardware control, or Bayesian fil-
tering [25]. These frameworks are usually designed as an aid for programmers when
writing specific programs, a lack of common data structures and interfaces however
often complicates the cooperation between different libraries.

By far the largest and most common category of robotics software addresses the
definition of new communication patterns. Similar to a multitude of already exist-
ing approaches such as CORBA, DCOM, SOAP, and Ice, these middlewares pro-
vide interfaces for data exchange between distributed computer systems and remote
procedure calls [35, 106, 24, 49, 124]. The developer is often given no support in
the creation of the individual modules in such a system and most implementations
therefore are created from scratch. During these efforts some may also revert to a
selection of frameworks if the required functionality is available as part of these
libraries. More often than not however the specification of consistent interfaces is
omitted, thus resulting in a large variety of incompatible device drivers and basic
algorithms. Due to this, compatible modules in the same area cannot be exchanged
for one another, including motion planning, SLAM, object and speech recognition,
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as well as hardware components such as cameras, force and range sensors, optical
trackers, or motors.

Of these middleware solutions, only a few try to offer advanced functionality
in the form of visual programming, simulation, code generation, debugging, or de-
ployment [4, 81]. The goal of these integrated development approaches is to pro-
vide a common tool chain for creating robotics applications. While some efforts
have been started to standardize communication patterns, common interfaces for
hardware components and algorithms of the same type are still rare. If available,
code generation, debugging, and deployment is very limited and proper automated
verification is usually completely absent. This also includes many real-time con-
siderations and abstract descriptions of sensor information, together with physical
properties of robot models such as kinematics, dynamics, and geometry data. The
tool chains also by no means provide complete environments for the whole devel-
opment process.

While not actually part of any classic category, the object-oriented modeling of
mechatronic systems as presented in [114] provides interesting solutions for many
basic issues. Mainly used for simulation purposes, this type of modeling can de-
scribe components of technical systems from mechanical, electrical, hydraulic, con-
trol, and numerous other domains. By adding definitions in the form of differential,
algebraic, and discrete equations, these open specifications are all compatible and
can be combined across several areas. Code can be automatically generated based
on these equations and early attempts are made to utilize this feature outside of
simulation [1, 43].

1.1.2 Toward Model-Driven Engineering

In contrast to a traditional development process, model-driven engineering focuses
on the supply of reusable parts that can be combined with each other. Instead of try-
ing to solve problems all over again, mature components are created that are com-
patible and can build on top of each other. From a robotics perspective, these models
should incarnate two important points of view: the available hardware components
and the tasks they are being used for (Fig. 1.3).

One side represents the physical properties, including the type of the robot with
its specific kinematics, dynamics, and mechanics. Furthermore, all available sensors
in the robot itself and the ones placed in the surrounding environment, together with
a classification of the type of information made available by them. It also involves
the exact shape of available geometries, hardware drivers required for controlling
specific actuator and sensor components, and special requirements regarding the
operating system, the target architecture, and basic time constraints. The other side
contains algorithmic components, where the actual programs are provided and even-
tually run on existing systems. Ideally, this is implemented in a way that allows for
the exchange of different solutions. Many different algorithms and calculations are
supplied, including basic mathematical operations, signal processing, simple image
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Functional
Properties

Physical
Properties

Camera

Force/Torque

LIDAR

Motor

...

Forward Position

Inverse Position

Jacobian

Inverse Dynamics

Forward Dynamics

...

Image Processing

Motion Planning

SLAM

Speech Recognition

...

Hardware
Abstraction

Layer

Kinematics
Dynamics
Geometry

Algorithms

Application Model

Implementation

Fig. 1.3 Model-based development process with various modules that can be used in the manual
creation of an application. Physical properties of the system are given by device drivers for the
hardware components as well as kinematics, dynamics, and geometry representations. A library of
algorithms and calculations provides the actual program logic or functional properties

processing, interpolation methods, trajectory optimization techniques, digital filters,
collision detection, or more advanced concepts such as object tracking, behavior
based programs, and abstract task descriptions.

The actual program logic or application is assembled from a selection of these
components. All elements possess dedicated input and output channels for specific
data types, as well as a collection of more sophisticated service ports. A motor
control component for instance will provide interfaces for reading and writing po-
sition, velocity, acceleration, and torque data, whereas a camera will supply the
recently acquired raw image and functions for changing parameters such as resolu-
tion, frame rate, or gain. The kinematics of the used robot type is responsible for
conversions from joint to operational space with respect to a chosen world frame,
while a tracking module delivers position data of an observed object relative to the
same coordinate system. In a complete and well-tested library of components, ad-
vanced algorithms can be added by hierarchically combining a selection of already
existing implementations.

Apart from the saved effort of having to reimplement these components from
scratch all over again, this also leads to simplifications in code generation and in par-
ticular verification. Fully reengineered programs also have to be completely retested
and verified, whereas the use of already inspected components can at the least im-
mensely reduce the overall costs. In addition, proper interfaces to target architec-
tures may enable automatic optimization of runtime performance, for instance by
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Hardware
Abstraction

Layer

Kinematics
Dynamics
Geometry

Algorithms

Verification Application Model Simulation

Code GenerationDebugging

Deployment

Framework

Fig. 1.4 Refined model-driven development process. Application code is automatically generated
and deployed to a target system. Simulation, verification, and debugging complete the development
process. Frameworks may assist in the creation of modules and tools in the workflow

introducing parallel versions of existing algorithms. Deployment can also utilize
compatible patterns by adapting communication channels between components to
the target architecture’s requirements. A system target comprised of a single unit
can take full advantage of direct communication, whereas a distributed system has
to pay special attention to the time constraints of its modules. The testing of new
components can be vastly improved through the introduction of proper debug and
simulation specifications and interfaces, especially with regards to safety aspects. A
complete and proper physical description of the robot is not only useful in applica-
tions, but can also contribute to a proper simulation of the system.

With the availability of specifications and interfaces in the form of free and open
standards, industrial partners can decide to provide compatible hardware drivers and
model specifications or even algorithm components. A unified development process
also allows for the design and evolution of various compatible applications in a
robotic tool chain. This can include editors for kinematics and dynamics parameters
or 3D models, but also graphical user interfaces for application design, simulation,
and diagnostics. Free and open reference implementations have to be available for
every step in the workflow.

The development process (Fig. 1.4) of a new robot system starts with the anal-
ysis of the intended application and the acquirement of suitable components. If the
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manufacturer does not supply adequate specifications, models, and drivers for these
types of actuators or sensors, the next step comprises the creation of proper kine-
matics, dynamics, and geometry data. This also includes proper implementations
for control of the individual hardware components and abstractions for the intended
target architecture and its operating system. Ideally, the set of existing algorithmic
foundations already provides a large collection of different modules. New compo-
nents are added for special requirements that are not fulfilled by the existing set of
base elements. The complete target application is then assembled based on these
functional parts, specific hardware and operating system abstractions, and matching
time and communication constraints. Proper verification of new components is re-
quired before deployment, in order to guarantee safety aspects in the overall system.
Internet channels can be used for the distribution of new models and implementa-
tions, while community ratings and peer review can help with quality assurance.
Contributions that have been extensively tested and are verified by experts can be
marked accordingly. Extensive testing in simulators can also reduce failures and
hardware damage, while debug and deployment components are useful during de-
velopment.

1.2 From Teach-In to Abstract Task Description

Robot systems in industrial settings are often instructed to perform operations such
as pick-and-place, assembly, welding, painting, or cutting over and over again. Typ-
ically, these applications are created by an operator using procedures such as the
teach-in method, where a series of instructions are written in a vendor-specific pro-
gramming language. These programs can include basic movements in joint and
operational space of the robot, as well as commands for controlling correspond-
ing equipment such as pneumatic valves, grippers, and various input/output signals.
Some control architectures may include limited support for sensor equipment, often
in the form of force/torque devices.

Although some language constructs may successfully conceal certain work-
arounds, for instance when picking up objects from a table, there is no direct correla-
tion between the written program and the actual task. Depending on the shape of the
object and the surface, the robot usually has to approach the area from a right angle.
In order to account for obstacles in the robot’s workspace, the operator will have to
include evasive movements that are dependent on the current environment or trajec-
tories of other devices and may have to be changed in the future. These additional
instructions could also be misinterpreted by a different programmer and thus can re-
sult in collisions when modifications to the original program are introduced. In ad-
dition, new target coordinates generally require a redesign of the original program.
Collision detection and motion planning algorithms can be used in order to create
these movements between task points, as long as a correct environment model can
be provided (Fig. 1.5a). Depending on the complexity of the task and the environ-
ment, finding a collision free path may be extremely difficult and time-consuming.
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(a) (b)

Fig. 1.5 Abstract task descriptions without manually programmed movements and largely inde-
pendent of a specific kinematic structure. a pick-and-place operation defined by a start and goal
position, b laser welding application with a series of target points

In addition, the quality of the solutions from sampling-based planners can also vary
and produce solutions that are not well-suited for time-critical operations.

Creating programs for complex manipulation tasks such as welding and cutting
is very time-consuming and requires a large amount of instructions and trajectory
points. Manual optimization for time-optimal trajectories also becomes increasingly
difficult with the number of intermediate points and level-of-detail. This also in-
cludes aspects such as time synchronization between multiple manipulators and dy-
namic optimization with respect to hardware constraints (e.g., joint limits, maximum
velocity, acceleration, torque). Some manufacturers and industry solutions have al-
ready introduced new offline programming concepts that allow the direct specifi-
cation of trajectories using CAD models [156]. Rather than specifying a collection
of programming instructions with robot movements, the operator can select points,
lines, or curves of a target object in order to create corresponding trajectories of the
end effector. Various algorithms can then be used in order to optimize this move-
ment with respect to the parameters of the robot and its selected tool. However,
these approaches still only generate a series of offline trajectories based on the same
set of instructions used in the original teach-in method with no direct access to the
underlying control architecture. In contrast to an online control program, integration
of additional sensor information required for visual-servoing operations or dynamic
environments for reactive obstacle avoidance is typically not supported.

Especially with increasing cooperation between robot systems and human work-
ers and the versatility of manipulators for individual solutions and small batch series,
more flexible and accessible solutions for task description are required. Compared
to traditional settings with fences and no cooperation, new light-weight manipulator
systems allow for direct interaction between human and robot. In such a setup, an
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operator can simply touch and move the manipulator to an intended configuration
rather than issuing the command by entering coordinates or joint angles. Similarly,
speech and gestures are common input methods between human coworkers and a
basic request for handing over a cup from a table with a combination of these two
is easily understood. A task description for a robot system however will require
several additional aspects in order to accomplish the same goal. First, the object’s
position and orientation in space has to be determined. Various sensors and object
recognition strategies can be applied in order to accomplish this together with an
appropriate model of the environment. Actual grasping of the cup in question and
proper strategies for this are also based on these estimations and collected infor-
mation, including grasp points for similar objects. This also includes data about af-
fordances [62], such as fixed orientation constraints for containers with liquids that
are important during transportation or parameters such as correct contact pressure.
Different grasp types might be appropriate depending on the later form of interac-
tion with the object. In case of a welding application, the task description would
include data such as welding points/lines, entry cones, material properties, or expo-
sure time (Fig. 1.5b). The actual program and execution of the task is dependent on
the chosen robot (e.g., stationary manipulator, mobile platform, humanoid) and end
effector type (e.g., gripper, welding torch). Additional constraints such as proper
balance, preferred postures, or obstacle avoidance can be added accordingly [133].

1.3 Architectures for Cognitive Systems

In contrast to robot applications that only execute predetermined offline programs
and feature no direct contact with human partners, interactive scenarios with human-
robot collaboration require some form of artificial intelligence. Humans employ var-
ious forms of verbal and non-verbal communication during cooperation and are able
to infer goals and intentions based on the actions of their partner and the context.
A robot system in such a setting has to be able to perform in a similar fashion in
order to be efficient and reliable. The system also has to be able to respond to new
or unforeseen events in a robust manner.

Various approaches to this type of problem can be found, each with different
benefits and drawbacks [141, 87, 142, 96, 88]. The traditional symbolic method uses
explicit representations, where a number of symbols together with specific rules and
a working memory is used in order to determine proper reactions to certain events.
The symbols and rules have to be written and designed by a programmer and thus
suffer from an inherent lack of completeness. This approach is often used for natural
language processing and can represent complex relationships. On the other hand, the
greatest strengths of sub-symbolic systems lie in their ability to handle inconsistent
and noisy data together with autonomous learning. Similar to the concept of neurons
in the brain, a collection of simple nodes in a network is used to generate decisions.
The function of such a network can be trained using either supervised, unsupervised,
or reinforcement learning, resulting in adjusted weights of the connections between
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its nodes. Hybrid models try to combine the advantages of both methods in order to
handle problems that cannot be addressed by one approach alone.

1.4 Contributions and Structure

This work focuses on the limitations of current programming and design concepts
in the field of robotics. Modern engineering approaches and advanced task concepts
are necessary in order to create modular systems that can be instructed with a more
intuitive interaction style. These issues are addressed through the development of a
more efficient motion planning algorithm that avoids exhaustive search and actively
balances configuration space exploration and the exploitation of available informa-
tion, an instruction paradigm that does not require expert knowledge in the robotics
domain and is independent of a particular robot system, and an underlying open
source framework that reduces the need of complex reengineering.

The robotics foundations in Chap. 2 describe important aspects in the engineering
of these systems. They support the core components in a modular design and provide
the basis for later concepts.

Chapter 3 begins with an overview of the current motion planning field and dis-
cusses various approaches and their strengths and limitations in the context of com-
pleteness versus efficiency. It introduces the concept of effective motion planning
through a deliberate balance between exploration and exploitation. Experimental
results demonstrate the improvements in planning performance with a variety of
difficult scenarios.

Distributed architecture, task-based control, and the framework of Chap. 4 are
demonstrated in two intuitive and modular systems for human-robot interaction.
One scenario focuses on a hybrid model with symbolic dialog management, sub-
symbolic goal inference and error management, as well as multimodal input and
output. The second system shows similar concepts in an industrial setting with a
detailed look at the integration of sensor information and safety aspects.





Chapter 2
Robotics Foundations and Model Description

Before addressing topics for programming robot systems such as motion planning
and task-driven control paradigms, a few basic principles need to be introduced.
Many of these aspects are considered expert knowledge and build the core of all
implementations in the robotics domain. They are vital elements in the design of
abstract robot systems and easy access to this functionality should be provided.
An understanding of these foundations and related design goals will help in later
discussions. This chapter can be considered as a tutorial and is also often referred to
in later parts of this thesis.

Traditional robot systems consist of a number of rigid bodies connected by a
collection of joints that allow relative motion in between these elements [117, 89,
38, 137]. Such a model is defined by its geometric shapes, their corresponding mass
and inertia, the placement of its links and joints compared to each other, and its
placement in the surrounding environment. Position and orientation of the indi-
vidual components is specified relative to a common world coordinate system or
frame. The location of the robot with respect to this world reference is given by a
transformation to its base frame, whereas the configuration of each joint provides
displacements and rotations for the corresponding links relative to its parent coor-
dinate system in the robot’s structure. Many different devices such as grippers or
cameras can usually be attached to the last element in a robot’s structure of links,
which is typically referred to as its end effector and describes the tool frame. Other
frames can be introduced in order to describe objects and similar features in the
scenario.

Serial chains, kinematic trees, and closed-loop systems are amongst the possible
architectures of a robot system and the number of end effectors is directly related to
the mechanical structure. The flexibility of an architecture is defined by the number
of joints and their individual degrees of freedom (DOF), with categories including
revolute, prismatic, helical, cylindrical, spherical, and 6-DOF joints. They are typi-
cally controlled using position, velocity, or torque commands and enclosed sensors
can measure corresponding feedback values. A typical industrial manipulator is built
using a serial chain of six joints with one end effector. The n total parameters in a
system required to describe the robot’s current configuration or posture span a joint

13
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space of the same dimension. Its end effector’s location in physical or operational
space is defined by the position and orientation of the corresponding frame.

2.1 Kinematics and Dynamics

A description of the position, velocity, acceleration and related higher-order deriva-
tives of a rigid body is handled by a robot’s individual kinematics equations. In
the most basic instance this deals with the task of calculating link frames based on
the current joint configuration or the inverse problem of creating position variables
matching an end effector’s given target position and orientation. Mappings from
joint to operational space and vice versa are required in order to create adequate
trajectories for different types of applications [117, 89, 38, 48, 137].

Dynamics on the other hand focuses on the relationship of forces, joint torques,
and the algorithms required to generate motion. A robot system with low-level ac-
cess can typically not be given commands in the form of joint accelerations. Torques
in the joint’s motors have to counteract forces from gravity and friction while induc-
ing the correct amount of control output that produces the desired trajectory. Trans-
lation of joint torques to accelerations on the other hand is useful in creating proper
simulations of the system. This also includes proper handling of torques and forces
between joint and operational space.

2.1.1 Position and Orientation

A coordinate system is defined by an origin and an orientation [117, 89, 38, 137].
Each of the two components requires three degrees of freedom for a complete
description. In an n-dimensional Euclidean space, the origin is given by a vec-
tor p 2 Rn, with n D 3 for the physical universe. Its elements px, py, and pz define
distances along the axes of a corresponding reference frame such that

p D px O{C py O| C pz Ok D
�
px py pz

�T
; (2.1)

where O{, O|, and Ok are unit vectors and versors corresponding to the axes of the
Cartesian coordinate system. Similar descriptions can be provided by cylindrical or
spherical coordinates. A vector jpi can be used in order to describe the position
of the origin of a coordinate system i relative to a reference frame j . In case of
frames with equal orientations, translations can be calculated using vector addition
and multiple displacements can be combined in the same way:

ju D iuC jpi (2.2)
kpi D

jpi C
kpj : (2.3)
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In projective space RPn, the corresponding homogeneous coordinate representation
can be represented by a vector of dimension nC 1. This is achieved through the
inclusion of an extra coordinate w that can also be viewed as a scaling factor and is
usually set to 1: �

wpx wpy wpz w
�T
: (2.4)

The special case for infinite direction vectors uses a value of 0 for the last element
and the 4 � 1 null vector is undefined.

Orientation of a right-handed coordinate system in a space of dimension n can
be defined by the special orthogonal group

SO.n/ D
®
R W R 2 Rn�n ; RRT

D 1 ; det.R/ D C1
¯
; (2.5)

where SO.3/ is the rotation group for three-dimensional space. With only three
parameters necessary in order to describe the angular degrees of freedom in contrast
to the nine elements of a matrix

R D
�
Ox Oy Oz

�
D

24r11 r12 r13
r21 r22 r23
r31 r32 r33

35 ; (2.6)

its columns are composed of three mutually orthogonal unit vectors Ox, Oy , and Oz,
thereby imposing six independent constraints. This can also be verified when a
proper orthonormal matrix is written in the form

R D .1 � S /�1 .1C S / ; (2.7)

where S is a skew-symmetric matrix that can be described by only three parame-
ters sx, sy, and sz such that

S D �S T
D

24 0 �sz sy
sz 0 �sx
�sy sx 0

35 (2.8)

and whose transpose is equal to its negative. The components of a vector define its
projection onto the unit directions of its reference frame. Therefore, the orientation
of a frame i with respect to a frame j is described by the matrix

jRi D
�
j Oxi

j Oyi
j Ozi
�
D

24 Oxi � Oxj Oyi � Oxj Ozi � Oxj
Oxi � Oyj Oyi � Oyj Ozi � Oyj
Oxi � Ozj Oyi � Ozj Ozi � Ozj

35 ; (2.9)

where the elements are the dot products of each frame’s unit vectors. The two refer-
ence frames can be interchanged by the inverse of this rotation matrix. Because it is
a proper orthogonal matrix (2.5), its inverse is equal to its transpose:

iRj D
jR�1i D

jRT
i : (2.10)
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For coordinate systems with the same origin, a rotation matrix can be used in order
to describe a vector in a frame with different orientation:

ju D jRi
iu : (2.11)

Multiple rotations can be combined through non-commutative matrix multiplica-
tion, such that the orientation of coordinate system i as seen from k is established
by the matrix

kRi D
kRj

jRi : (2.12)

The rotation matrices about the three versors of the Cartesian coordinate system by
an angle � are given by

R.O{; �/ D

24 1 0 0

0 cos � � sin �
0 sin � cos �

35 ; (2.13)

R. O|; �/ D

24 cos � 0 sin �
0 1 0

� sin � 0 cos �

35 ; (2.14)

R. Ok; �/ D

24 cos � � sin � 0

sin � cos � 0

0 0 1

35 : (2.15)

Any orientation in three-dimensional space can be described by properly combining
three of these basic rotations in succession. Depending on the order of multiplica-
tion, these rotations are either applied to an axis of the original coordinate system or
of a newly-created one in each step. The former method is often referred to as fixed
angle representation, while the three parameters of the latter convention are known
as Euler angles. In total, this leads to a number of twelve unique orders of rotation
for the two approaches as each fixed angle version can be mapped to an equivalent
Euler angle one and vice versa. The three angles �, � , and  in the X-Y-Z fixed
angle representation

R. Ok;  /R. O|; �/R.O{; �/ (2.16)

are sometimes called yaw, pitch, and roll. Due to the same order of multiplication,
this series of rotation is identical to the one used in the Z-Y0-X00 Euler angle or-
der (Fig. 2.1). Both conventions are subject to singularities when two of the three
angles describe rotations around the same axis. The combined rotation matrix

R. Ok;  ; O|; �; O{; �/ D

24c c� c s�s� � s c� c s�c� C s s�
s c� s s�s� C c c� s s�c� � c s�
�s� c�s� c�c�

35 (2.17)

equivalent to (2.16) shows that the singularity appears when the second rotation pa-
rameter � approaches ˙90ı, leading to a loss of one degree of freedom (cos � and
sin � are abbreviated as c� and s� respectively). This is also referred to as gimbal
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(a) (b) (c)

Fig. 2.1 Series of rotations using Z-Y0-X00 Euler angles, identical to rotations using X-Y-Z fixed
angles. a first rotation with 45ı about original Oz axis, b second rotation with �45ı about
new Oy axis, c final rotation with �45ı about new Ox axis

lock and can be compensated when calculating angles from a rotation matrix by arbi-
trarily choosing one of the other two angles. This representation of rotations has the
disadvantage that small changes in rotation can result in large angular changes in the
proximity of singularities. Other common angle orders in robotics include Z-X0-Z00

and Z-Y0-Z00.
Unit quaternions [136, 97, 41] describe an alternative parameterization of rota-

tion that can be used in order to prevent these issues. While they present an increase
in performance and numerical stability, their main disadvantage however is that four
parameters are now required in order to describe three angular degrees of freedom.
In a robot system with spherical joints such as free-flying robots this has to be con-
sidered in some way. A quaternion h 2 H with a real part h0 and an imaginary
part h1, h2, and h3 is defined in an extension of complex numbers as

h D h0 C h1 iC h2 jC h3 k ; (2.18)

with
i2 D j2 D k2 D i j k D �1 : (2.19)

This is similar to the definition of vectors in Euclidean space (2.1). In fact, these
vectors can also be represented in quaternion notation by defining a value of 0 for
the h0 component. Every quaternion h has a conjugate

Nh D h0 � h1 i � h2 j � h3 k ; (2.20)

such that
h Nh D Nhh ; (2.21)

with its norm khk given by the corresponding square root and the result of this
product being equal to 1 for unit quaternions. Quaternions are often described in R4,
with a scalar w 2 R equal to the real part and a vector v 2 R3 consisting of the
imaginary components. Addition is then defined by adding the respective scalar
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and vector parts, whereas the multiplication of two quaternions h1 and h2 is more
complex and not commutative:

h1 h2 D .w1; v1/.w2; v2/ D .w1w2 � v1 � v2; w1 v2Cw2 v1C v1 � v2/ : (2.22)

Rotation of a vector is accomplished by multiplication with a quaternion on its right
and the conjugate on its left or vice versa for the inverse operation:

ju D jhi
iu j Nhi (2.23)

iu D j Nhi
ju jhi ; (2.24)

although this representation is not unique. A rotation about a quaternion h is identi-
cal to the one with �h due to the fact that a change in orientation about an angle �
and an axis On is equal to the same operation with its negated counterparts. Angle
and axis description can be converted to a unit quaternion

h D .w; v/ D
�
cos.1

2
�/; On sin.1

2
�/
�
; (2.25)

where its components are then referred to as Euler parameters. Furthermore a unit
quaternion can be mapped to a rotation matrix

R.h/ D

24 1 � 2 .h22 C h
2
3/ 2.h1 h2 C h3 h0/ 2 .h1 h3 � h2 h0/

2 .h1 h2 � h3 h0/ 1 � 2 .h21 C h
2
3/ 2 .h2 h3 C h1 h0/

2 .h1 h3 C h2 h0/ 2 .h2 h3 � h1 h0/ 1 � 2 .h21 C h
2
2/

35 ; (2.26)

which can be shown to fulfill all requirements of SO.3/ and that can also be trans-
lated back to quaternion elements without any issues. Direct multiplication by
quaternions is however more efficient, as fewer operations are required compared
to traditional 3 � 3 matrices.

For coordinate systems where origin as well as orientation of two frames differs,
a rotation (2.11) is always followed by a translation (2.2) in this representation. Both
have to be performed in order to describe a vector in frame i relative to frame j :

ju D jRi
iuC jpi (2.27)

These two operations can however be combined in the special Euclidean group

SE.n/ D

´�
R p

0 1

�
W R 2 SO.n/ ; p 2 Rn

µ
; (2.28)

with a homogeneous transformation T 2 SE.3/ for three-dimensional space. Its
components R and p may be chosen independent from each other and can also
be assigned an identity matrix or a null vector, thereby resulting in no rotation or
translation respectively. Computation with separated translation and rotation parts
is however more efficient. The same vector in homogeneous coordinate representa-
tion (2.4) can now be transformed between the two frames by a single multiplication
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with the matrix
jTi D

�
jRi

jpi
0 1

�
: (2.29)

Scaling and perspective transformations are defined by similar 4�4matrices. Origin
and orientation of frame j relative to frame i are given by the inverse of this matrix,
resulting in

iTj D
jT �1i D

�
jRT
i �jRT

i
jpi

0 1

�
(2.30)

and multiple transformations can be composed through non-commutative multipli-
cation such that

kTi D
kTj

jTi : (2.31)

This can for instance be used when expressing the position and orientation of a robot
manipulator’s end effector—in this case a serial chain with n degrees of freedom and
a gripper—relative to its world frame in a homogeneous transformation

worldTtool D
worldTbase

baseT0
0T1 � � �

n�1Tn
nTtool ; (2.32)

with baseT0 as the mapping from base frame to the first joint coordinate system,
matrices 0T1, . . . , n�1Tn representing the individual transformations by each of the
robot’s joints in their current configuration and a description of the currently at-
tached tool nTtool. Such a calculation is commonly referred to as forward position
kinematics.

2.1.2 Metric Spaces and Interpolation

Distance in Euclidean space can be visualized by connecting two points with a
straight line and measuring the respective length. Planar map representations of the
surface of the earth have borders and the western and eastern sections on the other
hand appear to be disconnected, while the actual regions on its sphere are close
by. These cases can be described and applied to other scenarios such as kinematic
configurations with the more general concepts of topological and metric spaces.

A topological space is a setX together with a collection of open subsets for which
both the empty set and X are open subsets, as well as the union of any number of
open subsets and the intersection of a finite number of open subsets [97, 99]. In case
such a space locally resembles the n-dimensional Euclidean space, it is known as a
manifold of the same dimension. This property is similar to that of the earth’s sur-
face which—while actually round—appears to be flat for an observer standing on
top of it. Two manifolds are considered to be identical when they belong to the same
homotopy class, which means they can be deformed into each other. A well-known
example for this is the surface of a coffee cup with a handle, which is in the same
homotopy class as the one from a donut shaped object. The most basic example of
a one-dimensional manifold is given in the form of R1. It can for example be used
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for a prismatic or revolute joint with upper and lower bounds. Multiple homeomor-
phic manifolds can be combined, hence the space of R1 �R1 �R1 is equal to the
Euclidean space R3. A number of manifolds that are not homeomorphic to R1 are
given by a circle and its more general parameterization in the form of n-spheres

Sn D
®
x 2 RnC1 W kxk D 1

¯
; (2.33)

where a circle is the one-dimensional case. In particular, the circle representation
is important for revolute joints with no limits that cannot be represented by R1,
whereas the latter is the correct behavior for these joints under restricted angles.
Without this wraparound, the calculated distance between two joint configurations
might be too large. Quaternions and in the same way true three-dimensional rota-
tions belong to the S3 class, but because the n-sphere manifolds are not homeomor-
phic to each other, this representation is not identical to the S1 � S1 � S1 manifold
described by Euler angles. Although rotations with quaternions are not unique due
to the negated angle and axis problematic (2.25), this can be avoided by choosing the
real projective space RP3 instead, which is the set of all lines in three-dimensional
space passing through the origin. Every possible orientation is thus counted only
once and the correct manifold for a free-flying robot is given by R3 �RP3. For
spherical joints with angular limitations this is replaced by combinations of R1

and S1 respectively.
A metric space has a global distance function that returns the distance between

two points as a non-negative real number and must satisfy several conditions: the
distance between equal points is returned as zero, the two points must be inter-
changeable, and it must fulfill the triangle inequality [97, 93, 99]. For the Euclidean
space, where this value is given by the length of the straight line connecting these
points, this function is defined by the Euclidean distance

d2.u; v/ D ku � vk2 D
p
.u1 � v1/2 C : : :C .un � vn/2 (2.34)

and the associated norm is referred to as Euclidean norm. An alternative metric that
uses the absolute sum of the differences of each coordinate axis is given by the
Manhattan distance

d1.u; v/ D ku � vk1 D ju1 � v1j C : : :C jun � vnj (2.35)

and its respective norm. This variant is similar to moving along a grid layout. These
metrics and norms can also be generalized for Rn in the form of

kukp D
� nX
iD1

jui j
p
�1=p

: (2.36)

A distance metric for a circle representation in S1 cannot use the previous functions,
as they would not correctly relate to the length of the traveled distance. An adjusted
approach can be based on the respective angles �1 and �2 of the two points instead;
however it has to consider the fact that there are two possible solutions and should
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(a) (b) (c)

Fig. 2.2 Interpolation of a cube’s orientation, rotated 45ı in each world axis. The 10 individual
steps are visualized from black to white. a linear with matrix representation, b linear with Euler
angles, c spherical linear with quaternions

thus always select the smallest one:

dS1.�1; �2/ D min
�
k�1 � �2k; 2  � k�1 � �2k

�
: (2.37)

While this can be used together with Euler angles in order to compute an approxi-
mated distance for three-dimensional orientations, a proper distance metric for RP3

should rather be based on quaternions. With Euler angle representations, there are
multiple solutions for a single rotation and the separate angle components might not
represent the actual overall difference. As with the circle example, there are also two
possible paths in S3 that have to be compensated for due to quaternions not being
unique:

dS3.h1;h2/ D min
�
kh1 � h2k; kh1 C h2k

�
: (2.38)

For unit quaternions, the angle of rotation � between them is defined by the equation

� D arccos.h1 � h2/ ; (2.39)

leading to the alternate representation

dS3.h1;h2/ D min
�
arccos.h1 � h2/; arccos.h1 � �h2/

�
: (2.40)

In a distance metric with translational and rotational components, a proper weight
factor should be introduced in order to balance the different units.

Interpolation within a range t 2 Œ 0; 1� between two vectors that form a straight
line in space can be achieved by the linear interpolation operation

lerp.u1;u2; t / D .1 � t /u1 C tu2 : (2.41)

This procedure can however not directly be applied to three-dimensional rota-
tions [136, 41]. The linear interpolation of the individual elements of a rotation
matrix leads to undesired results, as the implicit constraints of the orthonormal ma-
trix are not considered. As a 3 � 3 matrix can also be used in order to represent
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transformations such as scaling, this operation leads to the effects seen in Fig. 2.2a,
where a cube’s orientation is interpolated between two states. The intermediate steps
are furthermore not equally distributed as is the case with position vectors. Linear
interpolation of three Euler angles (Fig. 2.2b) is not suited for this kind of applica-
tion as well. There is no direct relationship between the individual angles and the
overall rotation, even with proper circle metrics. Similar to the matrix variant, the
angular velocity in this procedure does not stay constant throughout the calcula-
tion. Applying this interpolation method directly to quaternions does not result in
satisfying results either because the intermediate steps do not produce proper unit
quaternions. It can actually be seen as a straight line connection between the two
points rather than a proper path on the surface of the corresponding unit sphere.
While normalizing these points results in the best solution so far, its velocity profile
still suffers from the aforementioned shortcut. The spherical linear interpolation

slerp.h1;h2; t / D
sin
�
.1 � t / �

�
sin �

h1 C
sin.t�/
sin �

h2 (2.42)

on the other hand divides the angle � between the two orientations into equal sec-
tions and therefore follows a great arc on the unit sphere (Fig. 2.2c). It features a
constant angular velocity throughout the whole interpolation range and can also be
written in the form

slerp.h1;h2; t / D h1 . Nh1 h2/t D h1�t1 ht2 : (2.43)

As orientation descriptions with quaternions are not unique, the shortest possible
interpolation path is given by calculating the minimal angular distance between the
two quaternions (2.40) and selecting the proper negated representation when it be-
comes necessary.

2.1.3 Velocity and Force

A robot is a moving system composed of several joints and links. Besides a static
form of position and orientation, it therefore becomes necessary to be able to express
velocities and accelerations as well as static forces and moments in order to describe
movement and the effect of external influences [117, 89, 38, 137].

Linear and angular velocities are given by differentiation as

Pp D
dp
dt
D lim
�t!0

p.t C�t/ � p.t/

�t
(2.44)

PR D
dR
dt
D lim
�t!0

R.t C�t/ �R.t/

�t
: (2.45)

If the frame in which the linear velocity vector is described differs from the one
in which it is differentiated, this change in reference can be described by including
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a rotation matrix similar to (2.11). While a constant position vector can likewise
be transformed between two coordinate systems i and j with the same origin, this
is not the case if the latter frame is rotating with an angular velocity. A look at
the properties of an orthonormal rotation matrix shows that the product with its
transpose is equal to the identity matrix (2.5) and by differentiation together with
the definition of skew-symmetric matrices (2.8) this results in

PRRT
CR PRT

D PRRT
C . PRRT /T D S C S T

D 0 : (2.46)

The derivative of a constant vector moving with an angular velocity is thus given by

jv D j
Pp D j PRi

ip D j PRi
jRT
i
jp D jSi

jp : (2.47)

In a different interpretation, the sin � and cos � values in (2.13), (2.14), and (2.15)
respectively approach d� and 1 for the differential rotation d� . With the X-Y-Z fixed
angle representation (2.17), this also results in the skew-symmetric matrix definition
and is often referred to as angular velocity matrix. In this case, its three parameters
describe the angular velocity vector ! and together with the description of linear
velocity v the two can now be defined as

v D vx O{C vy O| C vz Ok (2.48)

! D !x O{C !y O| C !z Ok : (2.49)

Multiplication of a screw-symmetric matrix with a vector is equal to the cross prod-
uct with a vector of its three defining components. The description of linear and
angular velocities can thus be transformed between two frames with different ori-
gins and orientations by the equations

jv D jRi .
ivC i! � ipj / (2.50)

j! D jRi
i! : (2.51)

When both linear and angular velocity are combined into a single vector of size 6�1,
this relationship can also be written in the form�

j!
jv

�
D
jXi

�
i!
iv

�
: (2.52)

Considering the fact that a cross product between two vectors is equivalent to a
skew-symmetric matrix multiplication this gives

jXi D

�
1 0

S .jpi / 1

� �
jRi 0

0 jRi

�
D

�
jRi 0

S .jpi /
jRi

jRi

�
(2.53)

and its inverse
jX�1i D

iXj D

�
iRj 0

�iRj S .
jpi /

iRj

�
: (2.54)
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Multiple of these transformations can be combined through multiplication such that

kXi D
kXj

jXi : (2.55)

Through further differentiation, the corresponding linear and angular acceleration
definitions are formulated similar to (2.44) and (2.45). These can also be expressed
in different coordinate systems by

j
Pv D jRi

�
i
PvC i

P! � ipj C 2
i! � ivC i! � . i! � ipj /

�
(2.56)

j
P! D jRi

i
P!C jRi

i! � j! : (2.57)

A connection between velocities in operational space and the velocities in the
joints of a robot system can be established through partial differentiation of the
forward position kinematics equations with respect to time [38, 137, 30]. A Jacobian
matrix J is a multidimensional representation of such a derivative that can transform
velocities between the two domains relative to a chosen reference frame. For a serial
chain with n degrees of freedom and one end effector with six combined linear and
angular velocity terms this results in a 6 � n matrix. A vector of joint velocities Pq
at a current joint configuration q can thus be mapped to a vector of combined linear
and angular velocities Px relative to a coordinate system i by

i
Px D iJn.q/ Pq ; (2.58)

where n represents the reference frame associated with the end effector. This opera-
tion is commonly referred to as forward velocity kinematics. Changing the reference
coordinate system in which a Jacobian is expressed can be achieved with a 6 � 6
matrix in the following way:

jJn.q/ D

�
jRi 0

0 jRi

�
iJn.q/ : (2.59)

In a similar fashion, the Jacobian defining the velocity in a different frame can be
calculated according to (2.52). By differentiation, a similar correlation between joint
accelerations Rq and end effector accelerations Rx can be derived with

Rx D J .q/ Rq C PJ .q; Pq/ Pq ; (2.60)

also known as forward acceleration kinematics. Systems with multiple end effec-
tors are described by additional rows in the Jacobian. Depending on the number
of end effectors and their operational degrees of freedom this gives the general
form of a m � n matrix, where m is usually a multiple of 6. The opposite veloc-
ity relationship—or inverse velocity kinematics—is described by the inverse of the
Jacobian such that

Pq D J�1.q/ Px ; (2.61)

however this leads to problems in cases where the matrix is not invertible. These
configurations are referred to as kinematic singularities and can appear at multiple
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locations in a robot’s workspace. At least one degree of freedom at the end effector
is lost in positions that can occur either close to the boundaries of the workspace
or whenever multiple joint axes line up. A rating of the closeness to a singularity is
given in form of the manipulability measure

�.q/ D

q
det
�
J .q/J T.q/

�
; (2.62)

that describes the volume of a manipulability ellipsoid. A Jacobian can also be writ-
ten in singular value decomposition (SVD) form as U˙V T with a matrix U of m
orthonormal output basis vectors u, a matrix ˙ of m singular values � , and a ma-
trix V of n orthonormal input vectors v. The vectors u1, . . . , um also represent the
eigenvectors of the product of this Jacobian with its transpose. A velocity ellipsoid’s
principal axes are therefore defined by the directions of these vectors and their length
is given by the corresponding singular values. The manipulability measure can thus
also be calculated by a product of all singular values. A traditional Moore-Penrose
pseudoinverse JC based on SVD has stability issues in the vicinity of singularities
and should be replaced by other methods such as damped least squares. Together
with a damping factor �, they provide a numerically stable solution

J �.q/ D J T.q/
�
J .q/J T.q/C �2 1

��1 (2.63)

that becomes equal to (2.61) when this variable is set to 0. This factor can also be
used in a matrix inversion based on SVD for an alternative representation

J �.q/ D

rX
iD1

�i

�2i C �
2
vi u

T
i ; (2.64)

where only the singular values greater zero up to rank r are included. For the non-
singular case and a zero damping factor this method does not change the robot’s
behavior. Another difficulty remains in choosing an appropriate � that is determined
by the distance to a singularity, however a solution is naturally provided by the value
of the smallest singular value �min compared to a specified threshold " with

�2 D

´
0 �min � "�
1 � .�min ="/

2
�
�2max �min < "

(2.65)

and an upper bound �max occurring at a singularity. High values of the damping
factor result in low tracking accuracy in all directions and additional filtering based
on the responsible components may be applied.

Besides linear and angular velocities, static forces and moments as well as their
relationship to joint torques also have to be considered. These properties can be
described in vector notation with respect to a specified reference frame through
definitions of a static force vector f and a moment vector n. Analog to (2.48–2.49)
and (2.50–2.51), these quantities can be described relative to a coordinate system
with different origin and orientation by the formulas
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jf D jRi
if (2.66)

jn D jRi .
inC if � ipj / (2.67)

or the equivalent and convenient matrix transformation�
jn
jf

�
D
jX�T
i

�
in
if

�
: (2.68)

In accordance with (2.53–2.54), this presentation with its forward and inverse oper-
ations is defined as

jX�T
i D

�
jRi S .jpi /

jRi
0 jRi

�
D
iXT
j (2.69)

and its matching counterpart

jXT
i D

iX�T
j D

�
iRj �iRj S .

jpi /

0 iRj

�
: (2.70)

The connection between the combined static forces and moments in operational
space Ef to an n-dimensional vector of joint torques � is realized through the trans-
pose of the Jacobian matrix:

� D J T.q/ Ef (2.71)

Ef D J�T.q/� : (2.72)

Resembling the issues in the position domain, the inverted operation that maps joint
torques to operational space forces also suffers from singularities. The force ma-
nipulability ellipsoid’s principal axes are identical to the ones used in the velocity
variant, the axes lengths however are defined by the reciprocals of the singular val-
ues instead.

Transformation of velocities and static forces between frames and their relation
to joint velocities and torques is only part of the process of achieving motion in
a robot system. In order to create appropriate joint torques for following a trajec-
tory described by joint positions, velocities, and accelerations, a relation between
the forces and moments exerted by a robot’s links and the joints to which they are
connected needs to be established. With this in mind, the force f exerted by the ac-
celeration Pv of a rigid body with mass m at its center of mass is given by Newton’s
equation as

f D m Pv ; (2.73)

whereas the moment necessary for creating a rigid body’s angular velocity ! and
acceleration P! is defined by Euler’s equation

n D I P!C! � I! : (2.74)
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The 3�3matrix I describes the inertia of the rigid body at its center of mass. It char-
acterizes the rigid body’s distribution of mass along the corresponding coordinate
system’s axes such that

I D

24 ixx �ixy �ixz
�ixy iyy �iyz
�ixz �iyz izz

35 : (2.75)

The general equation of inverse dynamics in which an n-dimensional vector of joint
torques � is related to a trajectory’s description in form of joint positions q, veloci-
ties Pq, and accelerations Rq is given by

� D H .q/ Rq C b.q; Pq/C g.q/ ; (2.76)

whereH represents the n � n mass matrix with respect to the current joint settings.
The centrifugal and Coriolis terms at this position and velocity are written in form of
a n � 1 vector b, while the n-dimensional vector g describes the influence of gravity
on the current posture. This formulation however does not include any compensation
for joint friction. The inverse relationship

Rq D H �1.q/
�
� � b.q; Pq/ � g.q/

�
(2.77)

can be used in order to simulate the motion that would result from applying specific
joint torques at a current state. In combination with integration formulas such as the
Runge-Kutta methods or DASSL (Differential Algebraic System Solver) [118], this
forward dynamics equation can for instance be used in visualization applications.
It is also useful to apply this principle to operational space in order to be able to
describe paths and forces in this domain. In accordance with (2.76), the same con-
nection between m � 1 vectors of operational forces Ef and acceleration Rx can be
specified as

Ef D �.q/ Rx C �.q; Pq/C �.q/ ; (2.78)

with an operational mass matrix � of size m �m, an m-dimensional vector of op-
erational centrifugal and Coriolis terms �, and the operational gravity component �
as a vector of dimensionm � 1. By applying (2.71) this can be rewritten in the form

� D J T.q/
�
�.q/ Rx C �.q; Pq/C �.q/

�
; (2.79)

and the various operational space components can be described in terms of their joint
space counterparts when combining this property with (2.58) and (2.60), thereby
resulting in the expressions

�.q/ D J�T.q/H .q/J�1.q/ (2.80)

�.q; Pq/ D J�T.q/
�
b.q; Pq/ �H .q/J�1.q/ PJ .q; Pq/ Pq

�
(2.81)

�.q/ D J�T.q/g.q/ : (2.82)
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The definition of the operational space mass matrix in (2.80) can be used in order to
create an alternative formulation of the Jacobian inverse as

J�1.q/ D H �1.q/J T.q/�.q/ ; (2.83)

which is also referred to as the dynamically consistent generalized inverse NJ . It can
be rewritten solely in joint space terms by substitution such that

NJ .q/ D H �1.q/J T.q/
�
J .q/H �1.q/J T.q/

��1
: (2.84)

Compared to the previous definition that is only based on kinematic characteristics
of the robot, it has the advantage of including inertia properties as well, thereby
improving stability.

2.1.4 Denavit-Hartenberg Convention

One of the earliest conventions for efficiently describing robot systems composed
of joints and links was introduced in [42]. It exploits the fact that only four param-
eters are required in order to locate a line in space compared to the six in a univer-
sal transformation. This can be achieved by economic placement of the reference
frames attached to joints and links such that the axis Ox of a frame is both intersect-
ing and perpendicular to the axis Oz of the previous frame. The length and twist of
every link in the system is described by a translation a followed by a rotation ˛. The
joint offset translation d and angle of rotation � complete this convention. All a
and ˛ parameters are constants, while the other two may serve as joint variables.
For instance, a revolute joint changes the rotation angle � , while only the value of d
is adjustable in the prismatic version and cylindrical joints rely on both parameters.
A screw joint on the other hand controls � and calculates d according to the joint
variable’s value and its pitch. Several variations for locating the reference frames
have been introduced in the literature, with different mismatches in the indexes of
joints, links, frames, and parameters [117, 90, 38]. This section uses the version in-
troduced in [90], as it applies the same index i to the joint, its coordinate system,
the link moved by it, and the corresponding parameters. The respective ai and ˛i
values however characterize the length and twist of the previous link.

In this notation, the first parameter ai describes the translation along the Oxi�1
axis, followed by a rotation ˛i about the Oxi�1 axis. This is succeeded by a trans-
lation di along Ozi and finally a translation �i about Ozi . The axis of joint i is thus
always aligned with the Ozi axis (Fig. 2.3). These operations can be expressed in the
form of homogeneous transformation matrices

i�1Ti D Trans. Oxi�1; ai / Rot. Oxi�1; ˛i / Trans.Ozi ; di / Rot.Ozi ; �i / ; (2.85)

where Trans describes a pure translation along a specific axis and Rot a basic rota-
tion as demonstrated in (2.29) and the four components can also be interpreted as a
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(a) (b)

Fig. 2.3 Denavit-Hartenberg kinematics of a Puma robot with axes, rotation directions, and corre-
sponding links. a combined view, b exploded view

combination of two axial screw transformations. Merged in a single transformation
matrix, this is equal to

i�1Ti D

2664
cos �i � sin �i 0 ai

sin �i cos˛i cos �i cos˛i � sin˛i � sin˛i di
sin �i sin˛i cos �i sin˛i cos˛i cos˛i di

0 0 0 1

3775 : (2.86)

Due to the restrictions on the placement of coordinate systems and the fact that
joint axes are always aligned with the Ozi axis, the column vector of joint i in the Ja-
cobian matrix that transforms velocities of the end effector in frame n to operational
velocities relative to frame j can be specified as

jjnji .q/ D

�
j Ozi � .

jpn �
jpi /

j Ozi

�
(2.87)

in case of a revolute joint and

jjnji .q/ D

�
j Ozi
0

�
(2.88)

for a prismatic one.
Calculation of the inverse dynamics equation (2.76) is realized in two steps. First,

the velocities and accelerations in each coordinate system are propagated from the
base to the end effector, adding the velocities Pqi acting in each joint. This is per-
formed by adapting the equations for the transformation of linear (2.50) and angu-
lar (2.51) velocity as well as linear (2.56) and angular (2.57) acceleration for each
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joint type. For a revolute joint in a serial chain this results in the formulas

!i D Ok Pqi C
iRi�1!i�1 (2.89)

P!i D Ok Rqi C
iRi�1 P!i�1 C

iRi�1!i�1 � Ok Pqi (2.90)

vi D
iRi�1 .vi�1 C!i�1 �

i�1pi / (2.91)

Pvi D
iRi�1

�
Pvi�1 C P!i�1 �

i�1pi C!i�1 � .!i�1 �
i�1pi /

�
; (2.92)

where velocities and angular accelerations are initialized with a value of zero. Grav-
itational influence can be accounted for with an appropriate linear acceleration at
the base. During this first run, the forces f B

i and moments nB
i acting at the center of

mass Ci of each body can also be determined. Their result is based on the mass mi ,
the inertia IB

i , and acceleration PvB
i at the center of mass such that

PvB
i D Pvi C P!i �

Cipi C!i � .!i �
Cipi / (2.93)

f B
i D mi Pv

B
i (2.94)

nB
i D I

B
i P!i C!i � I

B
i !i : (2.95)

In the second step of the recursive Newton-Euler algorithm, the effect of these forces
and moments on the previous frames and joints is evaluated through

fi D f
B
i C

iRiC1 fiC1 (2.96)

ni D n
B
i C f

B
i �

Cipi C
iRiC1 .niC1 C fiC1 �

iC1pi / (2.97)

�i D n
T
i
Ok : (2.98)

In case of a revolute joint, the torque � is a result of moments acting on the joint axis.
The linear velocity terms are never used in this algorithm and their computation may
thus be omitted. External forces acting on the system can optionally be integrated
during the final step and the forces and moments of several subchains in a tree-like
structure are combined through addition.

2.1.5 Spatial Vector Algebra

As seen in Sect. 2.1.4, the description of robot system using the Denavit-Hartenberg
convention is fairly complex and many incompatible versions are currently in use.
The placement of link frames has been restricted for performance reasons, kinemat-
ics and dynamics equations have to be specified individually for each joint type and
it is rather difficult to integrate new joint classes. Especially dynamics algorithms
tend to appear extremely complicated when formulated with three-dimensional vec-
tors. The alternative representation based on six-dimensional vectors introduced
in (2.52) and (2.68) can be used to create more compact descriptions without sacri-
ficing performance. By directly integrating concepts for different joint models, such
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an algorithm is valid for a broad range of robot systems and can also support kine-
matic trees and closed-loop constraints.

Spatial vectors are not part of Euclidean space and the notation [48, 137] distin-
guishes between members of either spatial motion or force vector spaces. Elements
such as velocity or acceleration are classified as motion vectors, while force vectors
include momentum, impulse, and other related quantities. The dot product is only
defined between motion and force vectors, all other combinations are undefined:

Ev � Ef D

�
!

v

�
�

�
n

f

�
D ! � nC v � f : (2.99)

As demonstrated in (2.46), the derivative of a constant vector rotating with an an-
gular velocity is calculated using a skew-symmetric matrix or the identical cross
product operation. This concept can be extended to the domain of spatial vectors
with the analog definition of a matrix

S .Ev/ D

�
S .!/ 0

S .v/ S .!/

�
; (2.100)

such that a constant vector Ev2 moving with a velocity Ev1 is mapped to

PEv2 D Ev1 � Ev2 D S .Ev1/ Ev2 D

�
!1
v1

�
�

�
!2
v2

�
D

�
!1 �!2

v1 �!2 C!1 � v2

�
: (2.101)

Similar to (2.52) and (2.68), there are different cross product operators for spatial
motion and force vectors. A constant force Ef subject to velocity Ev is represented as

PEf D Ev ��T Ef D �S T.Ev/ Ef D

�
!

v

�
�

�
n

f

�
D

�
! � nC v � f

! � f

�
: (2.102)

The exerted spatial force of a rigid body equals its change of momentum with respect
to time. The spatial equation of motion can therefore be formulated as

Ef D
d. EI Ev/

dt
D EI EaC

PEI Ev D EI EaC Ev ��T EI Ev D EI EaC Ě ; (2.103)

where the spatial inertia matrix EI with respect to a frame j is defined by

j EI D

�
iI CmS .jpi /S .

jpi /
T mS .jpi /

mS .jpi /
T m1

�
(2.104)

and Ě can be interpreted as a vector of bias force. In this representation, the rigid
body’s center of mass is located in frame i and its origin relative to the spatial inertia
one’s is described by a displacement vector p. The distribution of the body’s massm
at this location is given in form of the inertia matrix I according to (2.75). In case
of equal origins, the spatial equation of motion can be written as
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f

�
D

�
I 0

0 m1

� �
P!

Pv

�
�

�
S .!/T S .v/T

0 S .!/T

� �
I 0

0 m1

� �
!

v

�
D

�
I P!C! � I!

m Pv

�
;

(2.105)

thus resulting in the formulation given by Newton’s (2.73) and Euler’s (2.74) re-
spective equation.

With these definitions, the two loops of the recursive Newton-Euler algorithm in-
troduced in Sect. 2.1.4 can be formulated in spatial vector algebra. The propagation
of velocity and acceleration in a serial chain is accomplished in the first step by

Evi D
iXi�1 Evi�1 C˚i Pqi (2.106)

Eai D
iXi�1 Eai�1 C˚i Rqi C P̊i Pqi ; (2.107)

with initial values of zero for velocity and gravity influence in case of acceleration.
The spatial transformation X contains rotation and translation descriptions that de-
pend on the current joint configuration. An ni -dimensional joint’s directions of free
motion are modeled by a matrix ˚i of size 6 � ni . Its derivative P̊i can also be
written in the form

P̊
i D

V̊
i Pqi C Evi �˚i Pqi ; (2.108)

where V̊i is the apparent derivate of ˚i in body coordinates. For most common
joint types including revolute and prismatic joints, its value is equal to zero. A revo-
lute joint’s rotation matrix can be generated using the axis-angle description and its
translation component is equal to the null vector. If the joint is aligned with the Ozi
axis as in the Denavit-Hartenberg norm, its free motion directions are given by

˚i D
�
0 0 1 0 0 0

�T
: (2.109)

A prismatic joint on the other hand only produces translation but no rotation, there-
fore employing the identity matrix and a displacement vector in combination with

˚i D
�
0 0 0 0 0 1

�T
: (2.110)

Joint descriptions with other axes or additional degrees of freedom can be integrated
in a similar fashion. As demonstrated in Sect. 2.1.1 and 2.1.2, spherical and 6-DOF
joints are of special interest for free-floating robots. They are modeled with three- or
six-column motion matrices respectively and use (2.26) in order to convert quater-
nions to a rotation matrix. A mapping from four position to three velocity variables
is given by the derivative2664

Ph0
Ph1
Ph2
Ph3

3775 D 1

2

2664
�h1 �h2 �h3
h0 �h3 h2
h3 h0 �h1
�h2 h1 h0

3775
24!x
!y
!z

35 : (2.111)
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After calculating current velocities and accelerations in the body frames, the net
force in body coordinates generated by the acceleration of each link can now be
determined with the equation

Ef B
i D

EIi Eai C Evi �
�T EIi Evi : (2.112)

The second and final loop of the algorithm propagates the forces generated by the
individual links from the frame at the end effector back to the base:

Efi D Ef
B
i C

iX�T
iC1
EfiC1 (2.113)

�i D ˚
T
i
Efi : (2.114)

The transpose of the matrix ˚ is employed in order to map these forces to the
torques in the individual joints of a robot system. A graph structure can be used for
a description of such a model, where edges represent joints and bodies are marked
by vertices. Multiple forces acting at the forks of a tree can be combined through
addition and external influences are incorporated in the same way, however these
may have to include a proper spatial transformation if their description is not given
in body coordinates.

Forward dynamics calculation (2.77) is used in order to calculate joint accelera-
tions from a given set of joint positions, velocities, and torques. The articulated-body
algorithm can solve this task by interpreting a subtree of several joints and rigid
bodies as one articulated body with a combined articulated-body inertia matrix EIA

and bias force vector ĚA. The unknown force exerted on joint i by this subtree is
described by the following equation:

Efi D EI
A
i Eai C

ĚA
i : (2.115)

In combination with (2.114) and (2.107), this can be related to the generated torques
and is solved for the unknown joint accelerations such that

�i D ˚
T
i

�
EIA
i .Eai�1 C˚i Rqi C

P̊
i Pqi /C Ě

A
i

�
(2.116)

Rqi D .˚
T
i
EIA
i ˚i /

�1
�
�i �˚

T
i

�
EIA
i .Eai�1 C

P̊
i Pqi /C Ě

A
i

��
: (2.117)

Two articulated bodies can be combined through the addition of their individual
articulated-body inertias and bias forces. If the newly-created articulated body is
connected to the remaining system through joint i � 1, equation (2.107) can be used
in order to define

Efi�1 D EI
A
i�1 Eai�1 C

ĚA
i�1 C

EIA
i .Eai�1 C˚i Rqi C

P̊
i Pqi /C Ě

A
i : (2.118)

After substituting (2.117) for the joint accelerations, the new equation can be re-
grouped into two parts, where one is a coefficient of the spatial acceleration. This in
correspondence with the definition in (2.115) gives
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EIA
i�1 D

EIA
i�1 C

EIA
i �
EIA
i ˚i .˚

T
i
EIA
i ˚i /

�1˚T
i
EIA
i (2.119)

ĚA
i�1 D

ĚA
i�1 C

EIA
i ˚i .˚
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i
EIA
i ˚i /

�1
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�i �˚
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i .
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i
P̊
i Pqi C Ě

A
i /
�

C EIA
i
P̊
i Pqi C Ě

A
i ;

(2.120)

with the two components defined independent of spatial acceleration. The articu-
lated-body equations above are not given in link coordinates and therefore still need
to add appropriate spatial transform matrices. In the first of three loops of a re-
cursive implementation, spatial velocities are propagated from the base to the end
effector, starting with an initial value of zero. During this run, the articulated-body
inertias and bias forces are assigned with the respective spatial inertias of the links
and their velocities. In the second loop, articulated-body inertias and bias forces are
calculated backwards from the end effector to the base. After initializing the base
according to gravity, the final loop then transforms the spatial accelerations toward
the end effector and uses these values in order to generate appropriate joint accel-
erations. This result can now be leveraged in combination with integration methods
for simulation purposes. The extension to kinematics trees is given by the addition
of articulated-body inertias and bias forces at forked subtrees.

2.1.6 Task-Based Control

Highly-redundant manipulators possess more degrees of freedom than are neces-
sary for a desired end effector task. An operational space activity including all six
position and orientation axes requires a robot system with at least six degrees of
freedom, a specification met by most standard industrial manipulators. For tasks
with fewer constraints or systems with redundant joints, the additional degrees of
freedom can be used in order to follow other operations while maintaining the con-
straints of the main task. This is especially interesting for systems with multiple end
effectors and complex humanoid systems. Constraints can include various activi-
ties such as posture control, obstacle avoidance, gravity compensation, or joint limit
avoidance [92, 134, 135, 137, 102].

Section 2.1.3 introduced different control schemes for end effector trajectories,
including operational space control. In order to integrate an operational task with
a non-interfering posture command, the latter control velocities or torques are pro-
jected into the dynamically consistent nullspace N of an operational space task
given by

Ntask.q/ D 1 � NJ .q/J .q/ : (2.121)

The combined control vector keeps the operational space task’s constraints at all
times, while using redundant joints in order to reach a desired posture:

� D J T.q/ Eftask CN
T
task.q/�posture (2.122)

Pq D NJ .q/ Pxtask CNtask.q/ Pqposture : (2.123)
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Fig. 2.4 Demonstration of
task-based control: only three
degrees of freedom are re-
quired in order to maintain
a position in space, the re-
maining joints of a 7-DOF
manipulator can be used for
posture control

Specific decoupling of axes in the operational task can be introduced with anm �m
selection matrix � . Its diagonal corresponds to the m rotational and translational
degrees of freedom in operational space. This number is usually equal to six in case
of a manipulator with one end effector. If initialized with the identity matrix, all axes
are subject to decoupling and the position and orientation constraints of the task are
observed. In the definition

Ntask.q/ D 1 � NJ .q/� J .q/ ; (2.124)

selective axes can be omitted by setting the corresponding entries in the diagonal
to zero, for instance in order to lock position of the end-effector (Fig. 2.4). Various
control paradigms can be integrated as the different tasks are all integrated on the
joint torque or velocity level. Integration of components is achieved by a generated
control vector and a matching projection function.

This type of task definition has the additional advantage that control programs
are independent from a specific robot system or model and can be ported between
several kinematics and dynamics specifications. Multiple parallel tasks can be or-
dered according to priorities and projected into the nullspace of the superior task
with the two equations

� D �1 CN
T
1 .q/

�
�2 CN

T
2 .q/ .�3 C : : :/

�
(2.125)

Pq D Pq1 CN1.q/
�
Pq2 CN2.q/ . Pq3 C : : :/

�
: (2.126)

Several different control strategies can be combined using this approach. For in-
stance, a humanoid can keep its balance by including a center of gravity task while
using force control in its right hand in order to keep in contact with a table. At the
same time it can focus its vision on a moving object in space and avoid obstacles in
its vicinity with a potential field approach. Hard constraints that may not be violated
should be assigned the highest priorities (e.g., tasks associated with hardware limits
or balance).
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Kinematics
Dynamics Links

Scene Model Body Shape

Fig. 2.5 Connection between data from kinematics and dynamics representations of a robot system
to its geometric model. The coordinate systems in each link of the kinematics structure are used
in order to position the corresponding bodies in the scene graph. Shapes are placed relative to a
moving body and their frames are updated in the process as well

2.2 Geometric Representation

Kinematics and dynamics equations are only part of a robot system’s description. Its
geometry and shape specifications are also required in order to generate proper visu-
alizations and simulations of the mechanism. For the system itself, this information
is usually available in form of CAD data with varying accuracy and sometimes these
details are also available for stationary or moving objects of the environment. Very
often however these obstacles will rather be modeled and tracked through sensor
data with even lower precision.

A description of the robot and other models in the scene is given in form of
a collection of rigid bodies (Fig. 2.3). Each of these elements can be located rel-
ative to a world frame by the position of its origin and a corresponding orienta-
tion (Sect. 2.1.1). The forward position kinematics of a robot system can be used
in order generate this data based on the current joint positions and their individual
links can then be synchronized with the respective geometry parts (Fig. 2.5). This
can include serial chains, trees, or even closed-loop structures. Moving obstacles are
updated in a similar fashion. A single rigid body can be composed of various basic
shapes such as boxes, spheres, cylinders, or general polygon meshes. Detailed visu-
alizations are usually based on models with many shapes and a high polygon count,
however this type of resolution can vastly decrease performance of collision detec-
tion and physics simulation algorithms. This is often prevented by including two
geometry descriptions, where the second one has a much lower complexity and of-
ten falls back to basic shapes or convex hulls [8]. This simplification should however
always avoid common approximations from computer graphics that remove impor-
tant parts of the model, as this can lead to collisions on the actual hardware [32].
Due to this, the new shape should rather be slightly larger than smaller (Fig. 2.6).
Concave parts can also be split into a number of convex objects in order to accom-
plish a better approximation and performance, finding a minimal representation for
this however is NP-hard [6]. The extreme detail of CAD models typically also re-
quires simplifications for visualization components. Material properties and lighting
parameters need to be considered here as well.
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(a) (b) (c)

(d) (e) (f)

Fig. 2.6 Stanford bunny with 35 947 vertices and 69 451 triangles. a original, b critical reduction,
c convex hull, d axis-aligned bounding box, e bounding sphere, f axis-aligned bounding cylinder

2.2.1 Collision Detection

Factory settings typically have robot manipulators working in areas with limited
space and in close cooperation with other machines and mechatronic systems. Col-
lisions are manually prevented by detailed inspection of the individual robot’s trajec-
tories, especially with regard to other moving objects or robots. Even self-collisions
of the robot are only partially eliminated by restricted joint angles and different tool
systems often require new verifications. In particular scenarios without extensively
tested trajectories and programs that can be created on demand by less specialized
personnel call for collision detection systems based on geometry data and sensor
information. Robot systems in industrial scenarios and other applications with com-
plex environment models operate with fast control cycles of up to 1000 Hz, thus
relying on high performance algorithms that can provide direct feedback in case of
online modifications. Three basic query types are generally available when dealing
with this kind of problem. The most simple and fastest form of calculation is the
intersection test. It is used in order to determine whether two objects in their current
configuration are colliding with each other. Finding actual witness points to such a
collision however is already much more complex. Imperfect geometries and sensor
readings can sometimes be compensated for with enlarged models, but more de-
tailed adjustments and informations are obtained through rather expensive distance
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computations, that calculate the minimum clearance between two non-colliding ob-
jects. A similar concept is available for intersecting geometries in the form of pene-
tration depth computation, which is often used in physics simulations.

Whether an object is contained within a different geometric part can only be an-
swered for a closed, bounded, and nonempty set of points. This task is rather difficult
for a number of unordered polygons with no information regarding their connectiv-
ity and relation toward each other [15, 44]. Several classes of objects are typically
found in collision detection applications, with basic primitives in the form of boxes
and spheres to more abstract definitions of solid objects such as convex and concave
types. If all line segments between any pair of points are contained within the object
itself, it is referred to as convex. This includes basic shapes such as boxes, cones,
cylinders, and spheres. Much simpler and faster algorithms are usually available for
these categories compared to concave objects of arbitrary polygon meshes. Even in
case of a collection of convex objects, a precise test of all geometries is rather ex-
pensive in order to answer a simple intersection query. In addition to a narrow phase
that handles these exact computations, a prior broad phase introduces different types
of simplified bounding volume abstractions in order to only test likely collisions.

Spheres can be represented by a center point and a corresponding radius in a very
inexpensive way. They are often used as bounding volumes for rigid bodies due to
their efficient description and invariance under rotation. Intersection between two
spheres occurs when the distance between their center points is less or equal to the
sum of their radii. In a similar fashion, the space between them can be calculated
by subtracting the sum of their radii from the distance of their origins. This value is
naturally equal to zero in case of intersection, as is the penetration depth for non-
colliding spheres. The latter is determined for intersecting spheres by the sum of
their radii minus the distance between center points.

Another popular bounding volume representation are axis-aligned boxes. They
can either be specified by using minimum and maximum points, a minimum point
and widths along the axes, or a center point and corresponding half widths. The
latter representation however is often chosen for efficiency reasons, as fewer pa-
rameters need to be updated and it can also be used to create a matching bounding
sphere description. Intersection can be efficiently determined by comparison when
two boxes are represented with respective minimum and maximum points. Similar
tests can be performed with boxes specified by a single point and extents along axes.

Convex objects possess various properties that make them ideal candidates for
collision detection purposes. Two non-intersecting convex shapes can always be
separated by a plane and a local minimum distance between them is also always
a global minimum. The latter property enables the use of simple hill climbing
methods for distance computation, such as in the very efficient Gilbert-Johnson-
Keerthi (GJK) algorithm [64] and its adapted version for general convex ob-
jects [63]. This approach calculates the distance between the Minkowski difference
of two objects and an origin instead of working on the actual shape descriptions. Ex-
plicit calculation of this representation is however avoided by introducing functions
that map a vector to a support point of a convex object. Different types of con-
vex shapes can be integrated by supplying corresponding support mappings. This
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method can also be adapted in order to determine the penetration depth of two in-
tersecting objects.

2.2.2 Physics Simulation

Testing and verifying a new implementation or algorithm before actually running it
on real hardware is generally advisable. Proper visualization of inverse kinematics
solutions or joint trajectories alone can help identify errors in calculations as the
mapping from joint to operational space is not always intuitive. This is even more
important for architectures with direct torque control, where false values can lead to
serious hardware damage. Forward dynamics solutions as introduced in Sect. 2.1.5
in combination with integration methods can be used in order to evaluate the un-
derlying physics equations in such a scenario. Physics simulation does not end here
however; other aspects include contact and penetration with other objects, deforma-
tion of soft bodies, friction models and air resistance, spring dynamics, or particle
systems. A virtual robot model that approximates influences in the real world can
assist in the development of new algorithms or in the training of machine learning
systems before they are deployed onto the actual hardware.

Contact and penetration information from geometric models is an important fac-
tor in physics engines [45]. This data can be evaluated for a specific configuration of
rigid bodies and its runtime is dependent on the complexity and amount of objects
in the simulated world. Simplified models and bounding volume abstractions are
typically introduced in order to increase performance (Sect. 2.2.1). Moving objects
and fixed time step intervals however demand the availability of continuous detec-
tion methods in order to register all collisions. Geometric coherence also needs to
be considered as these features often remain constant between consecutive steps.

Current approaches can be classified into three major categories: constraint-
based, penalty-based, and impulse-based methods. Tight constraints as they occur
in robotic structures with various joints can be efficiently simulated by the first of
these paradigms. A large selection of algorithms are available in this area, includ-
ing the Articulated-Body Algorithm or the Composite-Rigid-Body Algorithm [48].
Penalty-based engines [7] model systems as unconstrained equations, where devi-
ations are compensated through the addition of corresponding penalty forces. Stiff
springs try to restore two colliding objects to a non-penetrating state. This concept
can also be used in the simulation of soft-body dynamics. The last paradigm uses a
series of small impulses in order to prevent penetration between objects [107]. These
are applied at the contact points of collisions and thus require a high frequency sim-
ulation loop. Highly unconstrained systems with many fast moving objects are ideal
domains for this approach, whereas stable constraints such as joints require an ex-
cessive amount of collision handling. Hybrid solutions can combine the advantages
of multiple methods and may provide more stable and efficient simulations.





Chapter 3
Obstacle Avoidance and Motion Planning

A human operator has to pay close attention to the environment of a robot when
manually programming movements between two joint configurations. Obstacles
within the reachable area of the system and the robot’s structure itself confine
the possible number of solutions and may result in collisions. Joint limits gener-
ally do not eliminate self-collisions, especially given additional end-effector tools.
Furthermore, work areas of robot systems in close proximity may overlap and re-
quire exact synchronization. An operator has to consider all of this when creating
a path between two configurations. This may result in a series of seemingly arbi-
trary movements in the program. Motion planning algorithms on the other hand
can automatically generate collision free paths given a specified start and goal con-
figuration. Adjustments in target positions do not require manual reprogramming
of movements and thus enable easier maintenance and program readability. Com-
plex scenarios however can provide difficult challenges for planning algorithms and
randomly generated paths may prove inefficient. The removal of fences and the in-
troduction of direct interaction with a robot system further intensifies the need for
sensor integration and dynamic obstacle avoidance.

The classic problem of motion planning as it is described in [97, 99] comprises
an articulated robot A as a single rigid object in a workspace W without dynamic
properties or contact motions. All obstacles O1, . . . , Om are fixed rigid objects, the
geometry and location of the robot and all obstacles are given and perfectly accurate,
and there are no kinematic constraints that limit the motions of the robot. After
providing a start and goal configuration (qstart and qgoal), the task is to find a path for
the robot that does not collide with any obstacle or to report that no path could be
found. A complete planner must be able to report the availability of a solution to a
given query within a finite amount of time.

The workspace of a robot with n degrees of freedom is modeled as the Euclidean
space R2 or R3. It can be mapped to a configuration space C , which is a manifold
of dimension n. Obstacles in W are mapped to obstacles in the configuration space
and then referred to as C -obstacles such that

COi D
®
q 2 C W A.q/ \Oi ¤ ;

¯
: (3.1)

41
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(a) (b) (c)

Fig. 3.1 Combinatorial approaches to a two-dimensional configuration space with polygonal ob-
stacles. a vertical or trapezoidal cell decomposition, b Delaunay triangulation, c generalized
Voronoi diagram

The robot collides with its environment for every configuration that is part of the
obstacle region Cobst of the configuration space, represented by the union of all
obstacles in C :

Cobst D

m[
iD1

COi : (3.2)

Every non-colliding configuration of the robot is called a free configuration and part
of the free space

Cfree D C n Cobst D

°
q 2 C W A.q/ \

m[
iD1

Oi D ;
±
: (3.3)

The general motion planning problem is PSPACE-hard [125]. Early solutions
have worked on complete representations of the configuration space, for instance
in polygonal form [103]. These combinatorial approaches include vertical cell-
decomposition, triangulation, or Voronoi diagrams (Fig. 3.1). While all these meth-
ods are complete, they are typically not suitable for high dimensional problems.

3.1 Potential Fields

Potential functions [97, 31] view the robot as a particle moving through a gradient
vector field (Fig. 3.2). The goal position acts as an attractive force on the robot,
while it is being repelled by forces from obstacles in its environment:

U.q/ D Uatt.q/C Urep.q/ : (3.4)

The robot stops moving when the gradient equals zero. This can happen either at a
local maximum, a saddle point, or a local minimum. Neither a local maximum nor
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Goal

Obstacle

Obstacle

(a) (b) (c)

Fig. 3.2 Motion planning scenario with goal configuration in the lower left and two circular ob-
stacles. a configuration space, b attractive and repulsive isolines, c attractive and repulsive vector
field

a saddle point is stable and any movement of the robot will exit the critical point.
However, if the robot reaches a local minima, further disturbances will generally
return the robot to this critical point. If this happens at a position unequal to the goal
configuration, the robot will not be able to reach its target. Due to this, a motion
planner based on potential fields alone is not complete. One possible solution for
this was introduced in the form of navigation functions [129]. They describe a set of
potential functions with no local minima, but finding these requires full knowledge
of the configuration space.

The attractive potential’s task is to lead the robot to a specified goal configura-
tion. It should depend on the distance d.q; qgoal/ of the robot’s current configuration
compared to the goal configuration. A very basic definition can be achieved by com-
bining this distance with a scaling factor �, resulting in a conic potential

U.q/ D � d.q; qgoal/ : (3.5)

The corresponding attractive gradient however is undefined at the goal configuration
as can be seen from

rU.q/ D
�

d.q; qgoal/
.q � qgoal/ : (3.6)

A simple quadratic potential can therefore replace the conic potential within a cer-
tain distance d�goal to the goal configuration:

U.q/ D 1
2
� d2.q; qgoal/ : (3.7)

The combined attractive potential Uatt.q/ (Fig. 3.3a) is well defined at the boundary
between both potentials and also prevents overshooting of the robot at far distances:

Uatt.q/ D

´
1
2
� d2.q; qgoal/ d.q; qgoal/ � d

�
goal

d�goal � d.q; qgoal/ �
1
2
� .d�goal/

2 d.q; qgoal/ > d
�
goal :

(3.8)
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(a) (b) (c)

Fig. 3.3 Potential field with goal configuration in the lower left and two circular obstacles. a at-
tractive potential, b repulsive potential, c combined attractive and repulsive potential

In order to prevent collisions with obstacles in its environment, the repulsive
potential Urep.q/ has to push the robot away from these objects. In contrast to the
attractive potential, it should only be active within a limited region of influence D�

to the corresponding obstacles. Such a function is defined in [91], depending on the
distance D.q/ to the closest obstacle and a scaling factor �, resulting in

Urep.q/ D

8<:1
2
�
�

1
D.q/
�

1
D�

�2
D.q/ � D�

0 D.q/ > D� :
(3.9)

This potential increases toward infinity as the robot moves toward the obstacle, re-
sulting in a nonlinear dependency between repulsive forces and distance to obsta-
cles. A different repulsive potential function (Fig. 3.3b) with a linear dependency is
presented in [23]:

Urep.q/ D

´
1
2
�
�
D� �D.q/

�2
D.q/ � D�

0 D.q/ > D� :
(3.10)

By only using the distance to the closest obstacle in the environment, the solution
may become numerically unstable in regions where obstacles are close together
and the distance function starts to oscillate between multiple obstacles. This can be
avoided by introducing multiple repulsive potentials for the individual obstacles.

Constructing a complete representation of the configuration space is usually not
possible for higher dimensions and even for trivial scenarios often quite expensive.
Calculating forces in the workspace on the other hand is much simpler, be it in the
form of sensors or calculations based on representations in three-dimensional space.
Forces in the workspace can further be mapped to the configuration space using the
robot’s Jacobian (Sect. 2.1.3). While a mobile platform is often represented by a
single rigid body, a robot manipulator consists of several articulated rigid bodies.
Depending on the number of degrees of freedom of the robot, a set of control points
on its rigid bodies are defined. The attractive and repulsive potentials are calculated
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Fig. 3.4 Repulsive forces
in workspace: The red lines
illustrate the minimum dis-
tances of an obstacle to the
body parts of the robot in a
given joint configuration. If
a distance is below a spec-
ified threshold (transparent
bubble), the distance is used
in order to compute virtual
forces on the robot

and finally added in the configuration space after transformation with the Jacobian.
Distance calculation between the robot and its obstacles can be used to add floating
control points (Fig. 3.4). As only the current configuration of the robot and the
environment affect its behavior, this method is also applicable for online control.

3.2 Sampling-Based Motion Planning

Especially with higher dimensional configuration spaces, creating a full represen-
tation becomes impractical. Instead, sampling-based motion planners try to avoid
this issue by only sampling a big enough subset that will suffice in finding a so-
lution path. The planners have limited access to the configuration space through a
separate collision detection procedure. Various geometry models and spaces can be
approximated by this, from simple two-dimensional ones up to three dimensions or
even more abstract scenarios. Many different collision detection implementations
are available, often being able to use CAD or simplified 3D model representations
for the robot and its environment (Sect. 2.2). Sampling-based planners benefit from
avoiding a complete representation of the configuration space, not from relying on
random or grid-based sampling—although these are commonly used in many plan-
ners. A small subset of sample points can often be sufficient for solving every possi-
ble query for a given scenario, but finding them would require complete knowledge
of the configuration space. A more intelligent selection of samples can help increase
the planning performance [27].

If a solution to a planning query exists, a complete planner must be able to find
a path within a finite amount of time. Implementing a complete planner however is
impossible for higher dimensions. The advantage of sampling-based planners de-
rives from only using an approximate representation of the whole configuration
space; they therefore feature a different type of completeness. If a solution to a
query exists, the planner will eventually find it as he continues to take more sam-
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(a) (b) (c)

Fig. 3.5 Sampling strategies and their corresponding Voronoi diagrams (100 sample points each).
a uniform distribution, b Halton sequence, c grid-based

ples of the configuration space. This is called probabilistic completeness [144] in
the case of random sampling and resolution completeness for grid-based sampling
schemes (Fig. 3.5).

Problems often arise in the form of so called narrow passages. Scenarios may
have many large open spaces where many collision free samples are generated.
These samples however will not help in solving queries that depend on placing ver-
tices in very small areas surrounded by obstacles. The robot’s movement is very
restricted in these areas and the probability of successfully placing a sample there is
very low. Due to the random nature of most planners, performance can differ greatly
between repeated runs. However, practical real life scenarios (e.g., in industrial set-
tings) can typically be solved easily by these planners.

As a sampling-based planner’s result often does not represent the shortest,
smoothest, or most efficient path, its quality can often be improved by different
forms of optimization in a post processing step [58]. A suitable collision free trajec-
tory can also be generated here. Especially for free floating robots, choosing good
metrics (Sect. 2.1.2) can be very important for the planner’s performance [93].

3.2.1 Probabilistic Roadmaps

Probabilistic Roadmaps (PRM) [84, 85] present a typical multi-query planning ap-
proach. They benefit from the fact that testing a single configuration for collision is
comparatively inexpensive and try to create an overview approximation of the com-
plete space rather than focusing on an actual path planning query. This is especially
useful in static environments, where the roadmap can be reused for future queries.

The basic structure of a PRM is based on a graph representation. Building a
roadmap for a given scenario starts with a construction phase (Algorithm 1). An
empty graph is filled with a specified amount n of collision free samples. After
adding all samples to the list of vertices, the nearest k neighbors of each vertex are
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Algorithm 1: CONSTRUCT
Input: n; k; r
Output:G D .V;E/

1 V  ;
2 E  ;
3 while jV j < n do
4 repeat
5 q RAND./
6 until q 2 Cfree
7 V  V [ ¹qº

8 forall the q 2 V do
9 INSERT.G;q; k; r/

10 returnG

Algorithm 2: INSERT
Input:G D .V;E/;q; k; r
Output:

1 Nq  NEAREST.G;q; k; r/
2 forall the q0 2 Nq do
3 if .q;q0/ 2 Cfree then
4 E  E [

®
.q;q0/

¯

Algorithm 3: SOLVE
Input:G D .V;E/;qstart;qgoal; k; r
Output:

1 V  V [ ¹qstartº

2 INSERT.G;qstart; k; r/
3 V  V [ ¹qgoalº

4 INSERT.G;qgoal; k; r/
5 while .qstart; : : : ;qgoal/ … G do
6 repeat
7 q RAND./
8 until q 2 Cfree
9 V  V [ ¹qº

10 INSERT.G;q; k; r/

calculated. The selection of neighbors can optionally be restricted to fall within a
given radius r of the distance metric in use. Every sample point is tested for connec-
tivity with each of its neighbors. For this, a simple straight line edge verifier with
a specified step size is commonly used. The intermediate collision checks between
the two vertices can be performed in sequential order or by using subdivision (e.g.,
the van der Corput sequence [36]). The latter often requires fewer tests to report a
collision. Only edges between vertices that are not already in the same connected
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Fig. 3.6 Behavior of a Probabilistic Roadmap planner with uniform sampling in a two-dimensional
scenario with three square-shaped obstacles. Several connected components are formed until a
collision free path (green) is found using a graph search algorithm

component of the graph are usually added to the graph in order to avoid cycles in
the graph. However, having a certain amount of redundancy in the form of cycles
can be beneficial in dynamic environments, where edges might have to be removed
again later due to collisions.

In order to solve a specific path planning query after the initial roadmap has
been constructed, the given start and goal configurations have to be connected to
the graph (Algorithm 3). The calculation of their nearest neighbors and the insertion
into the graph are handled in the same way as during the construction phase (Algo-
rithm 2). The path planning query is successful if the start and goal configurations
are in the same connected component of the graph afterwards (Fig. 3.6). A search
algorithm can then be used to extract the shortest collision free path (e.g., Dijkstra’s
algorithm). Otherwise, the roadmap has to be extended until a collision free path
can be found. Although this is not its primary application, the PRM planner can be
modified to perform single-query requests by omitting the initial construction phase.

Initially, uniform sampling was used for the creation of sample points. This has
proven to be good for a variety of problems and ensures probabilistic complete-
ness. For scenarios with narrow passages however, many free configurations are
found and added in large open areas that do not help in improving the quality of the
roadmap. The probability of placing a sample in a narrow passage that is required
for solving a query however is very low. As the planner tries to create a represen-
tation of the whole configuration space, it also places samples in areas that are not
even connected to later start and goal configurations. Large roadmaps also lead to
slow performance when it comes to finding nearest neighbors. This can be partially
circumvented through different connection strategies [61] and advanced methods
such as k-dimensional trees [155]. An ideal roadmap would only include as few
vertices as necessary for solving all possible path planning queries. Various sam-
pling strategies have been introduced to improve the quality of the roadmap and to
reduce the number of sample points and vertices.

In order to have more vertices in regions close to obstacles, Gaussian sam-
pling [19] creates random samples until a collision is detected. A second sample
point close to the previous one is then chosen based on a Gaussian distribution and
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Fig. 3.7 Implicit Voronoi bias in a Rapidly-Exploring Random Tree. The series shows the state
with 10, 100, and 1000 vertices. An expansion quickly covers the configuration space before in-
creasing density in other areas

added to the roadmap if it is within Cfree. Choosing a standard deviation that is too
large will result in an almost uniform distribution.

Similar to this, the bridge test [73] tries to increase the number of sample points in
narrow passages by looking for a free configuration in the middle of a line between
two collision samples. The endpoints of the bridge across the narrow passage are
located within Cobst, while the free sample point hovers in Cfree. The first endpoint
is chosen uniformly at random, while a Gaussian distribution with an appropriately
chosen standard deviation � is usually used for all dimensions of the configuration
space for finding the second one. Additional sample points with uniform distribution
can be introduced depending on a specified probability during sampling.

Other strategies include visibility-based roadmaps [113, 139], where guard and
connector nodes are introduced to prevent the creation of too many vertices in
open free spaces, or lazy evaluation of roadmap vertices and edges [18]. Utility-
guided [26] sampling uses information from colliding nodes instead of ignoring this
valuable data. However, selecting good parameter values becomes increasingly dif-
ficult with the number of settings and choosing the best sampling technique for a
specific scenario is equally important [60].

3.2.2 Rapidly-Exploring Random Trees

Single-query planners focus on solving one specific path planning query instead of
creating an approximation of a current scenario for future problems. Optimally, the
planner only has to cover areas of the configuration space relevant for the current re-
quest. Search trees with a random sequence that try to cover the configuration space
with increasing resolution are called Rapidly-Exploring Random Trees (RRT) [98].

RRTs were designed to require a minimum number of parameters as opposed to
other planners that require a large amount of fine tuning. The planner starts with the
construction of a tree that uses the initial configuration as root vertex (Algorithm 4).
A random sample configuration within the boundaries of C is constructed and its
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Algorithm 4: RRT
Input: qstart;qgoal
Output: T D .V;E/

1 V  ¹qstartº

2 E  ;
3 repeat
4 qnew  RAND./
5 qnear  NEAREST.T;qnew/
6 if qnew  EXTEND.T;qnear/ then
7 V  V [ ¹qnewº

8 E  E [
®
.qnear;qnew/

¯
9 until qnew � qgoal

10 return T

Algorithm 5: EXTEND
Input: T;qnear;qnew
Output: qnew

1 �q 
ˇ̌
qnear � qnew

ˇ̌
2 qnew  qnear C�q

3 if qnew 2 Cfree then
4 return qnew
5 else
6 return ¿

Algorithm 6: CONNECT
Input: T;qnear;qnew
Output: qnew

1 while qnew  EXTEND.T;qnear/ do
2 qnear  qnew

3 return qnew

nearest neighbor in the tree is identified. The planner then tries to extend the ex-
isting tree toward the new configuration from the point of this closest vertex in the
tree (Algorithm 5). The configuration on the line between these two points and a
specified distance (step size) away from the nearest neighbor is tested for collision.
If the tested configuration is within Cfree, it is inserted into the tree and connected
to the neighbor vertex. Afterwards, a new random sample is created and the planner
continues until it can connect to the goal configuration (Fig. 3.8). In order to bias
the planner more toward the target, it can be modified to choose the goal configu-
ration instead of a random sample with a certain probability. Planning performance
will begin to suffer as the cost of the nearest neighbor search increases rapidly with
a growing number of vertices [155]. The planner was also designed with kinody-
namic constraints in mind [100]. A state of the planner, represented by a vertex in
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Fig. 3.8 Rapidly-Exploring Random Tree with extend step and a single tree. The planner explores
the two-dimensional configuration space by trying to add random samples to the closest neighbor
in the tree until start and goal configuration are connected (green)

Fig. 3.9 Connect step and goal bias in a single-tree RRT planner. Extension of the tree is only
stopped after reaching the sampled configuration or colliding with an obstacle. Additionally, the
goal configuration is chosen instead of a random value for some connection attempts

the tree, usually consists of a position in the configuration space. It can however
also be extended with velocity or other dynamic state informations. The extension
step of the tree can then be replaced with a time step rather than a simple step size.
Kinematic constraints can also be considered here.

During planning, an implicit Voronoi bias is shown. The tree expands rapidly
in the beginning, as the probability of choosing a vertex as the nearest neighbor is
proportional to the size of its Voronoi region. It continues to cover the whole config-
uration space with increasing density as the planning progresses (Fig. 3.7), leading
to a probabilistic complete planner. This can however also be counterproductive.
Depending on the obstacles in a scenario and the chosen sampling region, the tree
can be biased to grow in regions close to obstacles. If the Voronoi region of ver-
tices in these areas is very large as opposed to those next to openings, they have a
higher probability of being selected for expansion. In order to overcome this, a lim-
itation for the sampling domain of boundary points was introduced [154]. Vertices
for which the expansion fails are assigned a maximum search radius that is used
when finding the nearest neighbor. A planner with an unlimited maximum radius is
equal to a standard RRT. An adaptive version of this method was presented in [82].



52 3 Obstacle Avoidance and Motion Planning

A greedier version of the planner was introduced in [94] (Fig. 3.9). Here, the
planner does not stop extending the tree after only one step, but rather tries to con-
tinue toward the new sample until reaching an obstacle (Algorithm 6). In order to
reduce the number of vertices and increase nearest neighbor performance, only the
last collision free configuration on this line can be inserted into the tree. It also fea-
tures the introduction of a second tree that is grown from the goal configuration. The
planner switches between the two trees as one of them is expanded as usual while
the other one tries to connect the two trees. The greedy or the traditional strategy
can be selected for either one depending on the planning scenario.

RRT-based planners and PRMs can be combined in a roadmap of trees [120],
where the RRT replaces the basic local planner in a PRM algorithm. Utility infor-
mation has also been integrated with RRTs and applies to elements such as guided
exploration, node expansion, expansion direction, or exploration distance [29]. Sta-
tistical evaluation in the form of Principal Component Analysis (PCA) may favor
certain expansion directions based on tree growth [40].

3.3 Workspace Information

A mapping from high-dimensional solutions in C to the low-dimensional space W

is given via the workspace volume swept by the robot along its trajectory defined
in the configuration space. The workspace features a fixed dimension with lower
complexity and provides an explicit geometric representation. The two spaces are
connected through the Jacobian matrix, with the total swept-volume of a robot sys-
tem defined by the collection of all possible motions, its geometry, and joint limits.
Advanced collision detection calculations such as distance or penetration compu-
tation can be used in order to gather additional information for motion planning
algorithms.

3.3.1 Decomposition-Based Motion Planning

This planning algorithm divides the path-finding problem into two parts [20, 21, 22].
First, a connected volume in the workspace is captured and then a navigation func-
tion is imposed onto it. Calculations in the low-dimensional workspace can be per-
formed at a relatively low cost compared to a high-dimensional configuration space.
This leads to solving a global problem of capturing sufficient workspace connectiv-
ity and a local problem of using this information in order to create a corresponding
motion in the high-dimensional configuration space. Similar to the reduced com-
pleteness definition of sampling-based planners, this method results in a tradeoff be-
tween efficiency and completeness. Various common planning scenarios with large
clearances between obstacles can be solved in real-time, whereas solving more com-
plex problems may fail completely.
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Fig. 3.10 Evolution of the wavefront expansion in three steps with start position in the upper left
and goal position in the lower right section. Distance computation in three-dimensional workspace
provides information on narrow sections and connectivity

Several approaches and algorithms can be used to handle the two subproblems.
For determining a workspace connectivity volume that can be used as guide for the
local planning part, a wavefront expansion algorithm is introduced. Distance com-
putation in the workspace is used to determine a sequence of spheres that expand in
an omnidirectional wave from the start position (Fig. 3.10). During this expansion,
the connectivity information of the spheres is captured using a tree. Large areas of
free space are represented by fewer spheres with a big radius, while narrow sec-
tions require a higher number of smaller spheres. Compared to other methods, such
as trapezoidal decomposition, this approach only explores parts of the environment
necessary for finding a solution. It can also be used with dynamic environments
through the integration of sensor readings. As the expansion starts from the current
position of the robot rather than the target, it can already begin to move without
waiting for the planner to finish.

The wavefront expansion starts with an empty tree T and an empty priority
queue Q (Algorithm 7). First, the distance of the start position to its closest ob-
stacle in the workspace is calculated. The resulting sphere uses this distance as its
radius and the start position as its center. It is then inserted into the priority queue
with a priority of the distance of its center to the goal position minus its radius. The
next steps are repeated until the queue contains no more spheres. The sphere in the
queue with the highest priority is removed and added to the list of vertices. It con-
sists of a center position, a radius, and a parent sphere to which it is now connected



54 3 Obstacle Avoidance and Motion Planning

Algorithm 7: WAVEFRONT
Input: pstart;pgoal; n
Output: T D .V;E/

1 V  ;
2 E  ;
3 Q ;
4 S D .pstart; r;¿/ DISTANCE.pstart/
5 INSERT.Q;S; kpgoal �pstartk � r/
6 repeat
7 S D .pcenter; r; Sparent/ POP.Q/
8 V  V [ ¹Sº

9 E  E [
®
.Sparent; S/

¯
10 if kpgoal �pcenterk < r then
11 return T

12 P  RAND.S; n/
13 forall the pi 2 P do
14 forall the Si D .pcenteri ; ri ; Sparenti / 2 V do
15 if kpi �pcenteri k < ri then
16 S 0 D .pi ; r

0; S/ DISTANCE.pi /
17 INSERT.Q;S 0; kpgoal �pik � r

0/

18 untilQ � ;
19 return ¿

through an edge in the tree. If the distance of the center position to the goal is less
than the radius of the sphere, the expansion was successful and the algorithm re-
turns the tree with the path of spheres through the workspace. Otherwise, n random
sample positions are created, that are uniformly distributed on the current sphere.
All samples that are contained within any sphere in the current tree are discarded.
For the remaining points, new spheres are created by calculating their minimum
distances to obstacles in the workspace. They are added to the priority queue with
the current sphere as parent and by using their distance to the goal minus the radius
as priority. An alternative method can use the reciprocal of the radius as priority,
resulting in a greedy optimization for space rather than distance. It is also possible
to specify a minimum radius for new spheres. All spheres that fall below a specified
threshold are discarded.

Assuming the whole robot can be contained within a tunnel of spheres toward
the goal position, a valid path in configuration space for the robot exists. While
computing a navigation function analytically is difficult, the wavefront expansion
and its tree of spheres can be used to define a set of potential functions with no
local minima. In a sequence of spheres, the center of a node has been sampled on
the boundary of its parent during construction. As long as the robot is contained
within the parent sphere, the robot’s attractor potential is defined by its distance to
the center of the next node in line. Upon reaching this sphere, the potential switches
to the succeeding sphere in order to move through the tunnel until reaching the
goal. By translating the resulting force ftask to joint torques � using the Jacobian
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matrix J , a collision free trajectory can be generated. In addition, reactive obstacle
avoidance can be handled during execution through the incorporation of repulsive
forces fi on various points of the robot:

� D J T
�
ftask C

X
i

fi

�
: (3.11)

This can however lead to undesired changes in the task behavior. Manipulators with
many degrees of freedom can compensate for this by using only task-independent
joints for obstacle avoidance. Together with the Jacobian’s dynamically consistent
generalized inverse NJ , the repulsive forces can be projected into the nullspace and
combined with the attractive force of the task with

� D J Tftask C .1 � J
T NJ T/

X
i

J T
i fi : (3.12)

Due to the tradeoff between completeness and efficiency, not all navigation func-
tions that are generated through the wavefront expansion lead to a solution for
the local planner (e.g., due to structural local minima of the robot or complicated
workspaces). In these cases, a different planner has to be used.

3.3.2 Adaptive Sampling Density

Probabilistic Roadmaps tend to create more vertices in large regions of free space
rather than placing samples in the narrow passages required for finding a valid path.
Other than uniform sampling, several non-uniform sampling strategies in configura-
tion space have been introduced in order to improve this [19, 113, 139, 73, 27, 59].
For free-flying robots, information gathered from the workspace can also be used
to enhance planner performance. By sampling close to the medial axis of the
workspace, a balance between open areas and narrow passages can be achieved. The
probability of creating collision free samples increases with the distance to obstacle
boundaries, especially for constrained areas.

In [50], a generalized Voronoi diagram (GVD) is created for the workspace. The
corresponding graph representation is then used to find a preliminary path with max-
imum clearance for a point robot. In order to choose an orientation for each point
on the workspace path, a major axis for the actual robot shape is calculated and
fitted to the tangent vector of the path. The orientation about the axis can be cho-
sen freely and is varied constantly across the path. A simple local planner tries to
connect the configuration along the path using direct line connections. For segments
that have been marked invalid afterwards, a single-query randomized planner with a
restricted configuration space for the positional degrees of freedom is used [75, 76].
These limitations are removed if no solution is found after a specified number of
iterations.
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The framework in [70] also uses GVDs and defines handle points for a robot’s
geometry. The planner randomly samples a pose in the configuration space and then
tries to match its points close to the medial axis using a physical model of springs.
Afterwards, random walks [71] are used to plan local paths between the free config-
urations created from this step.

With an algorithm for discrete GVDs accelerated by graphics hardware [69], the
method in [119] also places samples near the medial axis. A local planner similar
to the one in [2] is used to generate connections; otherwise new nodes are added on
the midpoints of Voronoi edges. The distance information in the diagram is used to
identify and distinguish two types of narrow passages: those that can be passed by
translational movement alone and those that also require changes in orientation. The
type depends on the size of the largest dimension of the robot’s oriented bounding
box compared to those of the narrow passage. Different strategies are utilized when
dealing with these areas. Uniform sampling increases the density of samples, while
a Gaussian distribution for positional degrees of freedom and uniform sampling for
the orientation results in a bias toward the medial axis. Finally, by adapting the
orientation toward the tangent of the Voronoi graph with a Gaussian distribution,
the robot’s dimensions are oriented to fit narrow passages.

For dynamic environments, [57] shows an algorithm using a GVD and with var-
ious constraints on rigid bodies. These can be used to follow an estimated path, to
link bodies together in the case of an articulated robot, to comply with joint lim-
its, and for several other tasks. They are classified into two categories, with hard
constraints that always have to be satisfied and optional soft constraints. The algo-
rithm of [69] is used again for a fast approximation of the GVD and serves as global
information for the planner. It also provides distance information that is used in a
soft constraint to align the robot with the medial axis. The constraint solver uses an
iterative relaxation method.

Inspired by the watershed transform algorithm from image processing [149], ap-
proximate cell decomposition with octrees is applied in [13, 14] in order to identify
large collision free regions and label connecting space as narrow passages. Using
watershed segmentation, cells are grouped into regions with a label and weight. All
labeled regions are given the same weight in order to increase sampling in smaller
regions, as a value corresponding to cell volume would result in uniform sampling.

A Delaunay tetrahedralization of the workspace is computed in [95] to locate
narrow passages and guide PRM sampling in the configuration space. The tetrahedra
are given a rating based on their size, with a higher likelihood of belonging to narrow
passages for lower values. The number of samples per chosen tetrahedra depends on
their rating. Also, tetrahedra in these areas are usually smaller, resulting in a higher
probability of being selected with a uniform distribution compared to larger ones.
The positional components of a rigid body are sampled uniformly within the chosen
tetrahedra. A separate random orientation with uniform distribution is used for the
rotational component. For articulated robots, the position and orientation of the wrist
are used instead and a number of matching configurations are calculated using the
robot’s inverse kinematics.
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The approximate medial axis algorithm presented in [151] is used in [150] in
order to achieve a higher sampling density for PRMs in narrow passages. By using
partially overlapping maximum spheres, calculating the medial axis is relatively
inexpensive compared to other methods such as GVDs. A number of points close
to the medial axis are identified and serve as an approximation to the medial axis.
Multiple random configurations are generated in the vicinity of each point. The
distance between points on the axis and handle points on the robot’s configuration
is minimized with the help of potential fields.

3.3.3 Disassembly

The method described in [151, 152] decomposes the path planning problem into
three parts. After determining workspace connectivity, this information is used to
locate restricted configurations in narrow passages. Traditional sampling strategies
for PRMs usually fail to place collision free samples inside these regions. These
configurations are finally disassembled to create a valid path. As good samples in
constrained regions have already been placed in the previous step, it is much easier
for the planner to find a solution.

The wavefront expansion algorithm used in [20, 21, 22] is applied to create con-
nectivity information restricted to the actual planning query (Algorithm 7). A re-
sulting tunnel of spheres (Fig. 3.10) represents a possible workspace volume for the
robot to move through. The minimum radius of the spheres can be adjusted to fit the
robot’s size. Also, additional tunnels can be generated if no solution can be found
for a specific one in the next steps of the planner, eventually resulting in a complete
exploration of the workspace.

Unrestricted configurations in free space are rather easy to generate for a sampler.
To find a solution in difficult scenarios, the hard task for the planner is to place the
robot in a position relevant to the current query with little room for movement. Iden-
tifying the corresponding regions in workspace and creating this assembly pose is
equal to finding a narrow passage in configuration space. For the workspace tunnel,
narrow sections are represented by spheres that fall below a threshold based on the
robot’s geometry. These regions are then explored in more detail and the watershed
segmentation from [149, 13, 14] is used to group the spheres and label the regions
accordingly. In an assembly, a robot is either completely contained within a narrow
passage or can reach across it. The latter is achieved by specifying handle points
on the robot’s geometry and generating a collision free configuration where they are
contained in regions on different sides of a watershed sphere. The positional compo-
nents of the free-flying robot are limited so that its chosen reference point coincides
with the narrow passage.

In its last phase, the planner does not simply try to connect the set of restricted
configurations, but further guides sampling using the gathered workspace informa-
tion. The positional components are biased to move the robot into open regions
defined by the workspace tunnel and only short incremental motions are used due
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to constraints in the area surrounding narrow passages. The probability of finding
collision free samples around assemblies increases with movement toward less con-
strained regions, creating a bias for disassembly. This procedure is complete once
the robot has left the narrow sections of the tunnel and standard PRM sampling takes
over. Connecting the separate components in the remaining open areas is of lower
complexity.

3.3.4 Elastic Roadmaps

Potential functions are often used in order to combine robot control with reactive
obstacle avoidance. They are however very susceptible to local minima. Navigation
functions can overcome this issue with the help of global information. By combining
a set of local minima free potential functions, a robot can safely reach its target
without violating real-time feedback requirements. Calculating global navigation
functions can be very challenging and they become invalid with dynamic changes
in the environment. As long as a given global motion stays valid, approaches such
as the Elastic Strips framework [23] can locally modify the path in order to react to
external disturbances and comply with required task constraints. They are not able
to create a new global solution that can overcome restrictions in local control or take
advantage of new routes.

In contrast to traditional roadmaps in motion planning, where static vertices and
edges capture global information in a graph, [153] presents the concept of Elastic
Roadmaps with a set of moving collision free milestones that are able to satisfy task
constraints. Milestones are placed in the vicinity of obstacles to provide better cov-
erage of free space. Feedback controllers are used to navigate between milestones,
thereby creating a hybrid system of potential functions. By using workspace infor-
mation and trading completeness for efficiency in real-life scenarios, the planner
complies with feedback requirements.

A small amount of vertices in a roadmap can be sufficient to provide good cov-
erage of the configuration space. Large quantities of redundant samples in open
areas of free space usually do not provide additional information. The quality of
a vertex is mainly defined by the amount of free space visible to it [74]. Samples
within narrow passages tend to have less visibility but are often essential in finding a
valid path. A sample with good visibility can replace several others in its vicinity of
lesser or similar quality [113, 139]. Also, a planner’s task in an environment filled
with objects is to find a way around these obstacles. If all obstacles and their bound-
aries are known to the planner, he can strategically place samples around them and
look for a solution, as the remaining space between obstacles is free [2]. By fol-
lowing the movement of all obstacles and updating the corresponding milestones,
the planner can react to dynamic changes in the environment. Determining either
the visibility rating of a sample or the exact boundaries of obstacles in the config-
uration space however is not applicable to higher dimensions, but these properties
can be approximated in the workspace at a much lower complexity. Milestones in
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an Elastic Roadmap not only have to avoid collisions, they also have to satisfy the
other constraints of the current task. Two different types of end effector movements
are distinguished, where either the position of the end effector is only relevant at the
goal position, or its movement is also restricted along the way. For the first kind, a
configuration close to an obstacle is selected and the end effector is attracted to a
feature on the object by using a combination of task-level controllers [134]. Bound-
ing boxes around convex workspace obstacles are used to determine features that
the end effector can move freely in-between. Other tasks involve posture potentials,
obstacle avoidance, as well as imminent collision prevention and kinematic joint
limit restrictions:

Tposture G Tavoidance G Ttask G Tfeature G Tcollision G Tkinematic : (3.13)

Milestones are added to the roadmap and marked as valid if they do not collide with
obstacles and adhere to kinematic constraints. They are updated constantly during
changes to the environment and follow obstacles as they move. The second type of
movement uses the point on the robot closest to a feature instead of the end effector
and exchanges the order of Ttask and Tfeature.

Possible connections between valid milestones are estimated by testing straight
line segments between a set of handle points on links of the robot. Graph search
algorithms are then used to determine a path among the valid milestones. Actual
movement between vertices is achieved through task-level control and may fail to
reach the target node, but the planner can recover by invalidating the current edge
hypothesis in the graph and choosing a new solution.

3.4 Exploration vs. Exploitation

Building a configuration space representation for higher dimensions is practically
impossible. However, the configuration spaces of many practical planning problems
contain considerable structure that may help in solving a task. Also, not the whole
configuration space has to be explored in order to find a solution. Planners therefore
have to gradually explore parts of the configuration space until they can construct a
collision free path. Many planners employ sampling strategies with random distri-
butions, but more sophisticated methods have also been introduced to solve difficult
queries.

In reinforcement learning [147, 83, 143], an agent interacts with its environment
in order to accomplish a certain goal. With information about the current state of
the environment, the agent decides to pursue a certain action. Afterwards, it is pre-
sented with a new state and a reward value corresponding with this change. This
procedure is repeated in every step (Fig. 3.11). In contrast to supervised and many
other forms of machine learning, the agent is not told about the best possible action.
The action with the most reward has to be identified using trial and error. However,
the state of the environment has changed after an interaction, making comparisons
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Fig. 3.11 Interaction of an agent with its environment in reinforcement learning. Future actions
are influenced by the current state and a reward function. The latter provides feedback on a chosen
action for a known state

more difficult. In addition, results of future interactions with the environment might
be influenced by a decision as well.

The agent’s policy determines which action to take given the state of the environ-
ment. It should try to maximize reward values with a certain goal in mind. This goal
is defined through a reward function that gives the agent a feedback on the quality of
the chosen action for a known state. The agent cannot change the reward function. In
case of a low reward, the agent may however decide to modify its policy in order to
favor a different action for this state the next time. The quality of actions in the long
run is determined by the value function. While the reward function only assesses the
change of the current state to the next one, the value function also takes into account
all possible future states. An action resulting in a low immediate reward might still
lead to a series of states with high rewards or vice versa. Determining a good value
function is extremely difficult and involves all the information acquired by the agent
throughout his runtime. To simulate the outcome of an action with a given state, a
model of the environment can be used during planning. Instead of relying on trial
and error, the predicted reward and next state can directly influence the decision
making.

Finding an optimal policy requires selecting actions that produce the best sum of
rewards. In the beginning, the agent starts with no knowledge and these actions have
to be identified at first by trying new and unknown ones. Using existing information
equals exploitation and tries to minimize costs, whereas acquiring new information
equals exploration and tries to minimize learning time. Exploitation of known infor-
mation is necessary in order to maximize reward, but only further exploration can
lead to actions with even higher reward. The two states contradict each other, which
leads to the dilemma of exploration and exploitation tradeoff—an agent cannot ig-
nore either one if he wants to succeed. Questions on how to balance these opposing
forces include what kind of information is available, what part of this information is
already exploited, and how long this information can or should be exploited.

Exploration can be divided into guided and unguided categories. While the for-
mer employs exploration-specific knowledge, the latter usually resorts to a uniform
random distribution. Some forms of unguided exploration modify the probability
distribution in order to bias action selection, thereby decreasing the likelihood of
unfavorable actions. Guided exploration on the other hand does not rely on ran-
domness when selecting actions, but rather tries to select actions with the highest
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exploration utility. Various heuristics need to be employed when making these de-
cisions, as the actual information cannot be determined directly.

3.4.1 Exploration and Exploitation in Motion Planning

Similar to work in reinforcement learning, the motion planning problem can also be
cast as a state search problem, together with its two competing goals of planning.
The scenario here usually involves a robot in an environment with a kinematic, dy-
namic, and geometric description. The planner can examine the environment, move
the robot, and receive feedback through various forms of collision detection and
distance or penetration depth calculations between objects.

In motion planning, exploration seeks to understand the connectivity of config-
uration space, regardless of a specific goal or task. It tries to gain the maximum
amount of knowledge possible by improving the planner’s understanding of config-
uration space, but also wastes time exploring sections of the environment irrelevant
to the actual task. The initial roadmap building phase of the basic PRM planner
with uniform random sampling [84] is a typical example for this unguided form
of exploration. Many sampling-based planners today employ guided exploration
techniques. They improve on pure, unguided exploration by leveraging available in-
formation that is based on characteristics of the underlying state space. However,
this guidance is still directed at achieving an efficient, complete understanding of
the configuration space rather than accomplishing a specific task. Exploitation on
the other hand tries to find a valid path for a particular task as efficiently as possi-
ble based on available information. It does not try to reach a full understanding of
the whole space and just begins to act while assuming it has sufficient knowledge
to solve the current task. Such pure exploitation can be observed in the artificial
potential field approach [91].

Motion planning will be most efficient when exploration and exploitation are
adequately balanced. Although a lot of sampling-based motion planners combine
exploration and exploitation, all of these planners employ the two competing goals
as distinct steps of the planning process (Table 3.1) rather than deliberately bal-
ancing them within a unified framework. Exploration is required to understand the
connectivity of relevant configuration space regions whereas exploitation should be
used whenever greedy actions can solve sub-problems quickly. Given the local and
global properties of a particular configuration space and task, a planner can achieve
computational efficiency by appropriately employing both strategies.

The original PRM planner with uniform random sampling performs pure ex-
ploration [84]. Its exploratory behavior is not affected by the task or by information
obtained during the exploration. The refinement step of PRM planners however con-
stitutes guided exploration. A large number of sampling-based multi-query motion
planners perform guided exploration. They assess properties of regions of configu-
ration space to guide exploration. These properties can depend on obstacles [2, 19],
visibility [139], or narrow passages [73]. Other planners use workspace informa-
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Table 3.1 Exploitation vs. exploration in a selection of motion planning algorithms. All of these
examples employ the two opposing goals as distinct steps rather than actively balancing them
during the planning process

Planner Exploration Exploitation

Potential Fields Potential Field
RPP Brownian Motion Potential Field
PRM Construct Refine
RRT Voronoi Bias Extend
RRT-Connect Voronoi Bias Extend+Connect
Lazy/Fuzzy PRM Resample Graph

tion to adapt exploration [50, 70, 14, 150]. In another planner, global information
about the entire configuration space is used to guide exploration [27]. Artificial po-
tential field approaches employ pure exploitation [91]. The complete elimination
of exploration makes these methods computationally efficient but also susceptible
to local minima. This is also true for potential field approaches that are applied
to entire paths [5]. Fuzzy PRM [112] and Lazy PRM planners [18] initially per-
form exploitation in a random configuration space graph. When this exploitation
fails, these planners perform guided exploration to augment the graph in difficult
regions. A number of planners alternate between exploration and exploitation. The
Randomized Path Planner (RPP) combines potential field-based exploitation with
random exploratory moves [12]. RRT planners alternate exploration based on the
Voronoi bias with exploitation in the extend step [98]. When RRT planners em-
ploy two trees, a second exploitative step is taken when the planner attempts to
connect both trees [94]. Variants of RRT planners replace exploration based on the
Voronoi bias with guided exploration [29, 82, 130]. Other planners combine ex-
ploration and exploitation in workspace and configuration space. Some planners
initially perform efficient exploitation in the low-dimensional workspace and sub-
sequently use the obtained information to perform exploitation [22, 153] or guided
exploration [152] in configuration space. Another planner performs workspace ex-
ploration and uses the resulting information to perform guided configuration space
exploration [122, 123].

3.4.2 Balancing Exploration and Exploitation

This chapter has already demonstrated a large variety of solutions for motion plan-
ning based on either exploration or exploitation; however no solution has yet been
presented on how the opposing forces can actually be combined in order to address
more challenging scenarios. Such a planner requires a mechanism that allows it to
continuously shift between exploration and exploitation extremes based on some
form of information and a way to gather this kind of data. It also raises the question
what additional measurement values can be used in order to make these decisions
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in a specific situation. Possible actions of the planner range from gathering addi-
tional information, directing exploration and exploitation, up to a full balance of
these methods.

The computation of local geometry information ranges from a simple collision
check of a robot configuration to the calculation of penetration depth, distance esti-
mation, or other advanced functions. These operations can be used in order to gather
connectivity information in workspace, rate configurations based on the information
how links in the chain are colliding, or in an estimation of the proximity to obstacles
and self-collision. While sophisticated methods provide more information about the
local geometry, they also suffer from higher computational costs and should there-
fore only be used when additional information can actually improve the planning
step. This also includes the differentiation and assessment between methods that
approach complete solutions for all possible queries and those that focus on an ac-
tual task. Although the calculation of local free space information is more expensive
than pure intersection computation, this data can also be used for obstacle avoidance
in a refined step size and may then actually increase performance.

Other factors can include an adjusted rather than a fixed number of nearest
neighbor nodes, distance metrics that observe the influence of joints on the over-
all movement, a disregard of exhausted nodes that have resulted in a high number of
failed connections or an adaptive impact value, and sampling methods directed by
utility information from the current node distribution and colliding configurations.
Workspace connectivity data with an optional weighting factor can provide insights
for difficult scenarios with narrow passages, as can alternative paths using reduced
geometries.

3.4.3 Exploring/Exploiting Trees

This section introduces Exploring/Exploiting Trees (EET), a tree-based motion
planning algorithm that performs exploitation whenever possible and gradually tran-
sitions to exploration when necessary [126]. The planner is based on tree expansion
in configuration space, similar to RRT methods [98, 94] introduced in Sect. 3.2.2.
Its main design objective is to carefully balance exploratory and exploitative behav-
ior so as to leverage the structure inherent in the planning problem for rendering
motion planning as efficient as possible. In order to accomplish this, the planner
should behave like a potential field planner whenever possible and gradually turn
into a complete motion planner when required.

The EET planner leverages several sources of information in order to perform
exploitation and to balance between exploitation and exploration. Guided exploita-
tion is performed by acquiring global connectivity information for relevant portions
of the workspace. This is achieved with a sphere-based wavefront expansion in
workspace, resulting in a tree of workspace spheres (Sect. 3.3.1). The branches of
the tree capture the connectivity of the workspace and the size of the spheres along
the paths in the tree captures the local free workspace (Fig. 3.10). These spheres
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Algorithm 8: EET
Input: qstart;qgoal; ˛; ˇ; 
Output: T D .V;E/

1 V  ¹qstartº

2 E  ;
3 S  EXPLORE.qstart;qgoal/
4 forall the s D .pcenter; r; sparent/ on depth-first traversal of solution path in S do
5 �  1=
6 repeat
7 pnew  GAUSS.pcenter; �r/
8 Rnew  RAND./
9 qnear  NEAREST.T;pnew;Rnew/

10 if � < ˇ then
11 R�  GAUSS.0; ��/
12 Rnew  RnearR�

13 if qnew  CONNECT.T;qnear;pnew;Rnew/ then
14 V  V [ ¹qnewº

15 E  E [ ¹.qnear;qnew/º
16 �  .1� ˛/�

17 else
18 �  .1C ˛/�
19 if � � 1 then
20 s sparent

21 until kpnew �pcenterk < r

22 return T

and their connectivity define an approximate navigation function over parts of the
workspace [20, 22]. The gradient of this navigation function defines an attractive
force for a point on the robot, which pulls the robot toward the goal in the workspace.
The workspace force is then projected into a direction in the robot’s configuration
space with the Jacobian matrix (Sect. 2.1.3) and used by exploitation in order to
move in configuration space.

Exploitation is only likely to be successful when it is based on accurate infor-
mation, therefore the information represented in the workspace spheres can be aug-
mented with more accurate information about the best configuration space directions
for exploitation. This source of information is derived from repulsive forces [91] ex-
erted by obstacles onto the robot as demonstrated in Sect. 3.1. These repulsive forces
together with the attractive force derived from the workspace navigation function
can then be projected into a direction in configuration space using the Jacobian ma-
trix.

In order to balance exploitation and exploration, the planner leverages an addi-
tional source of information, namely the data obtained during the tree expansion
steps. When exploitation fails, tree expansion will become increasingly exploratory,
while successful tree expansions will lead to increasingly exploitative behavior.
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Algorithm 9: CONNECT
Input: T;qnear;pnew;Rnew
Output: qnew

1 while qnew  EXTEND.T;qnear;pnew;Rnew/ do
2 qnear  qnew

3 return qnew

Algorithm 10: EXTEND
Input: T;qnear;pnew;Rnew
Output: qnew

1 �x j.pnear;Rnear/� .pnew;Rnew/j

2 �q J �.qnear/�x

3 qnew  qnear C�q

4 if qnew 2 Cfree then
5 return qnew
6 else
7 return ¿

The EET planner (numbers in parenthesis refer to lines in Algorithm 8) builds
a configuration space tree, much like an RRT-based planner [94]. However, every
vertex q in this tree T is associated with a corresponding workspace frame, con-
sisting of the position and orientation of a control point on the robot. This point
can be the end effector in case of articulated robots or an arbitrary point on the
robot in case of rigid body robots. The planner requires this information in or-
der to leverage workspace-based information for exploitation. Initially, the starting
configuration qstart is added to the configuration space tree (1). The sphere-based
workspace expansion then determines a tree S of workspace spheres in order to
capture workspace connectivity (3). The tree of workspace spheres is processed in
depth-first fashion, considering only paths through the tree that lead to the specified
goal location (4). The sphere s captures the free workspace volume into which the
robot is trying to move next. Backtracking can be performed in case the planner fails
to find a solution based on this initial workspace tunnel.

The planning algorithm now attempts to expand the configuration space tree T
while balancing exploitation and exploration. Similar to RRT methods, a configura-
tion is created toward which the tree should expand. In contrast to RRTs however,
this configuration is determined based on the workspace information contained in S .
Either the entire robot (in case of rigid bodies) or the robot’s end effector (in case
of articulated robots) should be pulled into the direction indicated by the workspace
connectivity information. This enables the planner to solve a task frame specifica-
tion in workspace rather than a specific goal configuration [140].

The variable � (5) in the algorithm balances exploration and exploitation. A value
of zero indicates pure exploitation in which the behavior of the planner can be com-
pared to a potential field planner based on an approximate global navigation func-
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tion [22]. It is also used in order to scale the variances of Gaussian distributions
for generating samples and is initialized to the reciprocal value of the parameter  .
This parameter indicates how closely the planner follows the workspace information
contained in S when generating new samples.

Based on a normal distribution around the sphere’s center with a variance that
depends on the sphere’s radius scaled by � and  , a point pnew in the workspace
is sampled (7). The sampling function GAUSS takes two parameters: the mean of
the Gaussian distribution and the width within which 99:7 percent of the samples
should fall (three times the standard deviation); it returns a random sample from
this distribution. Together with a sampled random orientation Rnew (8), this defines
a workspace frame. With attention to proper distance metrics (Sect. 2.1.2), a config-
uration qnear from the tree T is then selected based on the closest match between this
frame and the one associated with a vertex’s control point. If the planner is able to
perform exploitation as indicated by a small value of � (10), the uniformly sampled
orientation Rrand is replaced with one drawn from a Gaussian distribution centered
around the orientation Rnear of qnear and a variance that is scaled by � .

Following this, the algorithm attempts to connect the workspace frame defined
by position pnew and orientationRnew to the tree (13). This connect step is described
in Algorithm 9 and is identical to the one for RRT-based planners [94]. Upon suc-
cess, the penultimate vertex (14) and the corresponding edge (15) are added to the
tree and the value of � (16) is reduced. This reduction causes the planner to shift its
behavior toward exploitation. If the connection attempt fails, the value of � is in-
creased and the balance is shifted toward exploration (18). As this variable reaches
the exploration limit (19), we backtrack to the previous sphere (20). The series of
expansion steps ends when the boundary of the sphere s has been reached (21).

The description of the EET planner is completed with a discussion of the extend
step (Algorithm 10) used by the connect algorithm. This step moves the workspace
frame associated with the configuration qnear toward the frame with position pnew
and orientationRnew and determines the corresponding new configuration qnew. This
is accomplished by first determining the vector�x pointing from the existing frame
toward the new frame (1). This displacement is translated into a displacement in con-
figuration space using the pseudo-inverse of the Jacobian (2) as shown in Sect. 2.1.3.
Based on the value of �q, a new configuration qnew is determined (3) and tested
for collision. The function reports a failure in case the configuration is not part of
the free space. Repulsive forces from obstacles can be translated into configuration
space directions in a similar fashion.

The workspace bubbles and the underlying normal distribution do not necessarily
correlate to the robot’s geometry or kinematics, especially for complex free-flying
objects and even more so for manipulators and platforms. A simple potential field
will often not be able to solve these parts, even in combination with random move-
ment [12]. If the EET planner reaches such a difficult passage, the � value will
continue to grow, resulting in an increasing search space around the current area.
This space will soon also cover areas outside the workspace bubbles. However, the
nodes closest to the narrow passage with a high probability to get selected might
represent a dead end. An increased � value might also have created new nodes away
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Fig. 3.12 Influence of the � value in the Exploring/Exploiting Tree planner. Pure exploitation in
the form of potential fields and uniform exploration in configuration space are the two extreme
conditions the algorithm can achieve with a smooth transition in-between

from the difficult area worth further investigation. At some point, the normal dis-
tribution will also suffer from a large � value and a more uniform distribution will
provide better results. While the labeling of exhausted nodes might improve plan-
ning in some of these cases, a different approach vector to the narrow passage also
represents a valid method (similar to fitting a key through a keyhole).

A simple method that can be used is to switch the planner to a previous sphere
in the current workspace tunnel when the � value exceeds a certain threshold (20).
The � value is also reset in this case. The planner has already been able to cre-
ate valid nodes for the previous sphere and will likely find new connections in
the second run and continue to the next sphere with a new approach. The explo-
ration here is still limited to the workspace. Depending on the Jacobian mapping
between workspace and configuration space, even a uniform random distribution in
the workspace cannot reach the full flexibility of a uniform search in configuration
space and is not complete. An RRT planner in configuration space however uses
a uniform random distribution in this space and is proven to be probabilistically
complete. In order to balance the full range between exploration and exploitation, a
planner therefore at some point has to adapt to a configuration space sampling and
back again.

The EET planner maintains a complete configuration space tree during planning
and is able to supply a configuration space RRT with this information. As mentioned
above, a high � value represents a trend to perform more exploration, whereas a low
value will approach exploitation in the form of a potential field. So far it only per-
forms exploration in the workspace with a mapping to configuration space using the
Jacobian and a normal distribution. In between this and a full uniform exploration
in the configuration space, there should also be a phase concentrating on local con-
figuration space exploration with a normal distribution.

A more advanced method can be introduced that utilizes the full range of avail-
able behavior. As the � value increases beyond a certain threshold (e.g., 0:5),
the EET adapts to an RRT behavior with a connect step and a single tree based
on the gathered information. Edges in the tree are marked accordingly in order to
respect the different interpolation methods. New sample points are chosen based on
a normal distribution around the configuration of the last selected node and the cur-
rent � value in order to focus on the current region. The same principles as before
are used to decrease/increase the � value based on expansion failure. As the � value
exceeds another threshold (e.g., 1:0), the behavior changes to a uniform random dis-
tribution in configuration space identical to traditional RRT planners (Fig. 3.12). For
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each configuration added to the existing tree, the corresponding forward kinematics
is calculated in order to be able to change back to a workspace-based sampling at
some point. The planner compares the forward kinematics position with each sphere
in the current workspace tunnel starting from the goal configuration in order to make
this decision. If a new configuration is contained within a workspace sphere, the
planner changes back to workspace-based sampling and resets the � value. Often,
this will be a sphere in between the start configuration sphere and the current one,
replicating the behavior of the simple method presented above.

3.4.4 Evaluation

The following experiments demonstrate the importance of carefully balancing ex-
ploration and exploitation in motion planning. The proposed EET planner is vali-
dated by comparing its performance to that of a PRM planner with uniform sam-
pling (referred to as PRM in the following sections) [84], PRM with Gaussian sam-
pling (Gaussian PRM) [19], PRM with bridge test (Bridge PRM) [73], RRT-Connect
with one tree (RRT-Connect1) and with two trees (RRT-Connect2) [94], as well as
an adaptive dynamic-domain RRT (ADD-RRT) with two trees [82]. For these plan-
ners, a nearest neighbor search based on kd-trees [155] was used, with k D 30 for
all PRM variants. As the EET planner uses a single tree in order to explore con-
figuration space, the performance increase afforded by balancing exploration and
exploitation can most accurately be assessed by comparing it to the RRT-Connect1
planner with one tree.

The experiments are performed in six scenarios with the results for each plan-
ner and query averaged over 20 trials. If a planner was not able to solve a problem
within 20 min, the experiment was aborted and the number of vertices, edges, and
collision detections up to that point are reported. For the EET planner, the com-
putational cost of workspace information based on the sphere-based wavefront ex-
pansion is negligible (never exceeded 0:5 s) and is included in the total reported
planning time. The three parameters of the planner were set to ˛ D 0:01, ˇ D 0:08,
and  D 18.

In order to be able to compare the various planners to each other, their corre-
sponding implementations in the framework of Sect. 4.4 are used during the bench-
marks. For verification purposes, these implementations have been compared to the
ones in the Motion Strategy Library1 (MSL 2.0). Figure 3.13 shows the resulting
paths of various planners in the included 2dpoint1 scenario with a seed value of 0 for
the random number generator. The query consists of a 1 m � 1 m rectangular robot
with two translational degrees of freedom traveling through a 100 m � 100 m large
maze from the bottom right to the top right. For this comparison, both applications
employ the Proximity Query Package2 (PQP) for collision detection. During the

1 http://msl.cs.uiuc.edu/msl/
2 http://gamma.cs.unc.edu/SSV/
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(a) (b) (c)

Fig. 3.13 Solution paths of the Motion Strategy Library’s 2dpoint1 scenario with a common seed
value of 0 for various planners. a PRM, b RRT-Connect1, c RRT-Connect2

benchmarks however, a faster implementation presented in [15] based on the GJK
algorithm is used.

In this query, the PRM planner initializes the roadmap with 1000 vertices. The
edge verification step size is set to 1 m, the search radius to 20 m, and the maximum
degree per vertex to 2000, resulting in a roadmap with 653 vertices, 652 edges, and
a total of 11419 collision checks (including start and goal configuration). The MSL
implementation uses an unordered list for nearest neighbor selection and a sequen-
tial order during edge verification. The framework of Sect. 4.4 is able to replicate
the above results with these adjustments, however the implementation used in the
benchmarks reverts to a kd-tree implementation sorted by distance together with re-
cursive edge verification [36, 99]. The roadmap is not initialized with any vertices
and only one vertex is added in each step in order to be able to compare its results
to those of the single-query planners.

The MSL library features several variants of RRT-based planners, including the
traditional version (RRT) using only the extend step and one tree (5733 vertices,
5732 edges, 12153 collision checks) as well as its two tree (RRTExtExt) counter-
part (2209, 2207, 10473). Also available are the two versions with connect step used
in the benchmarks, the RRT-Connect1 (RRTCon) with one tree (1203, 1202, 6563)
and the RRT-Connect2 (RRTConCon) with two trees (641, 639, 5901). The plan-
ner’s step size and epsilon threshold in these queries are set to 1 m, with a 5 % prob-
ability of selecting the goal configuration for the RRT-Connect1 version. The MSL
implementation always uses a fixed step size, even when the actual distance to a
sampled configuration is shorter. This issue has also been addressed in the imple-
mentation used during the benchmarks.

3.4.4.1 Free-Flying Box in Maze

The first scenario (Fig. 3.14) consists of a 30 m � 30 m � 2 m large maze with walls
that are 2 m apart from each other. The robot is a free-flying rigid box (six degrees
of freedom, 3 m � 0:5 m � 0:5 m) moving from the lower left side of the maze to a
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Fig. 3.14 Visualization of several planning algorithms in the first scenario with a free-flying box
in a maze. a Bridge-PRM, b RRT-Connect1, c ADD-RRT, d workspace connectivity information
captured by spheres, e EET

Table 3.2 Planner performances in the first scenario. All algorithms are able to find a collision free
path. Multi-query planners waste computational resources by sampling in irrelevant configuration
space regions. EET demonstrates the best performance

Planner Vertices Edges Collision Checks Time (s) %

PRM 15 138˙5 070 15 026˙5 038 1 741 569˙451 374 25:6˙ 8:1 100
Gaussian-PRM 13 276˙4 690 13 168˙4 659 1 658 665˙461 204 23:2˙ 7:7 100
Bridge-PRM 11 445˙3 621 9 571˙3 037 1 966 568˙533 011 25:0˙ 7:5 100
RRT-Connect1 14 859˙5 800 14 858˙5 800 596 121˙239 843 63:6˙36:6 100
RRT-Connect2 5 197˙3 235 5 195˙3 235 210 351˙120 930 13:7˙10:6 100
ADD-RRT 4 528˙2 258 4 526˙2 258 101 657˙ 47 528 9:0˙ 6:3 100
EET 288˙ 49 287˙ 49 9 563˙ 919 1:2˙ 0:1 100
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(d) (e)

Fig. 3.15 Second scenario with a larger box and very small clearance. a Bridge-PRM, b RRT-
Connect1, c ADD-RRT, d workspace connectivity information captured by spheres, e EET

Table 3.3 Comparison of algorithms in the second scenario with a larger free-flying box. PRM
planners and the RRT-variant with a single tree are unable to solve this task within the given time
frame. EET shows better performance than the RRT variants with two trees. Additional repulsive
forces can reduce the number of vertices and edges even further

Planner Vertices Edges Collision Checks Time (s) %

PRM 201 295˙1 004 193 390˙ 996 61 302 764˙ 296 484 1 200:0˙ 0:0 0
Gaussian-PRM 251 940˙1 251 243 755˙1 233 67 062 589˙ 323 709 1 200:0˙ 0:0 0
Bridge-PRM 138 058˙ 572 110 065˙ 489 98 936 644˙ 306 197 1 200:0˙ 0:0 0
RRT-Connect1 12 908˙5 500 12 907˙5 500 12 691 936˙6 510 831 1 195:6˙ 19:8 5
RRT-Connect2 6 851˙3 895 6 849˙3 895 3 032 624˙4 880 296 256:6˙424:2 85
ADD-RRT 6 114˙2 131 6 112˙2 131 369 815˙ 402 788 179:0˙356:9 90
EET 942˙ 206 941˙ 206 18 874˙ 8 044 4:6˙ 3:4 100
EET-Repulsive 329˙ 263 328˙ 263 7 817˙ 2 420 1:9˙ 0:7 100
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Fig. 3.16 Effectiveness of free sample placement in the scenarios with free-flying boxes traveling
through a maze. a performance in the first scenario with a long and thin robot, b larger box with
small clearance to the wall

position on the middle left. Due to the length of the robot and the distance to the
walls, traveling through the corners of the maze is difficult and requires exploration.
The straight corridors can be solved by exploitation, provided the robot is aligned
with the walls. The maze also contains large regions irrelevant to the task that will
distract some of the planners.

All planners solve this problem within the time limit of 20 min (Table 3.2). The
single-query methods have the advantage of focusing on the correct area of the
maze, but still spend considerable time exploring straight corridors instead of per-
forming exploitation. The multi-query approaches waste computational resources
exploring irrelevant configuration space regions compared to traditional single-
query planners in this example. The EET planner is able to perform exploitation
in the straight corridors. In the tighter turns, it shifts toward exploration. The result-
ing EET tree contains far fewer vertices than any other method and the computed
path exhibits less of the zigzag behavior commonly observed in sampling-based mo-
tion planning. It shows a vast increase in performance compared to the RRT methods
with one and two trees.

An interesting measure to assess the effectiveness of exploitation is the percent-
age of collision checks for which the tested configuration was in free space. For an
ideal planner this number would be 100 %, indicating that available information is
leveraged to effectively guide the planner through the free configuration space. The
results of the PRM-based planners are however biased due to the large amount of
free samples in the unconnected regions of the maze. In this scenario, this value
was equal to 24 % for RRT-Connect1, 26 % for RRT-Connect2, and 53 % for ADD-
RRT. In comparison, 89 % of the configurations checked by the EET planner were
collision free (Fig. 3.16a).
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3.4.4.2 Large Free-Flying Box in Maze

In the second query, a larger box (1:5 m � 1:5 m � 1:5 m) moves through the same
maze (Fig. 3.15). The clearance to the walls is very small so that motion through the
straight corridors becomes much more difficult.

The EET planner is the only planner capable of solving this task every time in
less than 20 min (Table 3.3). The RRT-Connect variants with two trees achieve suc-
cess rates between 85 % to 90 %. The reduced clearance around the robot makes it
difficult for other tree-based methods to move through the straight, narrow corridors.
The PRM planners have difficulties placing valid samples in the corridors. Again,
the EET planner benefits from its ability to balance exploitation and exploration.
In the straight corridors, it performs exploitation using the workspace information.
In the more difficult turns, the planner increases exploratory behavior, as indicated
by the increased number of vertices and edges in the resulting roadmap. In this
scenario, only 2 % of the RRT-Connect2’s and 10 % of the ADD-RRT’s collision
checks were placed in free configuration space, compared to a number of 54 % for
the EET planner (Fig. 3.16b).

For this more difficult scenario, an additional source of information for exploita-
tion was tested. As described in Sect. 3.1, the attractive force provided by the
workspace spheres is combined with repulsive forces from obstacles. This addi-
tional information should further guide exploration toward the correct direction in
configuration space. Only the distance to the closest object has been used. Indeed,
as indicated by the results reported for EET-Repulsive, this additional information
reduces the number of vertices and edges required to solve the planning problem,
relative to EET. This demonstrates that the EET planner is able to balance explo-
ration and exploitation adequately. When more accurate information is available
for exploitation, the planner shifts further toward exploitative behavior. Collision
checks performed by the EET-Repulsive planner are 95 % collision free, indicating
that the planner leverages the available workspace information to perform highly
effective configuration space search.

3.4.4.3 Free-Flying L-Shape in Maze

The previous scenarios have used a rather simple box shape for the free-flying robot
with a rather good relationship between configuration space and workspace. As a
consequence, the information gathered by the workspace spheres is extremely valu-
able. Additionally, the large open spaces and unconnected regions of the maze result
in extra effort for the multi-query PRM planners. For this new query, the robot’s
geometry was replaced with a more complicated L-shape consisting of two boxes
with dimension 1:75 m � 0:5 m � 0:5 m. In order to create more equal conditions
for the PRM-based planners, only the lower half of the previous maze is used and
the free unconnected regions are closed as well. The complexity of the scenario is
increased by narrowing the width of the corridors to 1 m, therefore requiring a more
advanced turning motion in the corners due to the robot’s shape (Fig. 3.17).
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Fig. 3.17 Alternate maze scenario with free-flying L-shape robot. Only the lower half of the previ-
ous environment is used. Corridors are narrower and open unconnected regions have been closed.
a Bridge-PRM, b RRT-Connect1, c ADD-RRT, d workspace connectivity information captured by
spheres, e EET

Table 3.4 Only the EET planner is able to consistently solve the third scenario with a more com-
plicated L-shaped geometry. PRM-based planners now generate fewer vertices and edges than
the RRT variants. Repulsive forces in the EET-Repulsive planner result in a more effective sample
placement and lower runtimes

Planner Vertices Edges Collision Checks Time (s) %

PRM 3 352˙1 331 3 210˙1 288 42 615 866˙16 974 549 707:0˙281:9 90
Gaussian-PRM 3 974˙1 545 3 832˙1 500 46 611 215˙18 145 569 672:0˙261:9 90
Bridge-PRM 3 002˙ 491 2 385˙ 401 99 892 354˙16 257 604 1 074:1˙174:8 55
RRT-Connect1 13 165˙3 707 13 164˙3 707 5 625 968˙ 1 274 470 939:1˙284:0 60
RRT-Connect2 12 312˙3 046 12 310˙3 046 5 202 913˙ 2 013 825 721:1˙339:2 75
ADD-RRT 11 670˙3 479 11 668˙3 479 457 771˙ 136 762 748:6˙357:1 80
EET 4 838˙1 409 4 837˙1 409 71 864˙ 24 145 55:4˙ 34:2 100
EET-Repulsive 4 157˙1 832 4 156˙1 832 27 456˙ 11 809 20:2˙ 19:0 100
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Fig. 3.18 Comparison of
free sample placement per-
centage in the third scenario
with an L-shape geometry.
Only ADD-RRT and EET
achieve values above 1 %,
with EET-Repulsive demon-
strating the most effective
results
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Table 3.4 shows that only the EET planner was able to generate a collision free
path within the given time limit for all 20 passes. In contrast to the previous ex-
periment, the PRM-based planners now produce roadmaps with fewer vertices and
edges than the RRT-based algorithms, together with a higher success rate and lower
runtime for the traditional PRM and the Gaussian-PRM. The number of collision
checks performed by the planners however is much higher, especially for the ver-
sion with bridge test sampling, where any advantages are outweighed by the related
performance costs. With the information from the workspace spheres, the EET plan-
ner can focus on the difficult corner regions of the scenario. Due to the complex
geometry of the robot, exploration in the configuration space is necessary in order
to solve the query. This results in a much higher number of collision checks and
vertices in the tree. However, while the percentage of collision tests performed in
free configuration space is under 1 % for all planners (including the PRM versions
this time) except the ADD-RRT with 9 %, the EET planner still manages to achieve
a value of 32 %. This number can be increased even more with the help of addi-
tional workspace information in the EET-Repulsive variant, resulting in the shortest
runtime and the most effective sample placement of 77 %.

3.4.4.4 Stationary Manipulator

In contrast to the free-flying robots used so far, this setup involves a station-
ary 6-DOF manipulator commonly found in industrial settings (Fig. 3.19). It is
placed on the ground in front of a wall with several holes. The task consists of find-
ing a way out of the bottom left hole and into the bottom right hole. Both openings
represent narrow passages in the configuration space.

The PRMs with Gaussian and bridge test sampling are the only PRM variants
able to solve this scenario reliably (Table 3.5). The roadmap mainly covers the open
configuration space regions around the robot’s base, as only few samples are actually
placed in the vicinity of the narrow passages. The RRT variants with two trees on
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Fig. 3.19 First stationary manipulator reaching through openings in a wall. The robot has to move
from the bottom left hole to the one on the bottom right. a Bridge-PRM, b RRT-Connect1, c ADD-
RRT, d workspace connectivity information captured by spheres, e EET

Table 3.5 Benchmark results in the fourth scenario. The start and goal configuration of the sta-
tionary manipulator lie within narrow passages. The traditional PRM and single-tree RRT planners
show the worst overall performance. Average path length of the EET planner is shorter compared
to the other planners

Planner Vertices Edges Collision Checks Time (s) %

PRM 156 478˙43 496 156 354˙43 467 9 563 761˙2 392 399 1 066:8˙277:9 20
Gaussian-PRM 2 311˙ 1 756 2 296˙ 1 749 390 405˙ 243 252 38:6˙ 23:9 100
Bridge-PRM 2 199˙ 1 418 2 097˙ 1 356 459 649˙ 258 523 44:3˙ 24:6 100
RRT-Connect1 332 644˙ 8 142 332 643˙ 8 142 11 661 402˙ 238 944 1 200:0˙ 0:0 0
RRT-Connect2 669˙ 353 667˙ 353 30 622˙ 22 116 2:6˙ 1:9 100
ADD-RRT 960˙ 331 958˙ 331 38 564˙ 25 039 3:4˙ 2:1 100
EET 46˙ 47 45˙ 47 2 957˙ 2 402 1:0˙ 0:7 100
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(a) (b) (c)

(d) (e)

Fig. 3.20 Alternate manipulator with different kinematics and geometry but the same task as in
the other setting. a Bridge-PRM, b RRT-Connect1, c ADD-RRT, d workspace connectivity infor-
mation captured by spheres, e EET

Table 3.6 Comparison of planner performances in the fifth scenario. PRMs with Gaussian and
bridge test sampling are the only planners beside the EET planner to solve all queries within the
given time limit

Planner Vertices Edges Collision Checks Time (s) %

PRM 183 329˙ 1 264 183 231˙ 1 263 10 179 372˙ 58 054 1 200:0˙ 0:0 0
Gaussian-PRM 11 799˙ 6 909 11 768˙ 6 904 1 369 712˙ 654 844 138:5˙ 68:6 100
Bridge-PRM 14 071˙ 7 188 13 450˙ 6 877 2 076 118˙ 914 161 210:1˙ 94:2 100
RRT-Connect1 292 030˙52 674 292 029˙52 674 10 194 891˙ 986 885 1 200:0˙ 0:0 0
RRT-Connect2 159 278˙84 659 159 276˙84 659 6 014 672˙2 808 793 764:2˙357:8 70
ADD-RRT 139 742˙75 754 139 740˙75 754 4 962 883˙2 565 124 658:7˙318:7 90
EET 145˙ 87 144˙ 87 7 809˙ 6 647 1:7˙ 1:3 100
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the other hand are able to solve this scenario much more efficiently. The single
tree RRT however is only able to navigate out of the first hole and fails to find a
solution for the second narrow passage. Although the EET planner is also based
on a single tree, it benefits from adequately balancing exploitation and exploration.
Exploitation enables the robot to withdraw from the first narrow passage quickly.
The same is true for the insertion into the second narrow passage.

The percentage of free samples in the number of collision tests used as a cri-
terion in the earlier benchmarks is not significant in this scenario due to the large
open space on the robot’s side of the wall. Noticeable however is the difference in
path quality obtained from the successful planners. While a number of optimization
steps can be used in order to enhance a result [58], this procedure is expensive and
also runs faster with an initial path of higher quality. As a measure of quality, the
length of the individual path segments after a successful query is added and com-
pared between a number of planners (Fig. 3.21a). Due to excessive sampling in the
free space, the resulting paths of the PRM and RRT-based planners were often of
poor quality with time-consuming detours. The EET planner’s results on the other
hand were usually more direct, indicating that little unnecessary exploration was
performed.

3.4.4.5 Stationary Manipulator Variation

Basically identical to the previous query, this scenario only replaces the kinematic
and geometric model of the manipulator with that of a different manufacturer. Both
feature a similar construction type with six degrees of freedom and are intended for
industrial applications. The two models only slightly differ in shape and length of
several links (Fig. 3.20).

Table 3.6 demonstrates however that even these minor details can make a huge
difference for motion planning algorithms. The results from the earlier query are
practically reversed, with the Gaussian and bridge test PRM versions now showing
fewer vertices, edges, collision queries, and runtimes than the RRT-based planners.
Despite a huge time penalty, they are also the only ones besides the EET planner
capable of solving the task in every pass within the given time frame. While show-
ing a slight increase in the tree size and the number of collision checks, the EET
planner’s performance is very close to the one in the other scenario. This demon-
strates an efficient use of both exploitation and exploration, especially compared to
the performance of RRT-Connect1, the only other planner based on a single tree.

3.4.4.6 Mobile Manipulator

In this scenario, a holonomic 10-DOF mobile manipulator is placed in a room with
dimensions 5 m � 5 m � 2:5 m (Fig. 3.22). It has to perform the same task as the
stationary manipulator, but the holes are further apart and the robot has to move its
base in order to reach from one opening to the next.
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Fig. 3.21 Difference in length of collision free paths found by several planners. a comparison of
fourth scenario with stationary manipulator, b mobile manipulator in experiment six

The PRM with uniform sampling succeeds in all trials. The RRT-Connect vari-
ants with two trees solve this task faster than the stationary scenario due to the fact
that the robot has more degrees of freedom and a suitable direction for expansion
is easier to find. The single tree variant is mostly unable to solve the narrow pas-
sage leading to the goal configuration. Again, the EET planner’s ability to balance
exploration and exploitation results in the best planning performance.

As with the stationary manipulator tasks, many of the PRM and RRT planner’s
sample points are placed in free space rather than showing a focus on the narrow
passages. The length of the resulting paths can again be used as a quality mea-
sure for comparing the various planners. Figure 3.21b shows that the difference in
length is even more visible than in the previous comparison. While the EET pro-
duces straightforward and short paths for this setting, the solution of the other plan-
ners often include indirect movements that appear unnecessary and unnatural to a
human operator.

3.4.4.7 Mobile Manipulator with Attached L-Shape

While the connection between workspace and configuration space is not as distinc-
tive as in the first two maze queries, the EET planner in the last three scenarios
can still gather a lot of helpful data from the workspace connectivity information
provided by the sphere exploration. As with the robot’s more complex shape in
Sect. 3.4.4.3, this task adds an object in the form of an L-shape to the tool of the
mobile manipulator. Together with similarly reshaped holes, the robot is required to
perform a more complex motion in order to escape and enter the narrow passages
near the start and goal position (Fig. 3.23).



80 3 Obstacle Avoidance and Motion Planning

(a) (b) (c)

(d) (e)

Fig. 3.22 Mobile manipulator in scenario six in front of a wall with two openings. The start con-
figuration is reaching through the hole on the left. a Bridge-PRM, b RRT-Connect1, c ADD-RRT,
d workspace connectivity information captured by spheres, e EET

Table 3.7 Planner performances in the sixth scenario. The additional degrees of freedom provide
more suitable expansion directions. The EET’s average path length compared to the other planners
is even shorter than before

Planner Vertices Edges Collision Checks Time (s) %

PRM 1 385˙ 1 704 1 384˙ 1 704 283 712˙ 300 731 67:7˙ 71:2 100
Gaussian-PRM 495˙ 570 493˙ 570 127 760˙ 131 718 31:9˙ 32:4 100
Bridge-PRM 642˙ 882 595˙ 821 179 770˙ 223 331 46:1˙ 56:1 100
RRT-Connect1 62 620˙13 844 62 619˙13 844 4 852 026˙1 048 607 1 144:0˙250:3 5
RRT-Connect2 144˙ 92 142˙ 92 7 910˙ 6 450 1:7˙ 1:3 100
ADD-RRT 164˙ 114 162˙ 114 9 467˙ 7 845 2:0˙ 1:6 100
EET 26˙ 12 25˙ 12 1 269˙ 215 1:2˙ 0:2 100
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(a) (b) (c)

(d) (e)

Fig. 3.23 Final scenario with an L-shape attached to the mobile manipulator and corresponding
wall openings. a Bridge-PRM, b RRT-Connect1, c ADD-RRT, d workspace connectivity informa-
tion captured by spheres, e EET

Table 3.8 Benchmarks for the mobile manipulator with L-shape. Both RRT-variants with two
trees and the EET solve the given task within the given time frame. In 25 % of the queries, the EET
planner uses a path around the wall due to the open space next to the wall

Planner Vertices Edges Collision Checks Time (s) %

PRM 22 676˙ 1 604 22 654˙ 1 601 3 238 588˙205 850 1 200:0˙ 0:0 0
Gaussian-PRM 21 210˙ 520 21 159˙ 519 3 344 724˙ 74 105 1 200:0˙ 0:0 0
Bridge-PRM 20 578˙ 312 18 637˙ 303 3 653 607˙ 37 713 1 200:0˙ 0:0 0
RRT-Connect1 59 418˙ 854 59 417˙ 854 4 009 823˙ 57 019 1 200:0˙ 0:0 0
RRT-Connect2 16 737˙11 259 16 735˙11 259 995 626˙755 305 284:9˙215:2 100
ADD-RRT 11 725˙11 291 11 723˙11 291 553 647˙681 870 166:8˙205:5 100
EET 1 837˙ 1 509 1 836˙ 1 509 27 021˙ 23 220 27:9˙ 26:4 100
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Besides the EET planner, only the RRT-Connect variants based on two trees
are able to solve the given task reliable for all repeated queries in the given time
frame (Table 3.8). The PRM-based planners fail to place useful samples around the
two narrow passages and the RRT-Connect1 version cannot find a proper way into
the second one around the goal configuration. With more exploration around these
two points, the EET planner manages to solve the task every time. However, due to
the fact that exploitation guides the frame associated with the robot’s end effector
and the open space to the left and right of the wall, 25 % of the queries result in a
path around the wall to the goal configuration’s tool frame. The L-shape attached to
the tool and the hole’s geometry complicate the reach through the second opening
and eventually exploration is able to find an easier path leading to the same goal
frame.



Chapter 4
Distributed System Architecture

An industrial robot in a traditional construction setting is usually running a fixed,
deterministic program and is shielded from human operators through fences and
other security devices. The manipulators in these scenarios are often designed to
handle heavy loads and perform the same task efficiently over a long period of time.
Communication or synchronization between different robots or other mechatronic
equipment is normally handled via various input/output signals. The use of addi-
tional sensors is typically limited to force/torque devices or basic forms of image
processing. Although industrial norms are changing and now allow direct coopera-
tion of humans and robots to some degree (e.g., ISO 10218), the included limitations
and uncovered aspects still often prevent true and efficient collaboration.

A robot system specifically designed for interaction with a human operator not
only requires highly-skilled sensorimotor coordination, action planning and safety
regulations on the part of the robot, but also the ability to understand and com-
municate with a human being in many modalities [131]. In a joint action environ-
ment (Fig. 4.1), partners working together on a common task have to communicate
with the other person. This also includes monitoring the other’s behavior and errors
and modifying their own behavior accordingly [132, 39].

Indicating to the partner which object in the world to use is an important compo-
nent of joint action. Situated references are often used depending on the location of
parts and the current state of the dialog and the assembly plan. If only one instance
of a type of object is available in the entire workspace, a complex reference can
usually be avoided. The same is true if both partners know the state and the next
part in the current assembly task. Dialog history also provides context and can be
used to refer to objects with reduced expressions [11, 10].

Apart from a focus on speech and verbal communication, several non-verbal in-
put channels such as nodding or pointing also need to be supported. During joint
activities, humans tend to employ signals beyond language to indicate things [34].
Even people speaking entirely different languages are usually able to communicate
with the help of actions, objects, or locations around them. A human can for ex-
ample ask for a specific object either by using an elaborative verbal description or
by solely relying on a combination of gestures such as pointing. He can also com-

83
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(a) (b)

Fig. 4.1 Human-robot interaction scenarios addressed in this chapter. a Joint-Action Science and
Technology (JAST), b Joint-Action for Humans and Industrial Robots (JAHIR)

bine both approaches and simply ask for the object he is currently pointing at. Most
of these material signals can be categorized into two main types: directing-to and
placing-for [33]. With the first technique, an action is used in order to direct an ad-
dressee’s attention toward an object, place, or event. Pointing toward an object, a
location, or oneself—using hands, fingers, thumbs, lips, eyes, or chin—is a typical
example for this type of non-verbal communication. In contrast, placing-for is used
in order to place an object or action in a location where an addressee should inter-
pret this appropriately. During an assembly, this might include a part required in the
next step of the current task plan.

The architecture of such a robot system needs to be able to handle all these vari-
ous input types. It also has to process all available information and generate appro-
priate outputs. This all happens in an uncertain and dynamic environment, where
sensors may not be able to precisely obtain each event and every action. Some parts
of the system, such as hardware control, will depend on certain real-time require-
ments. Sensors and corresponding algorithms will have different time constraints
and computational demands and high-level planning will be even more complex. In
addition, several approaches exist for various aspects of the system, such as sym-
bolic or sub-symbolic planning, different methods and levels for object and gesture
detection, as well as multiple strategies for output control. Parts of the system will
also have special requirements for operating systems, programming languages, and
even load balancing across multiple machines.

A system architecture has to support all of the afore-mentioned aspects. Soft-
ware modules for the various parts have to be able to communicate with each other
across several boundaries such as operating systems, programming languages, and
communication channels. It also has to be able to support changes and further devel-
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Fig. 4.2 Feedback constraints of various tasks. Global planning can address local minima issues,
but cannot fulfill real-time requirements of local control

opment, such as different hardware components or algorithmic approaches, without
the need of a total redesign.

4.1 Local Control vs. Global Planning

Robot programs generated in the teach-in method typically run in offline mode.
The task is completely defined by a programmer beforehand and the trajectory of
the whole movement can be precomputed. Internally, the controller calculates the
motor torques from the desired joint positions using the kinematics and dynamics
equations in the given time constraints. Additional direct input from a force/torque
sensor can also be integrated here.

In contrast, an interactive robot system will not only run in online mode, but also
feature several advanced control paradigms. Ideally, the system has direct access to
the motor torques and can circumvent any position or velocity control loops. Only a
few robot systems today grant this kind of access, often a position or velocity inter-
face or no online access at all is provided. Torque control usually requires a control
loop of 1000 Hz or higher, whereas access to other interfaces only reaches 100 Hz
or even lower with no direct control over internal computations.

A controller written completely in software can directly implement various
strategies such as position or force control (Fig. 4.2). Of course this also goes hand in
hand with extreme real-time and fail-safe requirements. If no correct control torque
can be provided at the necessary control cycle, the robot system will be damaged
and likely also injure its human operator. The same is true for position control and
sensor evaluation, such as force control with very high feedback constraints. Input
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from other sensors with lower update rates, such as cameras for visual servoing, can
also be integrated here.

Whereas position and force control can be directly applied to local control laws,
advanced calculations suffer from local minima. Inverse kinematics computations
often suffer from singularities and optimizations based on dynamic parameters are
even worse. The same is true for posture control, optimized trajectories, and espe-
cially for reactive obstacle avoidance. The latter also often has to integrate sensor
input and distance computations from geometric models. Where simple collision
detection performance can reach up to 1000 Hz on recent processing units, distance
calculations are usually slower.

Global planning can generally solve most of the issues regarding local minima,
but cannot meet the feedback requirements necessary for local control. Although
many sampling-based methods are probabilistic complete, the computation of a
collision free path might take several days or even longer. After planning, reac-
tive obstacle avoidance or advanced strategies such as Elastic Strips [23] can en-
sure safe operation in a dynamic environment. Some approaches such as Elastic
Roadmaps [153] can even achieve some form of global planning in a tradeoff with
full completeness. Planning also includes several forms of high-level planning, such
as interpretation of sensor data, multimodal fusion, a combined world model, as-
sembly planning, dialog management, and decomposition of behaviors into actions,
tasks, and events.

4.2 Integration of Input, Reasoning, and Output

In the JAST (Joint-Action Science and Technology) project, a wooden toy-model of
an aircraft was chosen for a joint construction task (Fig. 4.3). The scenario consists
of several parts, such as wooden slats, bolts, cubes, or nuts, and can be used to
build a large variety of assemblies (e.g., a motorcycle). While the number of parts is
limited, building plans for advanced assemblies can become highly complex. Due to
variations in the production of these parts, their handling is sometimes challenging
even for human operators. Actions performed during this joint construction task
can be classified into a number of frequently occurring categories. Observation of
human operators in this scenario showed operations such as pick up, screw, point,
put down, and plug among those with the highest percentage [80]. Further actions
include give, receive, align, unplug, unscrew, stack, and unstack.

The system is equipped with two industrial robot manipulators—mounted to re-
semble human arms—and an animatronic head, so that a human can interact with
the system across a table (Fig. 4.1a). In order to ensure cooperation, the workspace
is virtually divided into three areas. Human and robot each have sole access to a sec-
tion in front of them, with a common area in between. During interaction, the parts
required for a target assembly are distributed across these areas so that neither of the
agents is able to reach all of the required components. Various cameras are installed
for the recognition of objects on the table and for tracking the user. Force/torque
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(a) (b)

Fig. 4.3 Baufix toy scenario used in the JAST project, including wooden cubes, slats, nuts, and
bolts. a parts required for building an airplane, b fully assembled airplane

sensors and grippers (with position sensors) on each arm complete the installation.
Due to hardware and software requirements, the system is distributed across several
machines with different operating systems and programming languages. Modules
communicate with each other using the Internet Communications Engine (Ice), an
object-oriented middleware which supports distributed heterogeneous systems [67].

An important aspect in the development of this system was a focus on joint-action
principles. Both verbal and non-verbal areas of communication have to be recog-
nized and handled during interaction. The data sent between the different modules
is given timestamps to enable multimodal integration. Because of the live interac-
tion with the human instructor, the system needs to be able to abort or switch any
behavior instantly and safely. Different approaches to input, reasoning and output
handling may be implemented by different parties during the project. The behavioral
layer of the system is therefore loosely categorized into three main areas: modules
that mainly handle input channels and recognition, those processing obtained infor-
mation and dealing with corresponding reasoning, and eventually the ones generat-
ing output of any form (Fig. 4.4). Modules can also be easily disabled or restarted
at any time.

4.2.1 Recognition of Verbal and Non-Verbal Communication

Input modules have to deal with recognition in various areas that are part of in-
teraction. Data from a top mounted camera is used to detect Baufix objects on the
table as well as hand position and gestures. In order to be able to directly address
the user when speaking to him, a camera in the animatronic head together with face
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Fig. 4.4 Overview of modules in the JAST architecture. Elements are loosely categorized into
input (left), reasoning (bottom), and output modules (right). Communication between modules is
implemented using an object-oriented middleware with support for distributed systems

tracking is employed. Verbal input through a microphone is processed by a speech
recognition engine.

The object recognition module uses a template matching approach in order to
recognize the parts of the Baufix scenario [109]. Its task is to classify the various
pieces into categories (e.g., slats, bolts, nuts, cubes) and to identify corresponding
properties such as color (e.g., red, yellow, orange, blue, green) or size (e.g., small,
medium, long slat) as well as the position and orientation of the object on the ta-
ble (Fig. 4.5a). Segmentation is simplified through the use of a static, uniform back-
ground. Occluded objects can be detected up to a certain amount of overlapping.
The camera is calibrated and the module transforms the coordinates to a common
world frame used across all modules of the system. Recognized objects are assigned
a unique identifier and a timestamp. Templates for the fixed set of known objects of
the scenario are usually generated and stored beforehand, but the approach also al-
lows for the addition and naming of new parts during runtime. This also applies to
generating a template for an assembled object of several parts (Fig. 4.6). Perfor-
mance of the recognition module is greatly improved through the use of multi-core
architectures [110]. Visualization of the results can be provided to the user as a
direct feedback and demonstration of possible recognition limitations and errors.
Information such as the current position of the robot manipulators can be requested
and included in order to exclude corresponding image regions in the detection using
a virtual camera in a 3D representation. Position, orientation, and view frustum are
determined by the intrinsic and extrinsic parameters of the camera calibration and
lens distortion can be simulated by a fragment shader (Fig. 4.5b–c).

Data from the same camera is also used for hand localization and gesture recog-
nition. This information is essential for the integration of non-verbal communication
in the system. In combination with speech it can also be used to clarify ambiguous
instructions. In this setup, three different types of gestures need to be detected: point-
ing, grasping, and holding-out. The first one is mostly used to highlight a specific
object on the table, usually with the help of the index finger (Fig. 4.5a). Grasp-
ing (with index finger and thumb) is used to articulate the intention of taking an
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(a) (b) (c)

Fig. 4.5 Object and gesture recognition example of top-mounted camera. a actual camera image
with detected objects and pointing gesture, b synchronized 3D representation with current robot
configuration, recognized objects, and distorted view frustum (green lines), c virtual camera image
including lens distortion

object, whereas holding-out (open palm) symbolizes a request for an object. The
approach used in this module computes the likelihood of different gesture types and
assigns probabilities based on Bayesian inference rules [158, 159, 157]. As with the
object recognition module, a static or dynamic threshold can be used to remove the
table background during segmentation. Invariants include geometric ones (outer-
contour length, X- and Y-gradients, gradients deviation, furthest distance) as well as
the first six Hu moments. The gesture likelihoods are determined by a modified k-
nearest neighbor classifier. The module reports on updates of the user’s hand posi-
tion (in world coordinates), combined with a timestamp. A list of gesture hypothe-
ses and their corresponding probabilities is broadcast whenever the hand position
remains stable for a specified amount of time. The pointing gesture also includes an
approximated angle direction. New gestures can be added after a training session
consisting of several samples of different users.

Verbal input is handled by a common speech recognition engine such as Dragon
NaturallySpeaking. Multiple hypotheses sorted by confidence values are broadcast
together with start and stop timestamps. A proper grammar for the current scenario
or even a simple word list can vastly improve recognition results. This module can
also be replaced by a simple keyboard input dialog for test scenarios or during eval-
uation.

Head tracking is used in order to locate the user when addressing him during con-
versation. The head’s position in the camera frame is estimated with a Contracting
Curve Density (CCD) algorithm implementation optimized for real-time applica-
tions [116]. The information is broadcast together with a timestamp and then used
in the output modules for controlling the animatronic head. In the future, additional
non-verbal information such as face position/orientation (e.g., nodding) and gaze
direction (e.g., area of interest) could be included by using additional cameras and
a more advanced detection algorithm [115]. Even further detection modules could
enable full body tracking and three-dimensional gestures as well.
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(a) (b) (c) (d)

Fig. 4.6 Named Baufix assemblies used during the user evaluation. Some objects can be reused as
subcomponents in other assemblies. a tower, b windmill, c L-shape, d railway signal

4.2.2 Internal Representation and Decision Making

Modules that belong to the reasoning area of the system cover all aspects related
to higher level planning, such as updating an abstract world model representation,
the combination and categorization of multiple related input streams, interpretation
of non-verbal communication, task planning, as well as dialog management and er-
ror monitoring. Depending on the current context and situation as determined by
the current state and input signals, proper actions are selected and eventually di-
rected to the corresponding output modules. The JAST project combines two dif-
ferent approaches in order to provide better reasoning and perception capabilities:
sub-symbolic processing in the form of dynamic neural fields is integrated with a
more traditional symbolic method represented by a dialog management system. The
former focuses on inferring the user’s intended domain actions based on non-verbal
behavior, while the latter concentrates on understanding and generating multimodal
natural-language utterances.

The object inventory keeps track of the objects on the table as reported by the ob-
ject recognition and goal state module. It also stores the location of every object, be
it on the table, in the robot’s hand, in the possession of the user, or in an assembled
state. The representation is persistent throughout variations, for instance when the
user covers objects during interaction. Modifications, such as new objects, changes
in location or coordinates are broadcast together with timestamp information. To-
gether with information from gesture recognition and robot movement, this data can
be used for visualization purposes (Fig. 4.5b). Other modules can also request a list
of objects matching a certain description, location, or world coordinates.

Multimodal fusion is responsible for combining input from several verbal and
non-verbal modalities (e.g., speech, gesture, gaze) and processing this information
in a way accessible to other components. These modalities can also be related to
each other in time and may refer to objects in the environment [66]. A human could
point to an object and afterwards to a location while asking to move the object to
the indicated position. The module has to be able to handle raw text output from
the speech recognition module and transfer it to a proper representation based on a
grammar [65]. Accurate timestamp information from the speech and gesture recog-
nition modules is essential in combining these modalities. Multiple hypotheses and
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Fig. 4.7 Assembly plan of the railway signal in the evaluation scenario, that can be represented
by an AND/OR graph. Different paths and combinations lead to the same goal state. Selected
subcomponents present other named assemblies

corresponding confidence values from these modules are useful as well. Informa-
tion about the environment is provided by the object inventory and helps in resolv-
ing pointing information to specific object instances. A single pointing gesture for
example might highlight multiple objects and require additional verbal input for
clarification.

A proper representation of assembly plans is essential in a joint construction sce-
nario. The system needs to be able to discuss details of the current plan as well as
monitor its execution. For this, parts and assemblies are usually given correspond-
ing names and subcomponents can be combined to create new assemblies (Fig. 4.6).
Even in the relatively simple Baufix scenario (Fig. 4.3a), multiple assembly se-
quences are available in order to reach a final goal state. During the construction
phase, some pieces may be interchangeable and others can be attached in any or-
der (Fig. 4.7). However, there are a still a number of conditions that have to be re-
spected, such as geometric relationships among parts. An individual assembly step
consists of a list of involved objects (typically a bolt, a number of unthreaded pieces
and one threaded fastener), an action (place, insert, fasten, or find), a corresponding
list of target holes (e.g., end or middle hole), and a unique identifier [56]. A com-
plete plan then contains a sequence of assembly steps, represented in an AND/OR
graph. Information on changes in the current plan, the execution of a given step, or
completion of a plan is broadcast together with a matching timestamp.

During construction, it is important to select complimentary actions based on the
user’s immediate and final goal, common task knowledge, and context. Addition-
ally, error detection is critical in case the user is confused about the current assembly
state or its temporal order. The system’s goal inference and error detection module
uses an approach based on dynamic fields [46, 16]. Different pools of neurons in a
distributed network of local, but connected neural populations encode task-relevant
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information about action means, goals, and context, in the form of self-sustained ac-
tivation patterns. The module receives data from the object and gesture recognition,
multimodal fusion, and goal state modules. It broadcasts the user’s final goal (i.e.,
the target object to be built), the immediate goal based on the current action, any de-
tected conflict or error, and the next suggested action. The latter is based on inferred
goals, errors, the distribution of pieces, as well as current and possible next assem-
bly steps. This can include multimodal actions for manipulation and communication
patterns for resolving conflicts or errors.

The dialog manager maintains the interaction history and selects an appropriate
system output based on the current state of the interaction and of the plan, along
with the user’s assumed knowledge. It also updates the state of other components
depending on current events. Based on the TrindiKit toolkit, it uses the information-
state update approach. The information state in the JAST system includes data about
the user’s knowledge, the current step in the plan that is being executed, the history
of steps that have been described to the user, and the history of the interaction. With
information on the current goal state, the dialog manager must describe the correct
assembly process to the user. It also maintains a list of objects already known to the
user throughout the dialog. The plan and object inventory are updated accordingly
after the completion of each assembly step [56]. Information from the task plan is
also important when deciding on how to refer to objects in the world. An appropriate
verbal or multimodal referring expression can be selected based on the context, such
as when a part has been used in a preceding assembly step [52].

In the initial version of the system, the robot knows the target object and the
corresponding building plan. It instructs the user on following the plan and hands
over objects as they are needed. Humans are much quicker and better at dealing
with complex construction tasks. Therefore, in this asymmetrical situation, the user
follows the robot’s instructions and performs all assembly actions while learning to
make and reuse several subcomponents [53, 54]. This has been extended to a more
symmetrical scenario, where both the robot and the user know the target object and
the construction plan. They jointly execute the assembly and the system monitors
the user’s actions in order to anticipate which piece will be needed next and to
detect and deal with any unexpected actions. In order to accomplish this, the goal
inference system has been integrated in this version [55]. While the dialog system
supports advanced linguistic interaction, it cannot infer the intentions solely based
on actions in the world. The dynamic field system on the other hand can detect and
reason about non-verbal actions, but uses dialog only for verbalizing activity in the
field. The dialog manager incorporates the additional goal inference input alongside
the other information from the multimodal fusion module and selects an appropriate
action. Combined, the two reasoning approaches can support enhanced interaction
patterns that would not be possible with either of the individual systems. This is
demonstrated in the corresponding user evaluation in which the user was given a
plan with a built-in error and the robot had to detect and explain the error in order
for the human to assemble the piece correctly [9].
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Fig. 4.8 Trajectories captured
by an optical tracking system
in a handover experiment
with a sequence of six cubes.
Interaction is shown between
a robot giver (blue lines) and
a human receiver (red lines)
using decoupled minimum-
jerk trajectories. Gray lines
show projection onto the XY-
plane

4.2.3 Multimodal Feedback and Action

In case of the JAST system, input from various sources is processed and analyzed
by several reasoning modules until the dialog manager finally chooses an adequate
response. Similar to the many available types of input channels used during interac-
tion with human partners, the system should also employ a large variety of output
modalities. This includes use of the animatronic head with its facial expressions and
voice capabilities as well as both robotic manipulators and their demanding control
strategies and real-time constraints.

Instead of a bare setup with only manipulators, cameras, and speakers, the an-
imatronic head provides the user with a natural reference point during dialog and
interaction. The robot’s head is able to talk and move its lips accordingly for lip-
synchronized speech. A number of facial expressions can be activated as well and
extended if necessary. This can be utilized to smile if an object has been success-
fully built by the user or to look confused if the system did not understand the user.
Other use cases can include nodding to indicate agreement, thinking expressions
while processing information, or even the raising of eyebrows in order to emphasize
words or phrases. The gaze behavior can be controlled as well in order to look at
the user during dialog or to look at objects on the table when referring to them as
a form of inaccurate, but fast pointing gesture. This can be realized with the help
of the head’s camera and face tracking as well as information from the object in-
ventory [51]. Multimodal output is achieved in cooperation with the robotic arms.
These can be moved in order to point at objects and to draw attention to them.

The system can execute a number of operations that have been identified as useful
for this scenario, such as pointing at, picking up, putting down, and handing over
objects. More advanced assembly actions such as bolting together a screw and a
cube were also included in an earlier version. However, these operations have been
removed for the evaluations in order to involve the human more in the construc-
tion task. The JAST scenario with its imperfect wooden parts is different compared
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to optimized industrial settings and the human is much quicker at handling them
anyway. Information such as the current joint configuration or tool position can be
requested and used for visualization or other purposes. Additional data can also be
used for error monitoring, such as feedback from the gripper sensor in order to val-
idate the correct dimensions of objects that have been picked up or after an object
has been given to the user. In a similar way, force/torque data is used when ap-
proaching parts on the table or during hand-over. This also includes an abstraction
of inverse kinematics, where the reachability of an object on the table can be tested
in advance. During interaction, the user needs to be able to barge in at any time and
the system must permit adaptation and change of its behavior instantly. This can
include changes in the current goal as well as interruptions from the user, such as
entering the common work area of the robot manipulators. Especially in contrast to
classic industrial settings, where there is no direct interaction between human and
robot, appropriate safety regulations in the form of sensors and other resources are
crucial. It is important to avoid offline trajectories calculated in advance and adhere
to a strict online control strategy. Section 4.3 discusses this aspect in more detail.
However, not only is it vital to ensure proper compliance with safety protocols, the
robot’s movements also have to be predictable to the user (Fig. 4.8). The trajec-
tories of industrial robots in particular often appear extremely unnatural to users.
Movements that are unexpected, unfamiliar, or too fast can interfere with efficient
cooperation. In this setting, the handing over of objects between robot and human
plays an important role during assembly. The overall acceptance and performance
of this task can be improved by implementing advanced trajectory profiles that are
similar to those observed in interactions among humans [79, 77, 78].

4.3 Distributed Task-Based Control and Sensor Integration

Apart from obvious safety aspects in the cooperation between human and robot,
this kind of interaction also demands more advanced control concepts besides tradi-
tional trajectories in joint or operational space. This especially regards areas such as
direct physical contact with proper force control or task concepts that require var-
ious forms of constraints. Ideally, this also includes a robot system with low-level
torque control and its direct control possibilities. Interference between these tasks
needs to be prevented in order to avoid uncontrollable or unwanted behavior. The
fact that changes due to sensor data (e.g., force/torque control, obstacle avoidance)
or modifications to the task itself (e.g., goal position, task constraints) can happen
at any moment requires an online control system. This also disqualifies optimized
or precomputed static control programs.

Based on concepts from task-based control (Sect. 2.1.6), a number of tasks Tk
with corresponding constraints can be combined into a single action A. These tasks
can range anywhere from position and force/torque control, to constraints on de-
grees of freedom in operational or joint space, visual servoing, and obstacle avoid-
ance, or more advanced concepts such as proper balance in a humanoid. Addition-
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Fig. 4.9 Behavior description consisting of a series of actions and events. Actions combine a series
of prioritized tasks with constraints in order to achieve a desired output. Events handle the control
flow to the next state

ally, several of these actions can be combined through events in order to create
advanced behaviors (Fig. 4.9). Such events can depend on task definitions (e.g., a
goal position), time constraints, input from other modules, or even the user. A proper
projection rule Gk for each task guarantees consistent behavior and provides a well-
defined hierarchy. Depending on the actuator system, the torques or velocities from
each task as well as their projection rule are calculated in each step and transformed
into the superior subspace, ending with the highest ranking task Tn:

A D Tn Gn Tn�1 Gn�1 : : : G1 T0 : (4.1)

These task-based control programs have to be able to embed dynamic sensor in-
formation (e.g., visual servoing) and also require the compliance with various safety
aspects and real-time constraints. Sensor and actuator hardware in particular usually
demand strict cycle times. Due to the complexity of various tasks it can be required
to distribute their computation among several computer systems (e.g., advanced im-
age processing). Obstacle avoidance typically uses an internal three-dimensional
representation that can be static or even dynamic. Dynamic obstacles have to be
detected and updated using a large selection of sensors and algorithms. These en-
vironment models may also have to be managed and updated among a distributed
system with multiple processing units and their respective sensor devices.

This kind of control architecture can be divided into five layers (Fig. 4.10). In or-
der to separate control programs from specific hardware implementations, a generic
abstraction interface between various components is advisable. This also includes
proper descriptions for kinematics, dynamics, and geometry data. Such common
interfaces can facilitate easy integration of alternative or even new components in
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Fig. 4.10 Classification of a control architecture into behavior, action, and execution layers. Hard-
ware abstraction and user interface layer complete the design

a working system. Communication on this hardware level is strictly synchronous.
The execution layer is directly attached to this hardware abstraction layer and re-
quires hard real-time constraints. The robot’s kinematics and dynamics equations
have to be evaluated here, as well as task constraints such as position and force con-
trol, visual servoing, or obstacle avoidance. This also includes reading and updating
actuator and sensor information (e.g., force/torque, camera, or 6D mouse data). In
addition, this layer is responsible for projecting the various tasks of a single ac-
tion into the proper subspaces as defined in the corresponding hierarchy. Temporal
sequences of these primitives are handled in the action layer. Events (e.g., a goal
position, a force threshold, the press of a button) handle the change from one action
primitive to the next and relay this information back to the execution layer. These
sequences can be defined by a programmer, as well as be generated or changed by
modules in higher layers, for example using a visual representation or a guided di-
alog. More advanced behavior patterns are established through the behavior layer.
Here, the system can also communicate with other modules and is able to decide
when to activate other action sequences (e.g., by the dialog manager in the JAST
system). Modules can also update and inquire information from the same world
model representation in order to implement a global strategy, such as when explor-
ing or mapping an unknown environment and computing global navigation plans.
Finally, input from the user cannot guarantee any kind of real-time constraints. The
user can however modify and influence current control programs or even specify
new tasks, actions, or behaviors.

Some of the tasks in a control program are critical and the system has to cal-
culate proper responses for every control cycle (e.g., gravity compensation for the
actuators). Depending on the hardware this results in requirements of 1000 Hz or
higher. Other components however might not be as critical or simply impossible to
calculate within the given time frame (e.g., advanced image processing). The up-
date rates of these tasks can then be handled asynchronously to the rest of the core
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Fig. 4.11 Distributed control between two machines. Sensor data from a camera in combination
with an obstacle detection is used in order to modify a scene graph representation. An obstacle
avoidance task uses this information as input and generates a proper control output

system. Due to the combination of tasks through target vectors and projection rules,
only these results have to be exchanged between different components and the main
computation can be handled in separate threads, processes, or even machines. Some
tasks can also handle other forms of input and only need to exchange partial data.
The type of communication between components is flexible and only depends on
corresponding real-time requirements. It can range from direct communication, to
shared memory, or even network protocols. A visual servoing node can for instance
be directly connected to a camera, use this information in order to compute a new
target position, and then send the result as input to a goal position task running
on the main control node rather than raw image data. It can also use other types
of communication in order to gather images from multiple distributed cameras and
combine the resulting data before generating and sending a target position. In an-
other scenario, data of various obstacle detection modules on different nodes can be
combined into a shared three-dimensional world representation. An obstacle avoid-
ance task on the core node can then use this model in order to calculate distance
information and combine the output with other tasks before sending it to the motor
control (Fig. 4.11).

In the JAHIR (Joint-Action for Humans and Industrial Robots) project, this con-
cept has been applied to an actual human-robot interaction scenario. Compared to
the JAST evaluations, this setup focuses more on joint action in an industrial set-
ting. Here, a human cooperates with an industrial robot across a working table that
represents a common workspace. The robot is equipped with a force/torque sensor,
as well as an automated tool changer with several different equipment options, and
features a real-time interface with access to position-based control. Optical trackers
on the user’s upper and lower arm as well as the palm are used in order to up-
date a dynamic world representation within a control architecture similar to the one
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presented in Fig. 4.11. Nodes can dynamically add, update, and remove obstacles
from the scene graph using an object-oriented middleware [67], where each obsta-
cle is associated with a unique identifier and can consist of an arbitrary number of
shapes. Many different sensors and algorithms for the detection of the human’s posi-
tion in the workcell and other objects can be integrated with this approach. Various
other devices are installed in the setup, including top-mounted optical cameras, a
projector, and a time-of-flight camera, as well as a laser range scanner and pressure-
sensitive safety mats. The projector can be used in order to visualize the current
model used for obstacle avoidance. This way, the human operator can verify that his
movements in the vicinity of the manipulator are registered properly.

A series of experiments shows the capabilities of such architectures in joint ac-
tion environments [102]. The first application scenario demonstrates the use of an
industrial manipulator as a mobile storage box (Fig. 4.12). The robot’s task is to
provide access to different assembly parts depending on the context and the current
production step. Live data from the tracker on the palm is used in order to place
the box within reach of the user. This is implemented with a goal position task that
only acts on positional data in operational space. Due to the loose content of the
open box, it has to be kept upright at all times. This can be achieved by including a
task with restrictions on the rotational degrees of freedom in operational space. For
safety reasons, an obstacle avoidance task with access to the dynamic scene graph
representation is included. If the distance to the user falls under a specified thresh-
old, the system is instructed to perform a full stop. Additionally, a posture task tries
to achieve a more accessible, upright joint configuration:

A1 D Torientation G Tavoidance G Tposition G Tposture : (4.2)

In order to assist the user during complex assembly procedures, the second sce-
nario features the manipulator equipped with a light source as its tool (Fig. 4.13).
The main position task has its target at the object’s position on the table in opera-
tional space, with a virtual tool corresponding to the focus length of the light. The
focus of the spot light is directed at the target object as a result. A posture task is also
included, as the ideal position for the light source is directly above the target object.
However, the user might occlude the light during assembly and the direction has to
be adjusted accordingly. Obstacle avoidance is therefore divided into two represen-
tations: the first one handles only the human and a model of the robot with a virtual
light cylinder and has a lower priority. The second one omits the cylinder, but adds
the full environment model in order to handle safety aspects during the interaction:

A2 D Tposition G Tenvironment G Tposture G Tlight : (4.3)

A final example uses a top-mounted camera for object recognition (Fig. 4.14).
The camera requires a direct line-of-sight to regions of interest on the table. Due
to this, the robot can perform various tasks in cooperation with the human, but
should avoid interfering with the image processing component if possible. This can
be addressed by creating two obstacle avoidance tasks with different priorities as
explained in the previous scenario. Virtual cylinders are used in order to guard the
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(a) (b) (c)

Fig. 4.12 First experiment in the JAHIR setting. Sensor data from an optical tracker is used for
assistance and dynamic obstacle avoidance. Movement is completely stopped if the computed dis-
tance falls below a given safety threshold. a real-world scenario, b collision detection representa-
tion, c reaction to movement

(a) (b) (c)

Fig. 4.13 Support in form of an automated lighting system. The robot tries to avoid postures that
conflict with the human’s arm. a implementation on the robot, b first collision scene for obstacle
avoidance, c second scene used for line-of-sight

(a) (b) (c)

Fig. 4.14 The robot system moves to a goal position without crossing the top-mounted camera’s
view on an object on the table. a actual robot system with projected visualization on the table,
b collision scene representation used for obstacle avoidance, c second scene reflecting the camera’s
region-of-interest
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camera’s regions of interest. Other tasks can then be integrated into this hierarchy
with respect to their priorities:

A3 D Tenvironment G Torientation G Tline-of-sight G Tposition G Tposture : (4.4)

Rather than requiring an expert with extensive training to develop individual
robot movements using each manufacturer’s programming language, a human op-
erator can instruct the system with minimal training. Tasks can be used in order to
create a set of basic manipulation or interaction skills. Analog to the JAST setup,
common requirements include high-level behaviors, such as moving to a resting po-
sition, picking up objects from the table or conveyor belt, handing over objects, or
changing end effector tools. As mentioned before, these skills consist of a series of
actions and events that can involve any type of actuator or sensor device. Picking
up an object for example will typically involve placing the end effector above an
appropriate goal position (e.g., from an object recognition module), slowly moving
downwards until either a certain distance or force threshold value is reached, clos-
ing the gripper, and advancing upwards. Using an appropriate user interface or even
dialog management, the operator can combine several actions and events of vari-
ous complexities to a new behavior. For this, he can choose from several building
blocks, including sensor devices for identifying equipment in the tool changer, the
status of signal lights in the vicinity of the worker, and interactive program control
through virtual buttons (using object recognition and the top-mounted projector).

4.4 A Framework for Developing Robotics Applications

The previous sections focus on concepts and interface specifications of a distributed
interaction system rather than new middleware implementations. Existing solutions
are well suited for these applications, as long as all operating systems and program-
ming languages are supported [68]. As discussed in Sect. 1.1, the main issue in
developing these systems often arises from providing basic robotics functionalities
in the individual components. Common tasks, such as mathematics, kinematics and
dynamics calculations, or hardware drivers, usually have to be reimplemented from
scratch and new algorithms typically depend on these basic functions. Not only does
this apply to other parts of the development process, such as visualization or simu-
lation environments, but also to stand-alone applications in research, education, and
industry.

The framework presented in this section addresses many of these issues and
has been used in the development of various projects, including the earlier pre-
sented JAST and JAHIR systems, as well as the motion planning benchmarks. Most
parts of the C++ libraries have already been released as open source and are freely
available1. In the development workflow, new robot types can be added by specify-
ing proper kinematics, dynamics, and geometry definitions. Hardware components

1 http://roblib.sourceforge.net/
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are classified into several actuator and sensor categories and this selection can be
extended by providing appropriate drivers. Other elements include compatible inter-
faces for several visualization, collision detection, and physics simulation libraries,
as well as an implementation of motion planning and task-based control.

With reusability in mind, the components of the framework can be combined for
building a large number of applications in the robotics domain. Kinematics, dynam-
ics, and geometric representations provide a base for motion planning algorithms
and task-based control. In combination with proper visualization, the simulation of
robot movements can be tested before actual execution on the hardware. Collision
detection and distance computation enable obstacle avoidance and other safety as-
pects in a real-time control architecture.

4.4.1 Mathematical Foundations

Good support for vector and matrix operations are among the most common require-
ments when building robotic applications. Most algorithms in kinematics, dynam-
ics, and other areas are built around vector and matrix operations such as addition
or multiplication, as well as advanced calculations including LU, QR, and SVD de-
composition, eigenvalue and eigenvector computation, or linear equation solvers.
While a large number of implementations and mostly incompatible data contain-
ers are available to developers today, none is usually able to natively achieve the
complete functionality of BLAS (Basic Linear Algebra Subprograms) [101, 17],
LAPACK (Linear Algebra PACKage) [3], and similar collections. A viable alter-
native can be found in the form of numeric bindings [105], where a generic layer
between data containers and algorithm packages allows for interoperability between
different implementations. This method uses the traits technique [111] in order to
provide interfaces that are separate from any specific container package. Generic
functions provide support for single and double precision as well as complex ar-
guments and can determine elements such as size, stride, or matrix layout auto-
matically. Optimized implementations for specific hardware architectures or vector
and matrix dimensions can also be integrated in this fashion [145, 146]. Regard-
less of the specific implementation, the underlying data containers should provide
proper access to subranges, rows, columns, and similar features that are often re-
quired when adding algorithms. Overloaded vector and matrix operations such as
addition and multiplication are usually more convenient than generic function calls;
however this often results in poor performance due to temporaries and has to be
addressed with expression templates [148].

Besides these basic features, geometry computations in robotics often involve
operations such as translation, rotation, or scaling. Section 2.1.1 shows how homo-
geneous transformation matrices are one form of combining these aspects, including
optimized calculations for inverse operations or structures for Denavit-Hartenberg
links. Orientation or rotations are traditionally specified using 3 � 3 matrices (2.6),
Euler angles (2.16), quaternions (2.18), or axis/angle combinations (2.25), therefore
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requiring conversion between these representations, as well as handling distance,
interpolation, and vector rotation accordingly. Other frequent computations may in-
clude PID controllers, Kalman filters, or trajectory interpolation between configura-
tions. While combining two rotations is more efficient in quaternion form rather than
by matrix multiplication, the cost of using them for vector rotation is much more
expensive, also when performing both translation and rotation. By exploiting the
special orthonormal structure of rotation matrices during matrix multiplication, this
cost can be reduced even further. Optimized data structures and operations however
become much more important when performing spatial vector algebra. Multiplying
two 6 � 6 spatial transformation matrices is six times more expensive than the rela-
tively low cost of combining the involved rotation and translation components. This
performance issue becomes even more apparent when transforming rigid body com-
ponents across frames, an operation where three matrices of this size are involved.
More efficient spatial data structures and formulas as proposed in [48] can be used
in order to speed up calculations like the ones in Sect. 2.1.5. Spatial motion (2.52)
and force (2.68) vector types Ev and Ef are each described with two 3� 1 vectors for
angular/linear velocity v and ! or momentum/force n and f respectively. In com-
bination with storing the rotation matrix R and translation vector p components of
a spatial transformation X rather than the evaluated matrix, the forward and inverse
transformation operations of both motion (2.53–2.54) and force (2.69–2.70) domain
can be efficiently expressed. The spatial inertia matrix EI (2.104) for rigid bodies can
be described by its mass m, center of gravity vector c, and inertia matrix I . For the
latter, using a lower-triangular matrix is sufficient due to its symmetry (2.75). In a
similar fashion, the articulated-body inertia matrix EIA requires three 3 � 3 matrices
for its center of gravity, mass, and inertia representation, where only the latter two
are of lower-triangular structure.

4.4.2 Kinematics, Dynamics, and Metrics

As outlined in Sect. 1.1.2 and 2.1, the number, type, and properties of joints and
rigid bodies are part of the robot system’s physical properties. A robot application
will often involve calculations such as forward and inverse position kinematics, as
well as velocity and force transformations. Angles and displacements of individual
joint configurations can be transformed to a set of coordinate systems that specify
the position and orientation of the robot’s rigid bodies in three-dimensional space.
Dynamics algorithms such as the recursive Newton-Euler formulation help deter-
mine matching joint torques for a given trajectory with desired velocity and accel-
eration profiles. The system’s Jacobian matrix (Sect. 2.1.3) provides a connection
between velocities and forces in configuration and operational space. A change in
the kinematics and dynamics parameters of the system should however not result in
a complete redesign of the application.

Parameters for joint and link configurations are often given in Denavit-Hartenberg
notation (Sect. 2.1.4). Due to restrictions in the placement of reference frames, this
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convention only requires four values in order to describe the length, twist, and off-
sets of each link. Joint movement is restricted to rotations and translations along the
respective Oz axis, resulting in very efficient formulations for kinematics and dynam-
ics algorithms. Symbolic optimization techniques are another way of achieving high
performance, while still allowing for elaborate and accessible descriptions [114].
This includes evaluation of constant expressions, elimination of redundant assign-
ments and operations, as well as a number of other algebraic simplifications. As a
consequence, restructuring of a system is usually limited to the adjustment of sev-
eral parameters, since the addition, removal, or substitution of joints and rigid bodies
would require a new optimization step. Using object-oriented design, the individual
equations can be arranged into specific components such as joints and rigid bod-
ies [86, 72]. These entities provide support for a number of operations on elements
such as velocity, acceleration, and force. New entity types can be integrated in a
similar fashion and each implementation can be optimized separately. This allows
for a flexible composition of model descriptions even during runtime.

Figure 4.15a shows such a representation of a basic double pendulum model in
graph form. This example consists of two cylindrical rods moved by two joints re-
volving around their Oz axis. The system is translated and rotated with respect to the
ground floor and is subject to gravitational force acting downwards. The propaga-
tion of velocity (2.106), acceleration (2.107), and force (2.113) in such a system
can be expressed with spatial vector algebra (Sect. 2.1.5). Each fixed translation
and rotation, joint transformation, and exerted rigid body force can be expressed
with corresponding spatial transformation and inertia matrices as well as direction
and free motion descriptions. Position, velocity, acceleration, and force propaga-
tion equations are reflected in the directed edges of the graph. The formulas in their
individual complexity are implemented in the corresponding transmission object.
An element representing a fixed translation for example does not have to consider
joint velocity or rotation aspects. The input and output values of these equations are
stored in the attached vertices. This also includes inertia matrices and bias forces for
rigid and articulated bodies. Similar to transmission elements, the objects matching
these vertices can be used in order to represent or calculate influences such as exter-
nal or gravitational force (2.112). Models with Denavit-Hartenberg parameters can
be integrated using a combination of basic components or by providing optimized
implementations. This may also include an assembly in the form of a series of joints
with additional functions such as analytical inverse kinematics.

The state of the model can be initialized by providing position, velocity, and
acceleration data for the respective joint elements. Kinematics and dynamics algo-
rithms can be integrated through the addition of related functions to the elements of
the graph. Coordinate systems for the individual links in the current configuration
are updated by applying the corresponding translations and rotations of each joint
in the proper order. The recursive Newton-Euler method is represented by a forward
and backward iteration through the model. The first pass is used in order to propa-
gate the velocities and accelerations from the base frame to the end effector vertices.
Additionally, the force exerted by all rigid bodies due to gravity is computed in this
step. These forces are finally iterated in a reverse order toward the base frame and
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(a) (b)

Fig. 4.15 Kinematics and dynamics of a double pendulum. a model description in graph form
with world (blue), rigid body (gray), and frame vertices (black) as well as fixed transla-
tion/rotation (black) and revolute joint edges (red) b forward dynamics calculation and integration
with initial position, velocity, acceleration, and torque set to zero

the resulting joint torques are calculated. In a similar fashion, the articulated-body
algorithm for forward dynamics can be integrated with three iterations (Fig. 4.15b).
Besides kinematics and dynamics formulations, a robot model also defines a cor-
responding metric (Sect. 2.1.2). Specific joint types can provide custom implemen-
tations for distance calculations and interpolation. This can also include decisions
about Euclidean, Manhattan, or other metrics, depending on structure and target
application.

4.4.3 Hardware and Operating System Abstraction

Finding a proper open source or even proprietary driver for a piece of robotic hard-
ware is difficult enough in most cases. Basic access to a device is not always suffi-
cient however, as this aspect also has to pay attention to modular systems and other-
wise exchangeable hardware. The physical properties of a robot system (Sect. 1.1.2)
include the selected components and their individual communication protocols. Re-
placing an actuator or sensor with a device of similar functionality should be sim-
plified by providing compatible interfaces. This is also important for aspects re-
garding the underlying operating system, such as standardized access to mutexes,
semaphores, threads, and high-precision timers or conversions regarding endian-
ness.

Common devices in robotics include motors, range and force sensors, grippers,
cameras, as well as digital or analog input/output modules. While many different
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devices of these categories include capabilities that are specific to a certain manu-
facturer, the basic functionalities and features in the same hardware class are similar.
A camera typically provides access to the captured image data and a number of ad-
justable parameters. LIDAR (Light Detection and Ranging) systems deliver an array
of distance values together with information about angular resolution. Some units
also include intensity data or the status of safety and warning fields. Depending on
the manufacturer, robot manipulators offer either position, velocity, or torque control
and feedback. This can include the ability to provide custom real-time trajectories
in joint or operational space. All devices require different real-time constraints and
communication protocols.

In order to provide common interfaces for devices that can be categorized into the
same hardware class, an object-oriented hardware abstraction layer is introduced.
Rather than implementing multiple instances of the same basic commodity, de-
vices can use standardized interfaces for functionalities such as serial ports, sockets,
threads, or timers. Basic device classes with features shared among specific manu-
facturers and units can be extended in order to integrate new hardware components,
e.g. cameras, range sensors, or position actuators and sensors in joint space. Com-
munication with devices is categorized into functions for establishing and closing
communication channels (e.g., sockets, bus interfaces), starting and stopping opera-
tions (e.g., locking brakes), as well as periodical data transmission and acquisition.
The latter is performed based on the individual update rate of the unit and performs
all send and receive operations required for updating the current state. Input and
output ports of the individual device class are used in order to convey desired ac-
tions and to listen to new responses. In case of a manipulator, inputs and outputs
include target joint positions for the next iteration and the current joint configura-
tion. A camera provides the captured image data, whereas a range sensor returns its
measured distance values. Specific units and their implementations offer access to
additional information apart from the common interfaces.

4.4.4 Scene Graph Abstraction

The definition of the individual shapes of the robot’s links and its surroundings
completes the model description. In combination with kinematics, dynamics, and
metrics, the geometric representation is essential in various computations, including
collision detection and physical simulation (Sect. 2.2). Kinematics and geometry are
linked through the coordinate systems of the robot’s links and their corresponding
rigid bodies. Each link can be composed of several basic or advanced shapes, such
as boxes, spheres, polygons, or convex hulls. Due to the high detail of CAD mod-
els and other aspects such as lighting and material properties, different models are
typically used for visualization (Fig. 4.16b) and operations involving complex and
time-critical calculations (Fig. 4.16c).

Ideally, a geometric model is specified in a common data structure with a large
number of support functions for creating and manipulating shapes and related ob-
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(a) (b) (c)

Fig. 4.16 Physics simulation and visualization of an omnidirectional mobile platform. a scenario
with two platforms on a table, camera view frustums (green lines), and distance sensors (orange
and red lines), b detailed model used for graphics, c reduced model used for physics

jects [47]. Implementations and algorithms for graphical output, collision detection,
penetration depth calculation, and similar computations can access this data and
provide advanced functionality. The available libraries in this area however usually
provide their own data structures and interfaces due to a lack of standardization
and individual implementation aspects. Most libraries either do not support loading
geometry descriptions from disk or introduce proprietary file formats. In order to
provide a common level of abstraction for similar algorithms and use cases, the var-
ious objects involved in an application can be structured into a hierarchy of scenes,
models, bodies, and shapes. Scene instances in different implementations are syn-
chronized through the frames of the corresponding bodies. A common format such
as VRML2 (Virtual Reality Modeling Language) is used in order to introduce global
file support. Scene descriptions can be created through a combination of different
models from a component library and multiple instances of the same geometry can
be used in order to increase performance and reduce memory costs. While this
geometric description is sufficient for visualization and collision detection imple-
mentations, physics simulations require additional properties, such as mass, iner-
tia, constraints, or friction. The COLLADA3 (COLLAborative Design Activity) file
format on the other hand provides support for exchanging both visual and physical
attributes of a system in the same document. Besides reflecting the aforementioned
scene structure, instances of geometry shapes and inlining of existing files together
with growing usage across the field facilitates integration.

Collision detection queries comprise tests regarding the complete scene and be-
tween individual models, bodies, and shapes. Broad and narrow phases can take
advantage of this structure to increase performance. Intersection between selected
bodies or shapes can be disabled on request in order to prevent overlapping ge-
ometries in adjacent links from interfering with the result or to suppress irrelevant
queries. Similar interfaces are available for distance and penetration depth compu-

2 http://www.web3d.org/x3d/vrml/
3 http://www.khronos.org/collada/
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tation. The former includes calls that return the distance from a custom point to
the nearest object. Physics simulation calculates the influences of forces, contact
responses, and rigid constraints in each step and updates the current world state
accordingly. External forces and torques can be added by the user and an array of
contact points is provided on demand. Figure 4.16a demonstrates how all of these
aspects can be combined in order to create a simulation system for a mobile robot.
This platform is equipped with three omnidirectional wheels, that are represented
by spheres with different friction values for each direction. Raycasts provide dis-
tance information for the range sensors in the lower half of the base and collision
response from a specific shape around this area serves as input for the system’s
bumper feedback. The visual scene is synchronized to the coordinate systems of
the rigid bodies and can show the virtual sensor data. The robot’s camera output is
generated based on the graphics in this scenario and can optionally simulate effects
like distortion using fragment shaders. Additional hardware components such as
grippers or LIDARs are supported in the same way. An industrial application based
on these principles supports the same communication protocol as the actual hard-
ware of the mobile platform and can function as a replacement during development,
educational training, or machine learning tasks.

4.4.5 Motion Planning

Comparing modern path planning algorithms is already difficult due to influences
of random sampling. Different underlying implementations of basic mathematics,
kinematics algorithms, geometry descriptions, and collision detection libraries only
add to these issues. Many planners share a number of basic principles or are even
based on each other. In addition, all planners typically provide the same basic output
in the form of collision free paths or trajectories. These algorithms may have dif-
ferent use cases or perform better than their counterparts in certain scenarios. Being
able to choose between a number of several options is therefore highly desirable and
has to be manageable with little modifications in the target application.

The central element in all planning algorithms is a model of the robot system and
its environment, including kinematics, dynamics, geometry, and metrics. The pre-
vious sections demonstrate how each of these aspects can be defined in an abstract
way that allows for changes in structure and setting. Based on the number of joints
and the connected links, a configuration generated by the planner is translated into
coordinate frames for the system’s rigid bodies. Collision detection, distance and
penetration depth computation are performed based on this information and the re-
sults directly influence the planner’s decisions. Metrics and interpolation procedures
are also included in this model and can be accessed during runtime.

Rapidly-Exploring Random Trees (RRT) and Probabilistic Roadmaps (PRM)
are amongst the most commonly used algorithms in motion planning and a large
number of implementations are based on these two principles (Sect. 3.2). Vari-
ants based on single or multiple trees and different extension strategies are found
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Fig. 4.17 Overview of the elements involved in a motion planner specification. A robot model is
defined by its kinematics, dynamics, geometry, and metric. Different sampling, edge verification,
and nearest neighbor strategies, as well as sources for workspace information can be selected.
Further optimization techniques can be applied to a collision free path

in RRT-based planners. Many different sampling strategies have been introduced
especially for PRM-based implementations. Both rely on versatile graph and tree
structures [138] as well as good random sampling methods [104]. The cost of
adding and removing vertices and edges as well as increasing complexity of nearest-
neighbor calculations demands special attention.

The same amount of abstraction that has been applied to the robot’s model
and the planner design is also important for the various components of a motion
planner (Fig. 4.17). A PRM-based planner can choose between uniform, Gaussian,
bridge test, and several other sampling techniques without a change in its algorithm.
The same uniform sampling component can be used for other sampling-based im-
plementations. All of these samplers require access to the robot’s kinematics model,
metrics, and the selected collision detection representation. With the same inter-
faces, edge verification in a roadmap can be performed in a sequential or recursive
fashion. Brute force computation or more efficient structures such as k-dimensional
trees can be employed for nearest-neighbor selection. As outlined in Sect. 3.3, there
are several sources of workspace information that can be integrated into motion
planning algorithms. In case of workspace spheres, this is achieved in combination
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with distance computation and the geometric model of the environment. Finally, the
resulting collision free movement of a query can be further optimized in order to
create shorter and smoother paths or trajectories.

4.4.6 Task-Based Control

In addition to the kinematics and dynamics of a robot system, the control architec-
ture requires access to all hardware components. The abstraction layer introduced
in Sect. 4.4.3 simplifies the integration or substitution of devices from different
manufacturers and the adaptation of new real-time operating systems. New func-
tions and algorithms are integrated through the definition of corresponding tasks
and events (Sect. 4.3). Based on its calculations, a task generates a velocity or torque
signal and passes this output on to the next object with higher priority as defined by
its parent action. This task can project this input into a nullspace that does not inter-
fere with its own output signal. The actions in the behavior are connected through
selected event objects that switch to the next step in the program when triggered.

Task implementations include basic operations such as moving to an operational
position or a joint posture. The former’s target frame can be selected from the num-
ber of coordinate systems in the robot’s kinematic model and individual degrees of
freedom in operational or joint space can be disabled on request. The target posi-
tion of these tasks can either be static or updated based on data from user input or
sensor devices. Other tasks comprise the integration of external forces or torques in
both spaces and advanced calculations such as obstacle avoidance. As demonstrated
in the previous sections, the latter uses distance information from a geometric rep-
resentation that can be dynamically updated. An action can also simply execute a
specific function, such as opening a pneumatic gripper or performing a delay for a
specified time frame.

A behavior switches to the next action in its program upon the completion of
certain events. This can include crossing a specified threshold of a linked sensor
value or reaching a target position. Events can also be coupled with Boolean ex-
pressions in order to create a desired reaction. Global events can implement safety
aspects such as an emergency stop upon falling below a safety margin in distance
computations.





Chapter 5
Conclusion and Future Work

Classic methods of programming robot systems are rapidly approaching limits
where solutions to complex applications are no longer feasible. Advanced integra-
tion of sensor devices for handling new object classes and especially safety issues
in human-robot interaction scenarios demand corresponding engineering standards.
Where fences have been traditionally used in industrial settings, these aspects will
enable new possibilities for production efficiency and small batch series. This in-
cludes the introduction of new programming paradigms that enable personnel with
no expert training to instruct these systems.

Instead of manually optimizing tasks such as pick-and-place operations, motion
planning algorithms can be used in order generate collision free paths and a corre-
sponding instruction in the program is less likely to be misinterpreted by an operator
than a series of arbitrary joint movements. Provided the geometric representation is
updated accordingly, this also considers changes such as rearranged target posi-
tions or obstacles in the robot’s vicinity. Resulting paths of the planners have to be
available within a short amount in order to respect the operator and the production
time-frame. Ideally, this runtime is fast enough to react to dynamic changes. The
generated movement also has to appear reasonable or the operator will fall back to
manual optimization. The planning algorithm presented in this work addresses these
issues by introducing the concept of exploration and exploitation. By deliberately
balancing the two opposing forces, the amount of configuration space exploration
can be reduced to a minimum. Workspace information is used in order to gather
global connectivity data and to increase efficiency. The balance between exploration
and exploitation is adjusted according to the difficulty of the local planning prob-
lem. Experimental results demonstrate the improvements in performance in a series
of real-world scenarios.

User-friendly interfaces and programming paradigms can be realized by a com-
bination of multimodal instructions with task-based control algorithms. Complex
procedures can be described through a series of actions and events. Prioritized tasks
can perform required robot movements while respecting additional constraints and
integrating online sensor information. Descriptions are not hard-coded for a spe-
cific kinematic structure or hardware devices and can be transferred to other se-
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tups. The feasibility of such an approach and the associated possibilities have been
demonstrated in a series of example applications. No expert knowledge is required
in order to interact with such a robot system. The incorporation of intelligent behav-
ior through the combination of symbolic processing and dialog management with
sub-symbolic reasoning, goal inference, and error monitoring has been evaluated
together with the influence of specific robot trajectories on human-robot interaction.

In order to refine software engineering aspects when building applications in
this domain, a framework has been developed that integrates basic functionalities
such as kinematics and dynamics foundations, hardware abstraction, visualization
and collision detection methods, as well as motion planning and task-based control
algorithms. This software has been used in the development of several projects in
research, industry, and education. The need for reengineering of common features
is avoided and new applications can be created faster and more efficient. Most parts
of the framework have been released as open source and are freely available.

5.1 Further Balancing of Exploration and Exploitation

The evaluations of Sect. 3.4.4 have demonstrated the effectiveness of actively bal-
ancing exploration and exploitation in motion planning. Incorporation of additional
information such as repulsive forces can increase efficiency even further in some
settings, even though the actual cost of computing this data is more expensive. Sev-
eral other methods of gathering valuable input are available, for instance using util-
ity information [26, 29] or statistical analysis [40]. Integrating and exploiting these
alternative data sources is an interesting objective. Rather than manually estimat-
ing the usefulness of extra information however, an algorithm should automatically
decide which exploitations are worth the additional computation cost.

Elastic roadmap planners (Sect. 3.3.4) can integrate online task-control with
global navigation. Multiple constraints with different priorities can be maintained,
including dynamic obstacle avoidance. By trading completeness for efficiency, this
method supports a number of real-life scenarios. The introduction of additional ex-
ploration techniques and proper balancing while still maintaining online capabilities
could enable the use in more challenging settings. This also would provide a natural
integration of global planners with the proposed task-based control paradigms in
environments with direct human-robot interaction.

Usually a planner is given a workspace model and has to explore the correspond-
ing configuration space. Unknown or uncertain environments however require the
integration of workspace exploration with active sensor data acquisition into the
planning concept [28]. Such an algorithm has to consider which parts of the en-
vironment model are important for the current task and what kind of resolution is
required. Provided kinematics and geometry models of a robot may also be inac-
curate or incomplete, thus resulting in additional errors in movement execution and
acquired sensor data. Dynamic obstacles further demand the monitoring and update
of existing environment estimations.
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Interaction with movable obstacles may create simpler and more direct solutions
to a planning query [37]. While a chair or closed door might be blocking the way, a
task might still be solvable if the robot actively moves the obstacle. Distance com-
putation or contact information can be used in order to determine repulsive forces
that influence passive objects in the environment. A planner has to decide when
and where to move these obstacles and if the involved effort is lower than that of
executing a path without manipulation. Branched kinematic chains with multiple
end-effectors are another aspect in this regard.

5.2 Task-Based Control and Natural Language Descriptions

The systems presented in Chap. 4 have introduced modern instruction paradigms
without textual programming languages and attachment to specific robot systems.
Task specifications on a more abstract level and with automated interpretation of
general requirements can be realized through the addition of explicit domain knowl-
edge [128]. That the transportation of a cup with liquid content implies a fixed ori-
entation appears natural to a human worker, however this information is not easily
available for a robot system. This expertise can be independent from specific prob-
lems and may be organized and managed in ontologies or databases. Object affor-
dances may imply certain interactions (e.g., the ability of a cup to hold liquids or
proper grasp points) and can be used in the automated creation of subtasks. A hu-
man operator would most likely not give detailed specifications when instructing a
system to pick up an object and place it somewhere else.

After natural language input is processed and transformed into a textual repre-
sentation, a syntactic and semantic analysis follows. Associations with grammatical
structures result in rule-based instructions that reflect commands with side effects.
Data from other components such as object recognition is used in order to iden-
tify and locate referenced objects. A matching behavior is created based on a set of
actions and events, for instance approaching a cup, grasping and lifting the object
followed by transportation to a target position, and finally placing it on a surface.
Goals and subgoals in a database are defined as hierarchic relationships and linked
in a graph with post and preconditions. A dialog manager can be employed in order
to resolve conflicts in case no trivial path exists.

5.3 Model-Driven Development

Abstract descriptions for kinematics, dynamics, geometry, and hardware are just a
first step toward model-driven engineering [127]. Physical and functional proper-
ties in logical form can facilitate code generation and verification. Algorithms and
expert knowledge from different domains can be integrated not just for simulation
purposes, but also for control architectures [1, 43]. Hierarchical and detailed models
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can be used in order to describe robot systems from electronic components to gear
mechanics and dynamic properties. Full access to all aspects of a model—including
details such as real-time constraints or specific communication channels—opens
many possibilities for verification, optimization, and deployment.

Applications can take advantage of new code generators that support paralleliza-
tion of existing algorithms without difficult reengineering. A system can be changed
from deployment to a single or multiple machines by exchanging shared mem-
ory communication with network protocols that conform to real-time requirements.
Manufacturers can either provide optimized parameters for generic components or
custom models that resemble actual hardware details more closely. The same mod-
els can be directly modified and used for both simulation and control purposes.
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