
1

Balancing Exploration and Exploitation in
Sampling-Based Motion Planning

Markus Rickert, Arne Sieverling, and Oliver Brock

Abstract—We present the Exploring/Exploiting Tree (EET)
algorithm for motion planning. The EET planner deliberately
trades probabilistic completeness for computational efficiency.
This trade-off enables the EET planner to outperform state-
of-the-art sampling-based planners by up to three orders of
magnitude. We show that these considerable speed-ups apply for
a variety of challenging, real-world motion planning problems.
The performance improvements are achieved by leveraging work
space information to continuously adjust the sampling behavior
of the planner. When the available information captures the
planning problem’s inherent structure, the planner’s sampler
becomes increasingly exploitative. When the available informa-
tion is less accurate, the planner automatically compensates
by increasing local configuration space exploration. We show
that active balancing of exploration and exploitation based on
workspace information can be a key ingredient to enabling highly
efficient motion planning in practical scenarios.

Index Terms—Path Planning for Manipulators, Sampling
Strategy, Balancing Exploration and Exploitation

I. INTRODUCTION

SAMPLING-BASED approaches are the de facto standard
in motion planning today. Their continued development,

paired with increased available computational power, has led
to the application of planning methods to new and complex
problem domains. Throughout much of this exciting develop-
ment, the notion of probabilistic completeness was an impor-
tant concern for the design of new algorithms. Probabilistic
completeness attests to an algorithm’s ability to solve “any”
planning problem, provided a solution exists and sufficient
computational resources are available.

This paper is based on the view that probabilistic complete-
ness is not a strong indication of the real-world effectiveness of
a motion planner. For one, it is often easy to turn a sampling-
based motion planning algorithm, even a poorly conceived
one, into a probabilistically complete algorithm: It suffices to
add a small percentage of random samples to the sampling
of the planner to obtain this characteristic. Thus, probabilistic
completeness is not a good indication of a planner’s quality.
Second, it has been proven that the ability to solve any solvable
planning problem (as required for probabilistic completeness)
may lead to computational costs exponential in the dimen-
sionality of the configuration space [1]. This is a consequence
of the necessity to solve all possible planning problems, even

M. Rickert is with fortiss GmbH, An-Institut Technische Universität
München, Munich, Germany.

A. Sieverling and O. Brock are with the Robotics and Biology Laboratory,
Faculty of Electrical Engineering and Computer Science, Technische Univer-
sität Berlin, Germany. They were supported by the Alexander von Humboldt
foundation, the Federal Ministry of Education and Research (BMBF), and the
European Commission (FP7-ICT-248258-First-MM).

(a) (b)

Figure 1. Illustrating the beneficial effect of balancing exploration and
exploitation in motion planning: End-effector trajectories (gray) indicate the
amount of configuration space explored; the solution path is shown as a
green line; the workspace information used for exploitation is shown as
green transparent spheres. (a) A single-query planner with guided explo-
ration (ADD-RRT) explores large amounts of configuration space, (b) the
exploring/exploiting tree (EET) algorithm described in this paper exploits
workspace information to guide sampling and as a result has to perform very
little exploration.

the hardest ones, and even if they do not occur in the real
world. This prevents the planner from making assumptions
about the planning problem that are generally true in the
real world and can lead to increased computational efficiency.
Third, if a planner is applied to practical planning problems,
the value of completeness guarantees seems to vanish: They
only remain valid for the exact world model used for planning
and under the assumption of perfect actuation. In dynamic
and unstructured environments, neither of these are available.
We aim to demonstrate that, from a practical perspective, the
notion of completeness should not be a requirement for a
motion planner.

In this paper, we present a motion planner for real-world
planning problems, i.e., planning problems that contain consid-
erable exploitable structure (Fig. 1). The planner is deliberately
incomplete: It might fail even when a solution exists! But it
outperforms existing sampling-based planners by up to three
orders of magnitude in a variety of realistic and challenging
planning problems. It even fails less often than the existing
sampling-based planners we compared it to, if failure is
defined as not solving a problem within a reasonable amount
of time.

Our planner is based on a very simple insight: If motion
planners should avoid searching the entire configuration space
(which would incur an exponential computational cost), they
must assess which regions of configuration space are relevant
to the problem and which are not. By excluding parts of
the configuration space, planners can become computationally



2

more efficient—and incomplete, by design!
To select relevant configuration space regions, the planner

must use information. If this information is highly accurate, the
planner should exploit it to direct search in the configuration
space. When the information is inaccurate, the planner’s suc-
cess will depend on its ability to realize this and to complement
the exploitation of information with explorative search.

The planner presented in this paper acquires information
from the workspace description of the planning problem and
uses this information to direct the search in configuration
space. The search balances exploration and exploitation, de-
pending on the quality of the acquired information. We eval-
uate this planner based on comparative performance analysis
with other state-of-the-art motion planners.

The technical content of this paper is based on prior
publications [2], [3]. Here, we present a refined formulation of
the EET algorithm. The changes are described in Section III-D.
We also present a completely new experimental evaluation,
demonstrating the strength of the planner on a broad range of
problems from industrial robotics, mobile manipulation, and
computational biology. The source code of the EET algorithm,
the planners used for comparison, and the experimental sce-
narios are now publicly available.

II. RELATED WORK

The proposed planner relies on the use of information
to guide configuration space exploration. The discussion of
related work will therefore examine how existing planners
use information for this purpose. We can distinguish different
levels of information usage.

• Exploitation: The planner determines a part of the plan
based on available information with the sole objective of
advancing the plan toward the solution. An example of
this behavior are simple artificial potential field methods.

• Exploration: The planner uses no information to sample
the configuration space. The goal of sampling is to gain
understanding of the space, not to directly find a solution.
An example of this behavior can be found in the uniform
random sampling of PRM planners and in the Voronoi-
bias of RRT planners (expand toward unexplored regions
rather than toward a solution).

• Guided exploration: The planner uses information to
select configuration space regions in which to search for
a plan. These regions are selected based on information
about possible solution paths. Medial-axis PRM planners
fall into this category.

We will now identify these three levels of information usage
in related approaches.

A. Gradient Descent

Gradient descent methods exploit the information repre-
sented in a potential function to generate robot motion. The
effectiveness of gradient descent depends on the information
captured by the potential function. Artificial potential fields [4]
rely on local proximity information to obstacles and distance
to the goal location. This information is easy to derive from
sensor data or from a geometric world model. Hence, artificial

potential field methods are computationally efficient and suit-
able for reactive motion. However, they are also susceptible
to local minima and saddle points in the potential.

Navigation functions [5] are local minima-free potential
functions. They avoid local minima by considering global
information. In realistic settings, the computation of this
global information requires a complete exploration of the
configuration space [6]. Once this complete exploration has
been performed, motions toward a fixed goal configuration in
a static environment can be determined with pure exploitation.
Complete navigation functions become impractical in high-
dimensional configuration spaces or in dynamic environments.
However, they might be the earliest approaches that combine
exploration and exploitation.

B. Sampling-Based Motion Planning

The Probabilistic Roadmap (PRM) planner [7], [8] creates
an initial roadmap using pure exploration: Each sample is
placed uniformly at random, i.e., completely uninformed. In
a subsequent refinement phase, the planner performs guided
exploration to connect the different components of the result-
ing roadmap. Hence, even the earliest examples of sampling-
based motion planners combined some forms of exploration
and exploitation, albeit in a fixed and sequential manner.

Rapidly-exploring random tree (RRT) planners [9] solve
a particular planning task by incrementally growing a tree,
starting from a specific location. Configuration space explo-
ration is guided toward the largest Voronoi region associated
with the existing samples. This drives exploration toward
large unexplored regions. As the Voronoi regions of samples
become approximately equal in size, the exploratory behavior
gradually shifts from expansion of the tree to refinement.

The Voronoi bias, while yielding desirable theoretical prop-
erties for the RRT, attempts to explore the entire configuration
space without any goal-directed bias. It is therefore very crit-
ical to combine the exploratory behavior of the Voronoi bias
with the exploitative connect step, introduced as an extension
of the algorithm very early on [10]. The connect step simply
attempts to connect the newest sample directly to the goal
location. This alternation of exploration and exploitation lets
RRT planners solve many high-dimensional motion planning
problems time-efficiently.

Researchers soon recognized the benefits of informed sam-
pling strategies for PRM planners. To give some examples:
Gaussian sampling [11] and obstacle-based PRM [12] place
samples close to obstacle boundaries. The bridge test [13]
increases sampling density in narrow passages and visibility-
based PRM [14] controls the placement in regions already
covered by existing samples. Other planners combined several
sampling strategies. These planners select the most suitable
heuristic for a region of configuration space [15], [16]. They
effectively leverage information obtained about those config-
uration space regions to adapt the sampling strategy.

All of these sampling strategies—and many others similar
to these—exploit information obtained during sampling and
use fixed heuristics derived from intuitions about the structure
of configuration space. As experimental evaluations in the lit-



3

erature show, these fixed, local heuristics can improve planner
performance but also lead to pathologies.

The next generation of sampling methods were inherently
adaptive, thereby overcoming the limitations of using a fi-
nite set of fixed samplers. These adaptive methods also in-
cluded the information contained in colliding samples; past
approaches had simply discarded this information. These
sampling methods view the collection of acquired free and
colliding samples as a non-parametric model of configuration
space. This model can support powerful methods of selecting
next samples, given the available information [17]–[19].

Similar adaptive methods were also applied to RRT based
planners. The Voronoi bias of RRT planners leads into a
type of pathology called the “bug trap problem”. It describes
the difficulty of Voronoi-based exploration to escape enclosed
spaces with only narrow openings. A number of modified
expansion heuristics have been developed so as to alleviate
this effect [20]–[24]. These heuristics stop the extension of
samples for which extension has failed repeatedly, effectively
exploiting additional information about the local configuration
space of the sample.

The progressive development of sampling methods supports
the perspective taken in this paper: Information must be
leveraged during planning. The more information we have, the
more efficient our planners can be. Note that the improvements
are the result of an active selection of configurations space
regions to explore, i.e., the result of guided exploration.

C. Planners Using Workspace Information

To devise effective planners, it is not only important to con-
sider how information should be used, we must also consider
what information to use. The most obvious information to use
for guiding configuration space exploration or for performing
exploitation is workspace information. This information is
readily available in motion planning or can easily be acquired
through sensors. We will discuss how planners presented in
the literature have used this information source.

The most common use of workspace information is to
guide exploration. Planners vary in their method of extract-
ing workspace information. Methods include medial axes or
generalized Voronoi diagram [25]–[28], Watershed segmenta-
tion [29], Delaunay triangulation combined with an adaptive
hybrid sampling approach [30], approximation of the medial
axis by using partially overlapping maximum spheres [31],
or tunnels of free workspace, also computed by a sphere
expansion method [32]. In a similar approach, the workspace
is divided into discrete regions and connectivity information
for those regions is used to guide planning [33]. RRT plan-
ners were adapted to explore the task-space uniformly [34],
which is advantageous in very high-dimensional configuration
spaces. Disassembly-based motion planning [35] identifies
narrow passages based on the available free workspace. A
configuration inside the narrow passage is found using uni-
form sampling of a small configuration space region. Given
such a configuration, diffusion-based disassembly easily finds
solution to sub-problems, the concatenation of which yields a
solution to the overall problem.

This discussion shows that workspace information is a
rich and versatile source of information for efficient motion
planning.

III. EXPLORING/EXPLOITING TREES

This section describes the Exploring/Exploiting Tree (EET)
planner, a tree-based motion planning algorithm that performs
exploitation whenever possible and gradually transitions to ex-
ploration when necessary. The planner is based on a single tree
expansion in configuration space, similar to RRT methods [9],
[10]. The expansion is guided in the task space. This enables
the planner to solve a task frame specification in workspace
rather than a specific goal configuration [36], [37]. The EET’s
main design objective is to carefully balance exploratory and
exploitative behavior so as to leverage the structure inherent
in the planning problem for rendering motion planning as
efficient as possible. In order to accomplish this, we designed
the EET to behave like a potential field planner whenever
possible and to gradually turn into a nearly-complete motion
planner when required. We will present a mechanism for
gradually shifting between exploration and exploitation based
on workspace information and a way of gathering this informa-
tion. We now will introduce the technical contribution of the
EET at a high level and then give an algorithmic description
in the second part of this section. Table I provides a summary
of symbols and variables used in this section.

A. Algorithm Overview

Consider a maze with long narrow corridors similar to
Fig. 2. A free-flying robot in the shape of a box should
ideally exploit the structure of its surroundings and follow
the corridors without much rotation until it reaches a turn.
However, due to its shape, moving through the tight corners
is difficult and can only be achieved through exploration.
Sampling-based approaches in configuration space will be able
to create a path through the turns, their explorative behavior
will, however, also waste considerable time exploring paths
that bump into the walls of the maze.

The EET algorithm gathers workspace connectivity infor-
mation by performing a wavefront expansion (Sect. III-B).
This expansion generates a tunnel of intersecting spheres S,

(a) (b)

Figure 2. A large box moves through a narrow maze: (a) focused EET
search tree (b) Bridge-PRM with unnecessary exploration of areas that do not
contribute to a solution path



4

σ

1/3

s ← sparent

init backtracking

0 1

ps

rs

position

orientation

N (ps, σrs)

U()

Figure 3. Influence of the σ value on the behavior of the EET planner:
The variance of the normal distribution for the position is proportional to σ.
The initial value of σ = 1/3 will place 99.7% of the samples inside a
workspace sphere. The orientation of these samples is then drawn from a
uniform distribution. If σ reaches the maximum value of 1, the algorithm
backtracks to the previous sphere and reinitializes σ.

connecting start and goal in the robots workspace. The di-
ameter of the individual spheres provides information about
the environment’s local geometric characteristics. The planner
moves the robot along this workspace tunnel by “pulling” the
robot’s tool point toward the next sphere using the pseudo-
inverse of the Jacobian matrix.

The behavior of the EET algorithm is driven by the value
of a variable σ that balances exploration and exploitation. A
value of σ = 0 indicates pure exploitation. Now, the planner
behaves like a potential field planner based on an approximate
global navigation function, represented by S [32]. When
pure exploitation fails, σ starts to increase, leading to more
exploratory behavior. Exploration is the result of sampling in
task space from a Gaussian distribution around the centers of
the spheres of S. The variance of this Gaussian is chosen to be
proportional to σ (Fig. 3). The value of σ therefore indicates
how closely the planner follows the workspace information
contained in S when generating new samples.

To generate a novel sample from an existing one, the sample
has to be translated and rotated. The translation is generated by
sampling from a normal distribution around the center of the
next sphere. The robot’s end-effector orientation is sampled
uniformly. When the value of σ exceeds 1, many samples
would be placed outside of the spheres of S, indicating
that the workspace information might not be helpful any
longer and that the robot is “stuck”. In this situation, the
algorithm backtracks to the previous sphere and re-attempts
tree expansion from a different configuration, effectively re-
orienting and re-positioning the robot, in an attempt to get out
of a local structural minimum.

B. Workspace Connectivity Information

The EET planner leverages several sources of information
to perform exploitation and to balance between exploita-
tion and exploration. Exploitation is performed based on
global connectivity information for relevant portions of the

(a) (b)

Figure 4. Wavefront expansion with start position in the upper left and
goal position in the lower right section: (a) distance computation in three-
dimensional workspace provides information on narrow sections. (b) connec-
tivity information is stored in a tree structure

workspace. This information is computed using a sphere-
based wavefront expansion in workspace [32]. The wavefront
expansion determines a tree of free workspace spheres (Fig. 4
and Fig. 5). Paths in the tree capture the connectivity of the
free workspace and the size of the spheres along the path
capture the amount of local free workspace. These spheres and
their connectivity define an approximate workspace navigation
function over parts of the workspace. This function will be
used for exploitation and for guided exploration.

More technically, the wavefront expansion incrementally
grows a tree S where each node corresponds to a sphere. The
expansion maintains a set of candidate spheres in a priority
queue Q, in which spheres closer to the goal have a higher
priority. In each step of the expansion, the highest priority
sphere from Q is added to S. Whenever the algorithm moves
a sphere s from Q to S, it enters new candidates spheres to Q.
The new spheres are centered around points sampled on the
surface of s. We set the size of the new spheres equal to the
distance from its center to the nearest obstacle. This algorithm
creates tunnels of free workspace. The expansion stops once
one of these tunnels connects start and goal positions.

We extend the original method [32], which was applicable

Table I
SYMBOLS AND VARIABLES USED IN THE ALGORITHMS

Element Description

α control increase/decrease of exploitation (= 1%)
γ initial value for exploration/exploitation balance (= 1/3)
E configuration space tree edge
ε threshold for goal state comparison
G configuration space tree
J Jacobian matrix
p workspace position of frame T
Q workspace sphere priority queue
q joint configuration
R workspace orientation of frame T
r workspace sphere radius
ρ probability for sampling goal state in final sphere (= 50%)
σ control exploration/exploitation balance
s workspace sphere
S workspace sphere tree
T workspace frame with position p and orientation R
V configuration space tree vertex



5

Input: pstart,pgoal, n
Output: S = (V,E)

1: V ← ∅
2: E ← ∅
3: Q← ∅
4: rs ← DISTANCE(pstart) shortest distance to obstacles
5: s← (pstart, rs,∅) sphere around start point
6: INSERT(Q, s, ‖pgoal − pstart‖ − rs) priority queue
7: repeat search until queue empty
8: s ≡ (pcenter, r, sparent)← POP(Q)
9: V ← V ∪ {s}

10: E ← E ∪
{
(sparent, s)

}
11: if ‖pgoal − pcenter‖ < r then goal reached
12: return S sphere tree
13: end if
14: P ← U(s, n) sample n points on sphere surface
15: for pi ∈ P do calculate sphere diameter for all points
16: for si ≡ (pcenteri , ri, sparenti) ∈ V do spheres in tree
17: if ‖pi − pcenteri‖ < ri then outside existing spheres
18: r′ ← DISTANCE(pi) distance to obstacles
19: s′ ← (pi, r

′, s)
20: INSERT(Q, s′, ‖pgoal − pi‖ − r′)
21: end if
22: end for
23: end for
24: until Q ≡ ∅
25: return ∅

Figure 5. WAVEFRONT algorithm (comments in gray italics)

only to free-flying robots. To address stationary and mobile
manipulators, we force the tree expansion to first move from
its start location toward the robot’s base, prior to invoking
the sphere expansion toward the goal location. This allows
the end-effector to be retracted, should it be placed initially
inside a narrow passage. For the mobile robots we require an
additional free space tunnel from the start location of the base
to its goal location.

C. Configuration Space Tree

The EET planner (Fig. 6) builds a configuration space tree,
much like an RRT-based planner [10]. However, every vertex q
in this tree G is associated with a corresponding workspace
frame, consisting of the position and orientation of a control
point on the robot. This point is the end-effector in case of
articulated robots or an arbitrary point on the robot in case of
rigid body robots.

The EET planner performs expansion of the configuration
space tree G while balancing exploitation and exploration.
Similar to RRT methods, a configuration is created toward
which the tree should expand. Like the RRT-Connect algo-
rithm [10], the EET applies a CONNECT step (Fig. 8) by
executing multiple EXTEND steps (Fig. 9) until the robot
collides or reaches a joint limit.

In contrast to RRTs, the direction of tree expansion is de-
termined based on the workspace information contained in S.
To achieve this, the tree of workspace spheres S is processed
in depth-first fashion, considering only paths through the tree
that lead to the specified goal location. The planner “pulls”
the robot’s control point into the direction indicated by the
workspace connectivity information. This is accomplished by
drawing a task frame from a range of distributions depending

Input: qstart, qgoal

Output: G = (V,E)
1: V ← {qstart} tree initialization with start configuration
2: E ← ∅
3: S ←WAVEFRONT(qstart, qgoal) compute sphere tree [32]
4: s← (ps, rs, sparent ≡ Sbegin) take first sphere
5: σ ← γ initialize exploration/exploitation balance
6: repeat search until goal reached
7: (qnear,T sample)← SAMPLE(G,S, s, σ, qgoal) sample new

workspace frame and select nearest vertex in tree
8: qnew ← CONNECT(qnear,T sample)
9: if qnew 6= ∅ then

10: V ← V ∪ {qnew}
11: E ← E ∪ {(qnear, qnew)}
12: σ ← (1− α)σ increase exploitation
13: for k ∈ Send → s do search spheres backwards
14: if ‖pnew − pk‖ < rk then position is within sphere
15: s← kchild advance to matching sphere
16: σ ← γ reset exploration/exploitation balance
17: end if
18: end for
19: else expansion unsuccessful
20: σ ← (1 + α)σ decrease exploitation
21: end if
22: if σ > 1 then perform backtracking to previous sphere
23: s← sparent select previous sphere
24: σ ← γ reset exploration/exploitation balance
25: end if
26: until ‖T goal − T new‖ < ε
27: return G configuration space tree

Figure 6. EET algorithm (comments in gray italics)

on the next sphere and σ in the SAMPLE function (Fig. 7),
as described in Fig. 3. When the tree reaches the last sphere,
the goal frame is chosen as extension direction with proba-
bility ρ = 1/2. After sampling, the algorithm determines the
vector ∆x pointing from the existing task frame toward the
newly sampled frame (line 9.4). This displacement is translated
into a displacement in configuration space using the pseudo-
inverse of the Jacobian (line 9.5). The new configuration qnew

is then tested for collision (line 9.6). To avoid numerical
instabilities, the planner performs uniform random sampling in
the vicinity of kinematic singularities (line 9.1). This sample
moves the manipulator out of the singularity and the planner
switches back to non-uniform sampling. If the sample is free of
collision, it is added to the tree together with the corresponding
edge (line 6.10). The value of σ is reduced, resulting in a shift
toward exploitation (line 6.12). If the connection attempt fails,
the value of σ is increased and the balance is shifted toward
exploration (line 6.20). If the new task frame has entered a
different sphere, the planner advances to the respective child
sphere and resets the σ value to 1/3 (line 6.16). If σ exceeds
the upper limit of 1, the planner retreats to a previous sphere
in the current workspace tunnel and also resets σ (line 6.23).
The planner has already been able to create valid nodes for
the previous sphere and will likely find new connections in
the second run and continue to the next sphere.

D. Modifications of the EET Algorithm

The algorithm presented here contains several modifications
of the original version [2]. The revised version includes a novel



6

Input: G,S, s, σ, qgoal

Output: qnear,T sample

1: if s ≡ Send ∧ RAND() < ρ then within last sphere
2: psample ← pgoal select goal position
3: Rsample ← Rgoal select goal orientation
4: qnear ← NEAREST(G,T sample) nearest vertex in tree
5: else
6: psample ← N (ps, σrs) sample within sphere
7: Rsample ← U() uniform sampling for orientation
8: qnear ← NEAREST(G,T sample) nearest vertex in tree
9: end if

10: return (qnear,T sample)

Figure 7. SAMPLE algorithm (comments in gray italics)

Input: qnear,T sample

Output: qnew

1: qnew ← ∅
2: repeat
3: qnew′ ← EXTEND(qnear,T sample)
4: if qnew′ 6= ∅ then
5: qnear ← qnew

6: qnew ← qnew′

7: end if
8: until qnew′ = ∅
9: return qnew

Figure 8. CONNECT algorithm (comments in gray italics)

method of sampling for the goal position in the last sphere to
help reach the exact goal configuration. The revised version
is also less prone to getting stuck during exploitative phases
due to a novel sphere matching method and the associated
backtracking through the sphere tree. The use of uniform
sampling when the manipulator is near a singular configuration
further improves the robustness of the planner. To further
simplify the algorithm, the use of repulsive forces and normal
distribution for orientation sampling has been removed.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
EET planner to demonstrate the importance of carefully bal-
ancing exploration and exploitation in motion planning.

A. Scenarios

We chose five experimental scenarios with varying charac-
teristics to demonstrate the applicability of the EET planner to
a wide range of application domains. All scenarios share the
characteristic that useful workspace information is available
for exploitation.

1) Piano Mover’s Problem: In this classic motion planning
scenario, a piano has to be moved from its current location in
the upper left part of a 10m × 10m × 3m apartment (Fig. 10)
to a different room in the upper right part. The apartment
contains two narrow doorways, each requiring a coordinated
translation and rotation of the piano.

2) Stationary Manipulator and Wall: A 6-DOF manipulator
is mounted in front of a wall with four holes (Fig. 11).
The robot starts with the end-effector inside the bottom left
hole. The task is to retract the arm and reach into the
bottom right hole. The initial and final configurations of this

Input: qnear,T sample

Output: qnew

1: if SINGULAR(qnear) then within singularity
2: qnew ← RAND() uniform sampling for singularities
3: else
4: ∆x← T near − T sample

5: ∆q ← J†(qnear)∆x
6: qnew ← qnear + ∆q
7: end if
8: if qnew ∈ Cfree then
9: return qnew

10: else
11: return ∅
12: end if

Figure 9. EXTEND algorithm (comments in gray italics)

planning problem lie in difficult narrow passages and are near
singularities.

3) Industrial Setting: A larger 6-DOF manipulator with a
large, industrial gripper system has to perform an industrial
pick and place motion. The robot has to move a large object
from between two pillars to the top of a table (Fig. 12).

4) Mobile Manipulator: A holonomic 10-DOF mobile ma-
nipulator moves an L-shaped object in and out of L-shaped
holes in a wall (Fig. 13). The two narrow passages in this
scenario are very difficult, as workspace information is not
helpful for aligning the object with the hole.

5) Protein-Ligand Interaction: This scenario is a motion
planning problem inspired by protein-ligand interaction [38].
We model the ligand and the protein as spheres according to
the van der Waals radii of the atoms. Ligand and protein have
no internal degrees, but the ligand can translate and rotate,
which leads to a 6-dimensional search space. The ligand has
to find an exit pathway from the binding site inside of a
protein (Fig. 14).

B. Experimental Setup

In our evaluation1, we compare the proposed EET planner
with a PRM planner with uniform sampling (referred to
as PRM in the following sections) [7], PRM with Gaussian
sampling (Gaussian-PRM) [11], PRM with bridge test (Bridge-
PRM) [13], RRT-Connect with one tree (RRT-Connect1) and
with two trees (RRT-Connect2) [10], as well as an adap-
tive dynamic-domain RRT (ADD-RRT) with two trees [21].
For these planners, a nearest neighbor search based on kd-
trees [39] was used, with k = 30 for all PRM variants. To
evaluate the impact of a task-space Voronoi bias on tree-based
sampling, we also compare the proposed EET planner to a
re-implementation of a task-space RRT planner described in
the literature [34].

All algorithms have been implemented in C++ and are
available in an open source implementation2. The implemen-
tation provides the means to recreate all experiments from
Section IV. The benchmarks were run on a 2.27GHz Xeon
E5507 processor with 6GB RAM and the Windows operating
system. Collision tests and distance queries were performed

1youtube.com/playlist?list=PLcZc0GY2V0EzBq3fOJGFxyOmJO1Jeq1yL
2http://www.roboticslibrary.org/



7

(a) (b) (c) (d) (e)

Planner Vertices Collision Checks Free (%) Time (s) Path Length %

PRM 30 963±13 262 1 994 241± 742 180 87.27± 0.93 888.3±329.6 75.17± 12.11 65
Gaussian-PRM 21 412±13 358 1 616 636± 887 498 82.82± 1.73 700.4±391.1 84.19± 14.09 80
Bridge-PRM 19 623± 6 852 2 342 773± 747 079 54.24± 1.77 947.1±309.8 85.16± 12.13 50
RRT-Connect1 36 918±24 906 884 579± 506 446 79.43± 2.37 374.7±246.7 66.67± 7.33 95
RRT-Connect2 12 138± 7 251 337 360± 184 973 75.23± 3.70 154.3± 92.4 72.64± 8.29 100
ADD-RRT 11 032± 8 273 294 276± 201 838 80.34± 2.33 128.0± 97.2 65.66± 9.75 100
EET 398± 131 15 640± 6 210 43.30±10.43 16.6± 9.7 49.14± 7.58 100

Figure 10. The piano movers problem: (a) Bridge-PRM, (b) RRT-Connect1, (c) ADD-RRT, (d) EET, (e) wavefront expansion

(a) (b) (c) (d) (e)

Planner Vertices Collision Checks Free (%) Time (s) Path Length %

PRM 311 632± 8 929 15 632 505± 354 742 99.23± 0.01 1 200.0± 0.0 ± 0
Gaussian-PRM 14 571± 5 685 1 645 463± 543 368 91.68± 0.47 119.9± 40.3 55.37± 23.10 100
Bridge-PRM 14 142± 6 494 2 089 098± 839 108 78.10± 1.35 155.3± 63.5 66.49± 15.83 100
RRT-Connect1 546 949± 36 234 16 672 822± 645 316 94.56± 2.50 1 200.0± 0.0 ± 0
RRT-Connect2 323 098±159 403 10 836 882±4 733 644 85.82±11.11 831.6±352.6 53.94± 9.19 80
ADD-RRT 166 426±104 005 5 759 193±3 361 685 86.20±14.06 475.7±288.1 51.17± 12.60 100
EET 222± 108 3 236± 1 295 80.12± 6.94 1.3± 0.9 16.46± 6.33 100

Figure 11. Stationary manipulator reaching through openings in the wall: (a) Bridge-PRM, (b) RRT-Connect1, (c) ADD-RRT, (d) EET, (e) wavefront
expansion

using the SOLID collision detection library [40] except for the
protein benchmark. Due to the large number of spheres of the
protein, we switched the collision detection library and used
the more efficient broad-phase structure of Bullet3 to speed up
the queries.

All results are averaged over 20 trials. If a planner was not
able to solve a problem within 20min, the experiment was
aborted and considered as a failure. The tables in Fig. 10 to 14
show quantitative details of our experiments. Each table lists
the number of vertices in the final graph, the total number of
collision checks, the ratio of non-colliding versus colliding
samples, the total run time until a solution is found, the
length of the solution path (using the Euclidean norm), and the
percentage of solved runs after 20min of computation. For the
EET planner, the computational cost of workspace information
with the wavefront expansion is included in the total reported

3http://www.bulletphysics.org/

planning time. Average values are shown in black and standard
deviations in light gray.

The images in Fig. 10 to 14 show one sample graph created
by four different planners for each problem. Gray lines show
the end-effector trajectories contained in the resulting tree or
roadmap. These lines are a visual indication of the amount of
configuration space exploration. A green line shows the final
solution trajectory. The fifth image in each figure shows the
workspace sphere expansion of the EET.

C. Evaluation

1) Planning Time: Our main objective in developing the
EET planner was to achieve computationally efficient motion
planning by balancing exploration and exploitation. The ex-
perimental results show that in all scenarios the EET planner
is computationally more efficient than any of the planners we
compare to. The EET planner achieves a success rate of 100%
for all scenarios, only matched by the ADD-RRT. Absolute



8

(a) (b) (c) (d) (e)

Planner Vertices Collision Checks Free (%) Time (s) Path Length %

PRM 2 267± 1 774 305 164± 194 658 96.34± 0.30 174.8±103.9 65.07± 12.12 100
Gaussian-PRM 441± 222 107 294± 42 865 91.80± 0.91 70.2± 26.2 71.56± 22.17 100
Bridge-PRM 627± 329 156 619± 66 493 80.59± 1.81 98.9± 39.3 66.01± 21.10 100
RRT-Connect1 84 061±80 625 2 400 966±2 063 100 94.67± 0.28 499.0±451.5 45.63± 16.09 75
RRT-Connect2 2 922± 1 214 88 190± 42 627 86.57± 2.21 22.0± 10.1 48.29± 11.42 100
ADD-RRT 4 104± 2 196 125 091± 73 645 88.99± 1.67 29.6± 17.2 53.04± 11.17 100
EET 230± 171 8 045± 4 309 59.78±13.79 4.3± 3.0 21.09± 4.60 100

Figure 12. 6-DOF industrial manipulator with large gripper: (a) Bridge-PRM, (b) RRT-Connect1, (c) ADD-RRT, (d) EET, (e) wavefront expansion

(a) (b) (c) (d) (e)

Planner Vertices Collision Checks Free (%) Time (s) Path Length %

PRM 32 649± 1 317 4 510 812± 170 073 98.94± 0.01 1 200.0± 0.0 ± 0
Gaussian-PRM 29 402± 1 233 4 467 974± 167 851 96.17± 0.03 1 200.0± 0.0 ± 0
Bridge-PRM 26 066± 875 4 500 360± 129 450 88.87± 0.07 1 200.0± 0.0 ± 0
RRT-Connect1 93 745± 5 393 6 053 905± 317 765 97.47± 0.75 1 200.0± 0.0 ± 0
RRT-Connect2 17 791±14 859 1 053 950± 961 849 88.00±15.67 203.9±184.6 49.89± 9.68 100
ADD-RRT 11 164± 6 346 520 089± 385 704 91.63± 4.56 105.3± 71.3 50.67± 11.34 100
TS-RRT 11 235± 3 081 475 058± 101 762 82.53±22.52 1 200.0± 0.0 ± 0
EET 285± 161 12 732± 9 317 22.62± 7.42 15.8± 16.9 14.45± 4.04 100

Figure 13. L-shape attached to a mobile manipulator and corresponding wall openings: (a) Bridge-PRM, (b) RRT-Connect1, (c) ADD-RRT, (d) EET,
(e) wavefront expansion

planning time is on the order of seconds for three of the five
scenarios and about 20 s for the other two. The EET planner
improves performance by at least a factor of 5.1. It achieves
single-digit speedups in six cases, speed-ups of one order of
magnitude in fifteen cases and two orders of magnitude in nine
cases. Averaged over all scenarios and comparisons, the EET
algorithm achieves a 152-fold speed-up.

Algorithmically, the EET planner is most similar to the
RRT-Connect1 algorithm: Both compute a single configuration
space tree. The positive effect of balancing exploration and
exploitation can thus most easily be assessed by comparing
the performance of the EET and the RRT-Connect1 planners.
The speed-up of EET over RRT-Connect1 averaged over all
five scenarios is 229-fold, i.e., two orders of magnitude; it
varies from 8 in the protein/ligand scenario to over 900-
fold in the stationary manipulator scenario. The low speed-
up in the protein/ligand scenario is a result of the long,

narrow, winding tunnel inside the protein the ligand has to
move through. This tunnel prevents the RRT-Connect1 from
unnecessarily exploring much of the free space. A RRT-
Connect starting outside the protein performs several orders of
magnitude worse. For the PRM, Gaussian-PRM, Bridge-PRM,
and RRT-Connect2 planners the average speedups over the five
experimental scenarios are 266-, 93-, 103-, 142-, and 79-fold,
respectively (note that we aborted runs after 20min).

For most scenarios, the ADD-RRT planner performs second
best. It succeeds in all trials. However, there is a noticeable dif-
ference in performance in the stationary manipulator scenario.
In this scenario, PRM-based methods outperform RRT-based
planners (119.9 s vs. 475.7 s). We attribute this to the fact
that the PRM’s exploration strategy based on uniform random
sampling is better suited for extended and curved narrow
passages in configuration space. The EET planner outperforms
all other planners in this scenario.



9

(a) (b) (c) (d) (e)

Planner Vertices Collision Checks Free (%) Time (s) Path Length %

PRM 63 148± 825 17 522 466± 196 153 99.96± 0.00 1 200.0± 0.0 ± 0
Gaussian-PRM 11 709± 145 4 121 935± 45 526 97.39± 0.02 1 200.0± 0.0 ± 0
Bridge-PRM 9 983± 137 4 975 107± 46 489 91.84± 0.08 1 200.1± 0.0 ± 0
RRT-Connect1 201± 51 117 504± 93 360 39.86±27.26 44.1± 42.5 191.62±128.79 100
RRT-Connect2 33 323±23 611 7 031 273±4 071 890 99.04± 0.15 514.7±300.0 196.72± 72.84 95
ADD-RRT 1 626± 816 700 820± 262 954 99.57± 0.07 62.6± 22.6 200.61± 61.90 100
EET 108± 41 8 183± 2 987 76.88±17.65 5.0± 1.6 72.21± 23.45 100

Figure 14. Free-flying ligand and protein: (a) Bridge-PRM, (b) RRT-Connect1, (c) ADD-RRT, (d) EET, (e) wavefront expansion

The substantial performance improvements achieved by
the EET planner are the result of effective use of information
to balance exploration and exploitation. In all other respects,
the algorithm is similar to RRT-Connect1. We will now further
analyze the experimental results to provide more detailed
support for this statement.

2) Performance Gains of the EET: We now analyze quan-
titatively which parts of the EET lead to the large decrease in
planning time compared to simple RRT planners. In Table II
we show the results of 10 planners. The first three planners
employ a subset of the features the EET uses. The last seven
planners are EET planner with varying parameters α and γ.
The shown results are averaged over 20 executions for the
mobile manipulation scenario from Fig. 13. Qualitatively, these
results also hold true for the other scenarios.

The first planner we compare to for the sake of completeness
is the single-tree RRT algorithm. As we already mentioned,
this planner fails completely in this scenario.

Second, we want to see how much of the EETs performance
can be attributed to task space sampling. Therefore, the second
planner we compared to is a single-tree task-space RRT
planner (TS-RRT) based on prior work [34]. This planner

Table II
INFLUENCE OF THE PARAMETERS α AND γ IN THE SCENARIO WITH

MOBILE MANIPULATOR SHOWN IN FIG. 13. THE PARAMETERS α = 0.01
AND γ = 0.3 USED IN THIS PAPER ARE HIGHLIGHTED IN RED.

Planner α γ Time (s) %

RRT-Connect1 1 200.0 0
TS-RRT 1 200.0 0
Decomposition 0.0 0.8 826.0 40
EETα1 0.001 0.3 81.6 100
EETγ1 0.01 0.1 61.5 100
EET 0.01 0.3 15.8 100
EETγ2 0.01 0.6 20.2 100
EETγ3 0.01 0.9 90.1 95
EETα2 0.1 0.3 8.6 100
EETα3 0.3 0.3 252.3 80

samples task space uniformly (position and orientation) to
guide tree expansion and behaves like a RRT-Connect1 in
every other aspect. Due to the high number of degrees of
freedom, one might expect the performance of the TS-RRT
to improve in the mobile manipulation scenario. The results
in Fig. 13 show no clear advantage of task-space exploration
in an RRT-based planner. The task-space Voronoi-bias guides
the end-effector out of the first narrow passage but is unable to
lead the planner to the entrance to the second narrow passage
within 20min. Without any additional information to guide
sampling, it exhaustively explores the free space in front of
the hole.

The third planner we compare to is an EET variant that
employs the same workspace information as the final EET
but does not adaptively balance between exploration and
exploitation. This planner is very similar to decomposition-
based planning [32], although also applicable to stationary
manipulators. We implemented this planner by setting the σ
parameter of the EET to a constant value of 0.8. This value
resulted in the best performance out of all constant σ values.
Still this planner does not perform satisfactory, although it
solves the problem within 1200 s in 40% of the runs.

The last seven planners are equal to the EET planner as
described in the previous sections with varying parameters α
and γ. All but one of these variants perform better than
the ADD-RRT—the second best planner from Fig. 13. Still
the EET performs one order of magnitude better when the
parameters are tuned. The planners EETγ1, EETγ2, and
EETγ3 show how initialization of σ with the γ parameter
influences the performance. The best performance is obtained
for γ = 0.3.

The planners EETα1, EETα2, and EETα3 vary α, the
degree of increase or decrease of σ. EETα2 shows the best
performance with a relatively high value of α = 0.1. This
value lets σ rapidly oscillate between 0 and 1. The planner
employs the backtracking step very often because σ quickly
reaches the maximum value of 1. The very good performance
shows that backtracking is a very powerful mechanism to



10

escape local minima. EETα3 shows that for a little higher
value of α = 0.3, the performance highly degrades and the
planner does not find a solution at all in 20% of the trials.
In the failing runs, the planner gets stuck in a loop between
backtracking and forward stepping of the workspace sphere
tree. This endless loop does not happen for lower values
of α, as the planner employs more local exploration and less
backtracking. Therefore, we settled for a compromise between
execution speed and risk of failure by setting σ to 0.01. In
this case we never observed problems with the backtracking
mechanism while still observing very good results.

3) Information Gathering: The acquisition of information
requires computation. For the planner to gain efficiency, this
cost must be offset by reduced computational cost during
planning. In three scenarios, the sphere expansion requires less
than 0.5 s—a small fraction of the overall planning time. In
the protein/ligand scenario and the piano movers problem the
high cost of collision checking and the large workspace causes
this cost to increase to 1.5 s on average.

Our results show that the time expended on information
acquisition is offset by computational gains in the planning
phase in all scenarios.

4) Information Use: A planner that uses information ef-
fectively will need less samples to solve a planning problem.
The EET planner required between 0.2% and 10% of the
samples the next best planner needed to solve the five scenarios
described here (individual data not shown). This supports
our claim that the use of workspace information enables the
EET planner to focus sampling on configuration space areas
relevant to the solution.

The small number of placed samples also results in a
lower number of vertices of the tree generated by the planner.
For example, in the piano scenario, the RRT variants use
about 27 times as many vertices as the EET planner; the PRM
variants use about 49 times as many vertices.

Another way of interpreting this data is to say that the use of
workspace connectivity information enables the EET planner
to focus exploration on narrow passages, i.e., the most difficult
areas of configuration space. Fig. 10(d) to 14(d) show few gray
lines for the tree generated by the EET planner, most of them
in the vicinity of narrow passages.

Fig. 15 shows the changes of the σ value during planning
for the scenario with the stationary manipulator (Fig. 11).

5) Free Sample Placement: The sampling process of
sampling-based motion planners, so our claim, can be guided
beneficially by workspace information. If the workspace infor-
mation is accurate, the EET planner should be able to generate
the solution path by pure exploitation. In this case, we would
expect the planner to generate very few colliding samples,
because the workspace information indicates the correct ex-
pansion directions for the tree. When workspace information
becomes less accurate or helpful, the planner must perform
exploration to compensate for those inaccuracies. In this case,
we would expect the planner to generate a higher fraction
of colliding samples, used to acquire information about local
configuration space obstacles. By balancing exploration and
exploitation, the EET planner is able to gradually shift from
one case to the other. We now analyze our results to show that

0.06 s 1.73 s

1
3

1

σ

Figure 15. The solid blue line shows the progression of the σ variable in the
stationary manipulator scenario (Fig. 11). After workspace exploration, the
algorithm starts at 0.06 s with an initial value of 1/3. Successful connections
result in a balancing of the σ value, which is reset after advancing to the next
sphere. In the last section, the arm has to enter the narrow passage which
results in a lot of collisions and raises σ quickly. After backtracking once,
the planner is able to find a solution path.

the proposed planner does indeed possess this ability.
Let us first consider the case in which workspace infor-

mation is highly accurate, such as the scenario shown in
Fig. 2(a): A free-flying box with six degrees of freedom has
to navigate through a narrow maze. Workspace information
provides a strong clue about the correct configuration space
direct for tree expansion. The EET planner is able to leverage
this information to place 95% of the samples in free space,
resulting in a very simple configuration space tree. In contrast,
the standard RRT planner places only 2% of the samples in
free space, spending most of the sampling effort on repeatedly
running into walls. The PRM planners exhibit a different kind
of pathological behavior in easy regions: They over-sample
dramatically, as can be seen in Fig. 2(b). This means that
they do not acquire useful information even though they do
in fact place a high number of non-colliding samples. This
comparison demonstrates that the EET planner is able to
leverage high-quality workspace information very effectively.

In the second case, the planner should confine dense,
collision-heavy sampling to difficult regions of configuration
space. We just observed that PRM planners do not accomplish
this. In our five scenarios, each of which contains narrow
passages, the RRT and PRM variants place up to 99%
collision-free samples, performing unnecessary exploration in
easy regions. At the same time, the rate of collision-free
samples is almost always the lowest for the EET. Values
range from 22.62% in the mobile manipulation problem up
to 80.12% for the stationary manipulator. In some scenarios,
one of the planners outperforms the EET planner in this cate-
gory, indicating that the problem is particularly well-tailored to
the planner’s sampling strategy. However, a comparison of all
scenarios shows that no single planner outperforms the EET
in more than one scenario.

6) Path Length: Balancing exploration and exploitation
also improves path quality. As quality measure we use path
length in configuration space, as path lengths correlates with
smoothness and execution time. In all five scenarios, the
EET planner finds shorter paths than any of the other planners.
This can be attributed to the use of workspace informa-
tion to guide the extension of the configuration space tree.



11

The averages path generated by the other planners is more
than 2.5 times longer than those generated by the EET planner.
For the individual scenarios and planners, this number varies
between 2.1 and 2.8. These substantial differences in path
lengths result in very large subjective improvements of path
quality during motion execution.

V. LIMITATIONS

While the EET planner has shown to be very efficient
in practical scenarios, it remains—by design—incomplete
and may fail under certain conditions. Failure might be
caused by insufficient workspace information. For example,
the workspace connectivity information might not capture an
achievable path for the entire robot, either due to the robot’s
kinematic limitations or its geometric shape. However, the
planner is in many scenarios still able to find a solution as
it will explore beyond the sphere radii for high values of σ.

Fig. 16 shows an example where the workspace guidance
information is misleading the EET. The robot has to rotate a
long beam 180 degrees. To do so it needs to retract the red end
of beam from the hole, rotate it, and insert the blue end of the
beam into the hole. The EET cannot obtain useful workspace
information for this problem. The workspace decomposition
does not capture the needed rotation of the end-effector. In
fact, the tunnel lets the robot initially insert the beam even
more into the hole instead of retracting. This misleading
information lets the EET perform two orders of magnitude
worse compared two dual tree RRTs in this particular scenario.
Note that the EET does not suffer from misleading information
when the hole the beam is placed in initially is different from
the target hole.

Fig. 17(a) shows another example: The workspace tunnel
presented by the spheres generates a solution path around the
target obstacle, rather than straight through the two vertical
poles, as would be indicated by the workspace information.
As a consequence, the planner requires more exploration
but is still able to find a solution path. Fig. 17(b) shows a
similar situation, in which the wavefront expansion generates
a solution through the upper right hole in the wall rather than
the lower right one.

As the degrees of freedom and the number of narrow
passages increases, the situation changes: Fig. 17(c) shows
a scenario with an 11-DOF manipulator in which the robot
has to reach through two holes. In this case, the EET will fail
because guiding the tool center point (TCP) of the manipulator
alone is not sufficient to move through all holes of the wall.
It should be noted, however, that this scenario is equally
difficult for the other sampling-based planners we considered
here. Switching between different TCPs during planning could
provide a solution in this case.

Kinematic singularities do not affect completeness but limit
the planner’s ability to leverage information. Close to a
kinematic singularity of the robot, the planner will generate
very small successful expansion steps, causing the planner to
generate more exploitative sampling. Such a scenario is shown
in Fig. 17(d). To avoid this problem, we switch to uniform
exploration in the proximity of singularities. Our algorithm

finds a solution but wastes computation time by performing
additional exploration. This problem could be addressed by
recognizing this situation and adjusting σ accordingly.

There may also be other factors, in addition to kinematic
singularities and structural local minima, that prevent the
EET planner from reaching the exact goal configuration (see
Fig. 17(e)). If failure occurs due to high local complexity of
the planning problem around the goal configuration, a dual-
tree version of the EET planner, with one tree expanding from
the start configuration and one from the goal configuration,
may be beneficial. However, this variant would require the
specification of all joint angles, rather than just goal frame for
the end-effector.

VI. CONCLUSION

We presented a computationally efficient, albeit incom-
plete, sampling-based motion planner. The planner outper-
forms standard sampling-based planners by up to three orders
of magnitude on representative, challenging, real-world motion
planning problems.

The proposed planner achieves its performance by deliber-
ately balancing exploitation and exploration during planning.
It acquires information about the planning problem in the low-
dimensional workspace. This information captures some im-
portant structure inherent in the planning problem. The planner
uses this information to guide configuration space sampling.
When the information proves useful, the planner becomes
increasingly exploitative. However, when the information does
not lead to good planning progress, the planner gradually shifts
its sampling strategy toward exploration. These shifts, as a
function of the quality of available information, allow the
planner to explore only small portions of relevant conforma-
tion space when helpful workspace information is available.
Due to the planner’s ability to shift between exploration and
exploitation, we named the planner exploring/exploiting tree
planner (EET planner).

The computational efficiency of the proposed EET plan-
ner comes at a cost. When the information used to guide
configuration space sampling does not accurately capture the
configuration space structure, the planner may fail or waste
computational resources. We have analyzed and discussed
several of these situations. We come to the conclusion that, in
spite of these limitations, the EET planner is a highly efficient
planner for complex, real-world planning problems.

REFERENCES

[1] J. F. Canny, Complexity of Robot Motion Planning. MIT Press, 1988.
[2] M. Rickert, O. Brock, and A. Knoll, “Balancing exploration and ex-

ploitation in motion planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Pasadena, CA, USA, May
2008, pp. 2812–2817.

[3] M. Rickert, “Efficient motion planning for intuitive task execution in
modular manipulation systems,” Dissertation, Technische Universität
München, Munich, Germany, 2011.

[4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal of Robotics Research, vol. 5, no. 1, pp.
90–98, Mar. 1986.

[5] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, Oct. 1992.

[6] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.



12

(a) (b) (c) (d) (e)

Planner Vertices Collision Checks Free (%) Time (s) Path Length %

PRM 311 632± 8 929 15 632 505± 354 742 99.23±0.01 1 200.0± 0.0 ± 0
Gaussian-PRM 36 206± 40 507 3 045 096±2 877 873 88.04±2.15 335.3±318.3 44.64± 14.27 95
Bridge-PRM 27 679± 21 387 3 464 746±2 381 619 68.61±3.96 367.2±253.9 41.75± 17.27 100
RRT-Connect1 440 288±102 189 11 334 782±2 575 630 94.30±0.56 1 141.8±260.1 39.86± 5
RRT-Connect2 580± 409 31 916± 25 916 88.15±9.62 2.7± 2.2 27.33± 8.43 100
ADD-RRT 429± 234 16 637± 14 914 84.73±9.18 1.4± 1.2 29.05± 9.28 100
EET 1 134± 810 65 463± 40 512 10.07±2.80 217.8±265.2 24.97± 56.09 100

Figure 16. Stationary manipulator with large beam: (a) Bridge-PRM, (b) RRT-Connect1, (c) ADD-RRT, (d) EET, (e) wavefront expansion

(a) (b) (c) (d) (e)

Figure 17. Limitations of the proposed algorithm: (a) valid solution despite wrong workspace tunnel with goal configuration between cylindrical obstacles,
(b) valid solution despite workspace tunnel through upper hole with goal configuration between lower hole, (c) failure due to large DOF and complex link
between workspace and configuration space, (d) excessive exploration near singularity, (e) difficult to reach goal orientation due to use of only one tree.

[7] L. Kavraki and J.-C. Latombe, “Randomized preprocessing of config-
uration space for path planning: Articulated robots,” in Proceedings of
the IEEE/RSJ/GI International Conference on Intelligent Robots and
Systems, Munich, Germany, Sep. 1994, pp. 1764–1771.

[8] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, Aug. 1996.

[9] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Ames, IA, USA, Tech. Rep. TR 98-11,
Oct. 1998.

[10] J. J. Kuffner, Jr. and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation, San Francisco, CA, USA, Apr.
2000, pp. 995–1001.

[11] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” in Proceedings of
the IEEE International Conference on Robotics and Automation, Detroit,
MI, USA, May 1999, pp. 1018–1023.

[12] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” in Proceed-
ings of the International Workshop on the Algorithmic Foundations of
Robotics, Houston, TX, USA, Mar. 1998, pp. 155–168.

[13] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” in Proceedings of
the IEEE International Conference on Robotics and Automation, Taipei,
Taiwan, Sep. 2003, pp. 4420–4426.

[14] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilis-
tic roadmaps for motion planning,” Advanced Robotics, vol. 14, no. 6,
pp. 477–493, Dec. 2000.

[15] D. Hsu, G. Sánchez-Ante, and Z. Sun, “Hybrid PRM sampling with a
cost-sensitive adaptive strategy,” in Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, Barcelona, Spain, Apr.
2005, pp. 3874–3880.

[16] S. Thomas, M. Morales, X. Tang, and N. M. Amato, “Biasing samplers
to improve motion planning performance,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Rome, Italy, Apr.
2007, pp. 1625–1630.

[17] B. Burns and O. Brock, “Toward optimal configuration space sampling,”
in Proceedings of the Robotics Science and Systems Conference, Cam-
bridge, MA, USA, Jun. 2005.

[18] J. Denny and N. M. Amato, “Toggle PRM: Simultaneous mapping
of C-free and C-obstacle - a study in 2D -,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Francisco, CA, USA, Sep. 2011, pp. 2632–2639.

[19] R. A. Knepper and M. T. Mason, “Real-time informed path sampling
for motion planning search,” The International Journal of Robotics
Research, vol. 31, no. 11, pp. 1231–1250, Sep. 2012.

[20] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle, “Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, Barcelona, Spain, Apr. 2005, pp. 3856–3861.

[21] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon, “Adaptive tuning
of the sampling domain for dynamic-domain RRTs,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Aug. 2005, pp. 2851–2856.

[22] J. Cortés, L. Jaillet, and T. Siméon, “Molecular disassembly with RRT-
like algorithms,” in Proceedings of the IEEE International Conference
on Robotics and Automation, Rome, Italy, Apr. 2007, pp. 3301–3306.

[23] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation, Rome, Italy, Apr. 2007, pp. 3307–
3312.

[24] S. Dalibard and J.-P. Laumond, “Linear dimensionality reduction in ran-



13

dom motion planning,” The International Journal of Robotics, vol. 30,
no. 12, pp. 1461–1476, Oct. 2011.

[25] M. Foskey, M. Garber, M. C. Lin, and D. Manocha, “A Voronoi-based
hybrid motion planner,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Maui, HI, USA, Oct.
2001, pp. 55–60.

[26] C. Holleman and L. E. Kavraki, “A framework for using the workspace
medial axis in PRM planners,” in Proceedings of the IEEE International
Conference on Robotics and Automation, San Francisco, CA, USA, Apr.
2000, pp. 1408–1413.

[27] C. Pisula, K. E. Hoff III, M. C. Lin, and D. Manocha, “Randomized path
planning for a rigid body based on hardware accelerated Voronoi sam-
pling,” in Proceedings of the International Workshop on the Algorithmic
Foundations of Robotics, Hanover, NH, USA, Mar. 2000.

[28] M. Garber and M. C. Lin, “Constraint-based motion planning using
Voronoi diagrams,” in Proceedings of the International Workshop on
the Algorithmic Foundations of Robotics, Nice, France, Dec. 2002.

[29] J. P. van den Berg and M. H. Overmars, “Using workspace information
as a guide to non-uniform sampling in probabilistic roadmap planners,”
International Journal of Robotics Research, vol. 24, no. 12, pp. 1055–
1071, Dec. 2005.

[30] H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle: An
adaptive sampling strategy for PRM planning,” in Algorithmic Foun-
dation of Robotics VII, ser. Springer Tracts in Advanced Robotics.
Springer, Apr. 2008, vol. 47, pp. 35–51.

[31] Y. Yang and O. Brock, “Adapting the sampling distribution in PRM
planners based on an approximated medial axis,” in Proceedings of
the IEEE International Conference on Robotics and Automation, New
Orleans, LA, USA, Apr. 2004, pp. 4405–4410.

[32] O. Brock and L. E. Kavraki, “Decomposition-based motion planning: A
framework for real-time motion planning in high-dimensional configu-
ration spaces,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Seoul, Korea, May 2001, pp. 1469–1474.

[33] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Discrete search leading con-
tinuous exploration for kinodynamic motion planning,” in Proceedings
of the Robotics: Science and Systems Conference, Atlanta, GA, USA,
Jun. 2007, pp. 326–333.

[34] A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions using
a task-space Voronoi bias,” in Proceedings of the IEEE International
Conference on Robotics and Automation, May 2009, pp. 2061–2067.

[35] Y. Yang and O. Brock, “Efficient motion planning based on disassem-
bly,” in Proceedings of the Robotics: Science and Systems Conference,
Cambridge, MA, USA, Jun. 2005, pp. 97–104.

[36] M. Stilman, “Task constrained motion planning in robot joint space,”
in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, San Diego, CA, USA, Oct. 2007, pp. 3074–3081.

[37] J. M. Vandeweghe, D. Ferguson, and S. Srinivasa, “Randomized path
planning for redundant manipulators without inverse kinematics,” in
Proceedings of the IEEE-RAS International Conference on Humanoid
Robots, Pittsburgh, PA, USA, Nov. 2007, pp. 477–482.

[38] I. Al-Bluwi, T. Siméon, and J. Cortés, “Motion planning algorithms
for molecular simulations: A survey,” Computer Science Review, vol. 6,
no. 4, pp. 125–143, Jul. 2012.

[39] A. Yershova and S. M. LaValle, “Improving motion planning algorithms
by efficient nearest-neighbor searching,” IEEE Transactions on Robotics,
vol. 23, no. 1, pp. 151–157, Feb. 2007.

[40] G. van den Bergen, Collision Detection in Interactive 3D Environments,
ser. The Morgan Kaufmann Series in Interactive 3D Technology. San
Francisco, CA, USA: Morgan Kaufmann Publishers, 2004.

Markus Rickert is leading the Robotics research
group at fortiss GmbH, An-Institut Technische Uni-
versität München in Munich, Germany. He received
both his Diplom and doctorate in Computer Science
from the Technische Universität München. His re-
search interests include robotics, motion planning,
human-robot interaction, cognitive systems, simula-
tion/visualization, and software engineering.

Arne Sieverling is a Ph.D. candidate in Computer
Science at the Technische Universität Berlin, Ger-
many. He received the Bachelor’s and a Master’s
degree in Computer Science in 2009 and 2011,
both from the Georg-August Universität Göttingen,
Germany. His research focuses on motion planning
and motion generation for Mobile Manipulators.

Oliver Brock is the Alexander von Humboldt-
Professor of Robotics in the Faculty of Electrical
Engineering and Computer Science at the Technis-
che Universität Berlin in Germany. He received his
Diplom in Computer Science from the Technische
Universität Berlin and his Master’s and Ph.D. in
Computer Science from Stanford University. He also
held post-doctoral positions at Rice University and
Stanford University. He was an Assistant Professor
and Associate Professor in the Department of Com-
puter Science at the University of Massachusetts

Amherst, prior to moving back to the Technische Universität Berlin. The
research of Brock’s lab, the Robotics and Biology Laboratory, focuses on
autonomous mobile manipulation, interactive perception, manipulation, and
the application of algorithms and concepts from robotics to computational
problems in structural molecular biology.


