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Abstract— Future collision avoidance systems, which are
capable of fully controlling the vehicle, have to make critical
decisions in a very short time. To do this, they need to check con-
stantly if their own vehicle’s occupancy collides with the other
traffic participants’ occupancy. Those collision checks consume
a substantial amount of time and consequently, the collision
avoidance systems could fail to intervene in complex scenarios.
We propose a new approach to reduce the computation time
for collision checks significantly. Instead of using geometric
methods, we store finitely many possible collision scenarios
between two objects in a table and thus collision checks become
a matter of lookup table queries. To ensure that the finite
number of configurations cover all possible scenarios, we use
a novel abstraction technique which guarantees that every
collision will be detected. The approach works for arbitrarily
many traffic participants by applying the approach pairwise
(own vehicle and other object) to each traffic participant.
Randomly generated scenarios show that the new approach can
be several times faster than geometric intersection techniques
thanks to the trade-off between memory consumption and
computation time.

I. I NTRODUCTION

Collision avoidance systems in fully automated road vehi-
cles are a key technology in a future without life-threatening
collisions. Once collision avoidance systems gain the re-
quired reliability, we will also see a transformation from
highly automated driving towards fully automated driving.A
major task of collision avoidance systems is to verify whether
the planned action is indeed collision-free. This is achieved
by intersecting the predicted occupancy of the ego vehicle
with the predicted occupancy of other traffic participants over
time.

Geometric collision detection of occupancies consumes
substantial computation time when searching for collision-
free paths [1], [2]. A major influence on the efficiency of
collision detection algorithms is the geometric representation
of static obstacles and other traffic participants. Two major
approaches exist. The first approach uses sensor data, which
has only been processed to a small extent and is gathered in
occupancy grids, see e.g. [3] for the two-dimensional case
and [4] for the three-dimensional case. In order to improve
access to grid-based occupancy information, tree-based data
structures are often used [5]. The alternative approach is to
fuse data from multiple sensors and represent occupancies in
a model-basedobject representation [6]. Since our approach
falls into the latter category, the remainder of the literature
review focuses on this.
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One of the most common model-based representations of
objects are polyhedrons, i.e. intersections of halfspaces[7].
Special cases are rectangles as applied in [8] or trapezoids
as applied in [9]. Intersection detection between polyhedra
can be efficiently implemented using the Separating Axis
Theorem [10]. Since collision checking between two circles
and between other model representation and circles are very
efficient, other traffic participants have been representedby
several circles in [11]. Circles can be generalised to ellip-
soids, which are often used in robotics [12]. Besides single
vehicles, it is of interest to represent occupancy regions by
several rectangles or similar shapes [13]–[15]. This makesit
possible to consider uncertainty in sensing and uncertainties
in the prediction of traffic participants.

To improve the efficiency of collision detection algorithms,
a popular approach is to use a hierarchy of representations
from simple to complicated representations [16], [17]. Forin-
stance, one can enclose bounded polyhedra (i.e. polytopes)or
other object representations byn-spheres. Only in the event
that enclosingn-spheres intersect, which is computationally
cheap to detect, the more elaborate collision detection in-
volving the corresponding polyhedra is performed.

To overcome the huge computational requirements for
collision detection, we present a completely different ap-
proach. Instead of computing possible intersections with
classical intersection algorithms, we pre-compute whether a
collision occurs for possible relative configurations (positions
and orientations). The results of a finite number of relative
configurations are stored in a lookup table. Since we need to
guarantee that no collision occurs for all possible (infinitely
many) configurations, we abstract the collision check such
that the full configuration space is covered by the finite pre-
computed set. Thus, the collision check is simplified to a
simple database entry retrieval, significantly speeding upthe
collision checking. In addition, we store the depth of pene-
tration of objects if they intersect as an additional feedback
for the planner. This computation is usually not performed
in classical approaches due to the high computational costs.
In our approach however, this information comes for free
since we only store the penetration, where a value of0
indicates that there is no collision. In principle, our approach
is independent of the geometric representation of objects.In
this work, we demonstrate the approach for rectangles. Note
that more complicated shapes can be composed from several
rectangles. In the broader sense, our approach trades memory
for time consumption [18].

The paper is organised as follows. We give an overview
of our approach in Sec. II and detail it in Sec. III and IV.
Section V explains how the proposed approach is used to



construct the lookup table and Sec. VII describes how the
proposed approach is evaluated. We end this paper with the
conclusion and future work in Sec. VIII.

II. OVERVIEW OF THE APPROACH

Suppose we have two rectangles denoted byRego and
Rother. RectangleRego has widthWe and lengthLe, and
Wo andLo are defined similarly forRother. A rectangle is
specified by the triples(x, y, θ), where the pair(x, y) is the
rectangle’s centre in fixed Cartesian coordinates, and variable
θ is the orientation of the rectangle (see Fig. 2). The collision
detection problem considered is to determine whether these
two rectangles collide or not.

The objective of this paper is to obtain afast collision
detection method by building a lookup table, which trades
time consumption for memory consumption. It is not obvious
how to apply time-memory trade-off in collision detection,
since collision detection has a continuous input space (po-
sitions and orientations). Thus, infinitely many lookup table
entries would be required to represent all possible positions
and orientations of any two rectangles.

We tackle this issue as follows. Firstly, wediscretisethe
input space to make the lookup table entries finite. Secondly,
due to the finite entries, wequantisethe position and orien-
tation of the rectangle when we want to query the lookup
table. Thirdly, weenlargeboth rectangles when constructing
the lookup table to compensate for the quantisation error.

We argue that due to the enlargement, the lookup table is
completei.e. it asserts a collision when in reality there is a
collision. This enlargement also implies that false positives
are now possible, i.e. the lookup table asserts a collision
while in reality there is none. However, this is no issue in
practice, since manoeuvres that almost result in a collision
are undesirable, too. This is because a certain amount of
robustness of a collision-free manoeuvre is required to com-
pensate for unmodelled errors.

III. D ISCRETISATION AND QUANTISATION

There are six dimensions in the input space to discretise:

(xe, ye, θe) ∈ Xe× Ye×Θe and

(xo, yo, θo) ∈ Xo × Yo×Θo,

where all sets are subsets ofR and bounded. Any element
lying outside these bounds is considered to be collision-free.
Each dimension is discretised by fixing two constants: the
sampling interval∆Z ∈ R and the number of samplesNZ ∈
N. The result of the discretisation for each dimension is the
following finite set:

IZ = {i ·∆Z | i ∈ N ∧ 0 ≤ i < N} (1)

Since the original set is infinite and the resulting setI
above is finite, we have to define the mapping between these
two sets, which is called quantisation [19]. Suppose that we
have a setZ in the input space, its discretised setI, and
its sampling interval∆Z , and⌊·⌋ as floor function. We then
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Fig. 1. False negative due to quantisation error. The top figure is the actual
scenario, while the bottom figure is the scenario after the quantisation. The
step value for dimensionXe andXo is 2 units of length. RectangleR1 and
R′

1
have the width and length of2 and 3 units, respectively. Meanwhile,

rectangleR2 andR′

2
have the width and length of2 and4 units.

quantise the dimension by defining a functionfZ : Z → I
with the following formula:

fZ(z) =

⌊

z

∆z

+ 0.5

⌋

·∆z (2)

The main issue with the quantisation in (2) is thequanti-
sation error. This error is the difference between the value
which index i represents and the exact valuez, that is
|z − i · ∆z|. This error1 can make our collision detection
method incomplete. That is, it can assertnocollision while in
reality thereis a collision (false negative), which can possibly
result in a crash.

This false negative situation happens when the overlapping
region between two rectangles is smaller than half of the
sampling interval (see Fig. 1). Figure (1b) shows that if
we query the lookup table with the new coordinate, it will
not assert a collision. However, Fig. 1a shows that both
rectangles actually collide and, therefore, it shows that the
current lookup table is incomplete. To achieve a complete
collision detection method, we have to enlarge the original
rectangle to compensate for this error.

IV. RECTANGLE ENLARGEMENT

We start this section by explaining the principle of rect-
angle enlargement, and later use it to compute the amount
of enlargement for each dimension.

A. General Principle of Rectangle Enlargement

A rectangleR is enlarged to a rectangleR′ such thatR′

contains all other rectangles mapped toR using (2). For
example, in Fig. 1, sinceR1 is mapped toR′

1, the enlarged
version ofR′

1 will contain R1.

1From now, we will simply use the term ‘error’ when we mean ‘quanti-
sation error’.
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Fig. 2. Amount of enlargement due to error in dimensionX. The blue
and orange rectangle have the position and orientation of(i, y, θ) and(i+
∆x

2
, y, θ), respectively.

The amount by which a rectangle is enlarged depends on
the sampling interval∆z in (2). Suppose that we decide on
a fixed valuei ∈ I in (1), then the bounds are the infimum
and supremum of the set

{z ∈ Z | fZ(z) = i}. (3)

By using the property⌊x⌋ ≤ x < ⌊x⌋+ 1, we obtain the
infimum and supremum of the set in (3) asi− ∆

2
andi+ ∆

2
,

respectively.
Figure 2 illustrates how one of the bounds (supremum)

contributes to the required enlargement. From its positionand
the set (3), rectangleR2 is mapped toR1 and, therefore,R1

is enlarged to includeR2. As the figure shows, we achieve
this by increasing the width and the length ofR1 by ∆wx

and∆hx, respectively.

B. Amount of Rectangle Enlargement for Each Dimension

1) DimensionX : We calculate the enlargement for di-
mensionX as follows. From Fig. 2, we can see that the
values for∆hx and∆wx are

∆hx =
∆x

2
· |cos(θ)| and ∆wx =

∆x

2
· |sin(θ)|. (4)

These values, however, come from the contribution of the
supremum only. By similar reasoning, we can also see that
the infimum contributes the same values as in (4). Therefore,
the total enlargement is the sum of the contributions from the
supremum and the infimum:

∆Hx = 2 ·∆hx = ∆x · |cos(θ)| (5)

∆Wx = 2 ·∆wx = ∆x · |sin(θ)| (6)

2) DimensionY : The amount of enlargement for dimen-
sion Y can be calculated similarly to (5) and (6):

∆Hy = 2 ·∆hy = ∆y · |sin(θ)| (7)

∆Wy = 2 ·∆wy = ∆y · |cos(θ)| (8)
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Fig. 3. Enlargement to compensate error from dimensionΘ.

3) DimensionΘ: The principle discussed previously still
applies to dimensionΘ, but the amount of enlargement
is different from the previous two dimensions. Figure 3
illustrates the enlargement required to compensate the error
in dimensionΘ. We derive the formula for∆Wθ, which is
twice of ∆wθ, as follows.

∆Wθ

= 〈by graphical reasoning from Fig. 3〉
|W − (l1 + l2)|

= 〈by l1 = W · sin
(

90°− ∆θ

2

)

and l2 = H · sin
(

∆θ

2

)

〉
∣

∣W −W · sin
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2

)

−H · sin
(

∆θ

2

)∣

∣

= 〈by factorisation and trigonometric identity〉
∣
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The formula for ∆Hθ can be derived similarly and we
formalise it as follows.

∆Hθ = 2 ·∆hθ =

∣
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The enlargement discussed here is based on the super-
position principle. We analyse the enlargement from each
dimension independently and add them correspondingly. It
is justified to use the superposition principle since rotation
and translation are linear mappings.

V. L OOKUP TABLE CONSTRUCTION

This section details how the approach of discretisation,
quantisation, and enlargement is used to construct the lookup
table. First, we analyse the number of dimensions required
for the lookup table. Then, we decide which information to
store in the lookup table and how to obtain this information.
Lastly, we present an algorithm to construct this lookup table
and briefly report on its implementation.

A. Number of Dimensions

The collision detection lookup table has four dimensions.
The first two dimensions are the relative distances between
the centres of rectanglesRother andRego in dimensionX and
Y , denoted byX andY . The third and fourth dimension in
the lookup table areΘe andΘo, the orientation of rectangles
Rego andRother, respectively.

Due to position invariance, it is sufficient to consider
relative values for the position. For example, two rectangles



Algorithm 1 CONSTRUCT-LOOKUP-TABLE

Input: We, Le,Wo, Lo : dimensions of both rectangles
Output: table[NX, NY , NΘe, NΘo] : lookup table

1: ego← RECTANGLE(We, Le)
2: other ← RECTANGLE(Wo, Lo)
3: for all (i, j, k, l) ∈ NX ×NY ×NΘe ×NΘo do
4: ego.UPDATE AND ENLARGE(0, 0, k)
5: other.UPDATE AND ENLARGE(i, j, l)
6: table[ij, ik, il, im]← MEASURE PEN(ego, other)
7: end for

with triples (xe, ye, θe) and (xo, yo, θo) will have the same
collision status with two other rectangles with triples(xe +
δx, ye + δy, θe) and (xo + δx, yo + δy, θo). This reduces
the memory complexity ofO(n6) to O(n4), wheren is the
maximum number of samples in each dimension.

Nevertheless, we avoid using relative orientation in the
lookup table. This is because it requires a sine or cosine
function to compute the relative index, which takes a con-
siderable amount of time. This is not the case for relative
position, however, since it only needs a subtraction operation.

B. Measure of Penetration as Collision Status

Rather than only storing the information about the colli-
sion status, we also add the information about themeasure
of penetration(cf. [20], [21]) between rectanglesRego and
Rother when they collide. If the measure has the value of
zero, then we interpret it such that both rectangles do not
collide; otherwise, they collide andRother penetratesRego by
the amount indicated by the measure.

The measure is useful as additional feedback to the ma-
noeuvre planner. If it falls below a predetermined value, we
could recheck the collision status with a more accurate but
probably less time efficient method. In our case, it helps to
address the issue of false positives in our approach.

C. Algorithm for Lookup Table Construction

Algorithm 1 illustrates the lookup table construction. The
inputs to this algorithm are the width and length of both
rectangles, and the output is a four-dimensional table. The
algorithm mainly operates with the objectrectangle, which
we assume to contain all the sampling interval constants of
all the sets to discretise.

The functionUPDATE AND ENLARGE (line 4 and 5) up-
dates the rectangle position and orientation according to the
current entry(i, j, k, l), and enlarges the dimension accord-
ing to the method described in Sec. IV. Meanwhile, the
function MEASURE PEN measures the penetration ofRother

towardsRego.
We implemented this algorithm in MATLAB 2014a with

parameters listed in Table I. The time required to build the
lookup table is3839 s with an Intel i5-4330M2.80GHz
processor and12GB of RAM. The lookup table consumes
23.37MB of memory.

TABLE I

PARAMETERS FOR LOOKUP TABLE CONSTRUCTION

Parameter X Y Θe Θo

N 40 40 72 72

∆ 0.1482 0.1482 0.0885 0.0885

other vehicle

ego vehicleδ +∆l

W

occupancy of
ego vehicle

occupancy of other vehicle

enclosing rectangle

enclosing rectangle

reference trajectory
of ego vehicle

path of lane centre

waypoint

Fig. 4. Traffic scenario at time[tk−1, tk ].

VI. V ERIFYING A PLANNED PATH

Previous sections focus on checking the collision between
two rectangles. This section develops the idea further by
showing how to verify a planned path. Firstly, we provide
the general approach for verifying a planned path and show
how it relates to collision checking of rectangles. The next
subsection explains how the occupancy during a time interval
is represented with a series of rectangles, and the last
subsection provides the general algorithm for verifying a
planned path.

A. General Approach for Verifying a Planned Path

We assume that the plan generated is represented by a
series of equal-length and connected segments. The length of
each segment is denoted by a constant0 < δ, and for any two
adjacent segments, the difference between their orientations
is assumed to be at mostφmax, where0 ≤ φmax < π

2
(see

Fig. 6).
Suppose that we have a time horizon[t0, tf ] which is

divided into several smaller time intervals[tk−1, tk] for
k = 1, . . . , f (see Fig. 4). We also assume that there are
two paths: one planned path for the ego vehicle, and the
centreline of the lane which the other vehicle occupies. We
verify the safety of the planned path relative to the predicted
path by repeating the following steps until the time horizon
tf is reached [15]:

1) Compute the reachable set and the occupancies of the
ego vehicles and the other traffic participant according
to their dynamics and uncertainties at time interval
[tk−1, tk],

2) Cover the occupancy of the ego vehicle and the other
traffic participants with rectangles,

3) Check the collision between any two combination of
rectangles from the occupancies of the ego and the other
vehicle.

If there is no collision for any of these time intervals, we
conclude that the planned path is safe.



reark−1

frontk−1

reark

frontk

first rectangle

last rectangle(xfirst, yfirst)

(xlast, ylast)

Fig. 5. Covering the occupancy at time[tk−1, tk ] with rectangles.

B. Covering Occupancies of Vehicles with Rectangles

Suppose that we have a time interval[tk−1, tk] and a plan
as illustrated in Fig. 5. The vehicle is assumed to occupy the
region fromreark−1 to frontk−1 at timetk−1 and the region
from reark andfrontk at timetk. The region which needs to
be covered with rectangles, therefore, ranges fromreark−1

to frontk.
Each rectangle is placed such that it has the same orienta-

tion as each segment in the path. The width of the rectangle
covers the width of the vehicle and additional uncertainty:
for the ego vehicle, the sources of uncertainty come from
sensor noise, disturbance, and uncertain initial states; for
other traffic participant, the source of uncertainty mainly
comes from the model input (changing lane, accelerating or
decelerating) [15]. Usually, the width of theRego is a slight
enlargement of the width of the ego vehicle, and the width
for the other rectangle is a slight enlargement of the lane
width.

In order to determine the length of each rectangle, consider
first the two adjacent segments in Fig. 6 which differ in
orientation by φmax. If we cover both segments with a
rectangle of lengthδ, there is a gap between them which
is shown as the quadrilateralABCD. To cover this gap, we
enlarge the length of the rectangle by

∆l = W · tan

(

φmax

2

)

. (9)

Thus, the length of each rectangle is equal to the sum of
the length of each segment and the enlargement above, i.e.
δ +∆l.

Since any two adjacent segments cannot differ in ori-
entation by more thanφmax, we can safely enlarge every
rectangle with the amount as in (9). This is mainly due
to the fact that the tangent function is strictly increasing.
Thus, any difference of orientations|φ| ≤ φmax requires an
enlargement smaller than the value in (9). By doing so, we
ensure that any potential gap in the path is always covered.

Except for the rectangles covering the first and the last seg-
ment, each rectangle is positioned at the midpoint between
the two endpoints of each segment. Suppose that the length
of the path from the beginning untilreark−1 = (xk−1, yk−1)
is sk−1 and the orientation of the first segment isθk−1. Then

φmax

2

φmax

2

∆
l

2

∆l
2

φmax

W
A

B

C D

Fig. 6. Computing enlargement of the covering rectangle.

Algorithm 2 VERIFYING PLAN

1: collision← false
2: for all [ti, ti+1) ∈ time do
3: (si, si+1)← FIND EGO ENDPOINTS(ti, ti+1)
4: rectsego ← COVER PATH EGO(si, si+1)
5: (s′i, s

′

i+1)← FIND OTHER ENDPOINTS(ti, ti+1)
6: rectsother ← COVER PATH OTHER(s′i, s

′

i+1)
7: for all re ∈ rectsego and not collision do
8: for all ro ∈ rectsother and not collision do
9: collision← CHECK COLLISION(re, ro)

10: end for
11: end for
12: end for

the centre of the first rectangle has the coordinate

xfirst = xk−1 + αk−1 · cos (θk−1) ,

yfirst = yk−1 + αk−1 · sin (θk−1) ,

whereαk−1 is defined as follows:

αk−1 =

(

δ +∆l

2

)

−
(⌈sk−1

δ

⌉

· δ − sk−1

)

Similarly, if sk represents the length of the path from the
beginning untilfrontk = (xk, yk) and the orientation of the
last rectangle isθk, then the centre of the last rectangle has
the coordinate

xlast = xk − βk · cos(θk),

ylast = xk − βk · sin(θk),

whereβk is defined as follows:

βk =

(

δ +∆l

2

)

−
(

sk −
⌊sk
δ

⌋

· δ
)

C. Detailed Procedure for Verifying a Planned Path

Algorithm 2 details the procedure for verifying a plan.
It consists of three loops of which the outermost loop



TABLE II

RANGE FOR EACH CLASS OF RANDOM CONFIGURATIONS

Xo,Xe Yo, Ye Θo,Θe

Range [−5, 5] [−5, 5] [−π, π]

traverses all the time intervals. At each time interval, func-
tion FIND EGO ENDPOINTS (line 3) findssi and si+1, the
start and end points respectively, which the ego vehicle
occupies at the current time interval (see Fig. 5). Function
COVER PATH EGO (line 4) then covers the path with rect-
angles ranging fromsi to si+1 as described in the previous
subsection. These two steps are performed similarly for the
other vehicle (line 5 and 6 of Alg. 2).

The two innermost loops traverse all combinations of
rectangles which cover the occupancy of the ego and
the other vehicle. For each combination, the function
CHECK COLLISION checks whether a collision has occurred
using the proposed lookup table or the Separating Axis
Theorem. We equip the guard conditions in line 7 and
8 with a test of whether a collision has occurred. Thus,
as soon as statuscollision evaluates to true, the algorithm
halts immediately and prevents the loop from checking the
remaining combinations.

VII. E VALUATION

The purpose of this experiment is to evaluate the timing
performance of the proposed approach against the approach
based on the Separating Axis Theorem2. To do this, we
divide the evaluation into two parts. The first part evaluates
the timing performances when checking the collision of
random rectangles, and the second part evaluates the timing
performances when they are used for verifying a planned
path.

A. Evaluating Random Rectangles

As a rule of thumb, a timing measurement is valid only
if the execution time is at least100 to 1000 times its timer
overhead [22]. Therefore, we decide to measure the timing
performance in batch mode (i.e. several trials per test). We
generate six classes of random data, and each class represents
a dimension in the inputs. Table II defines the range of values
for each of these classes. We generateNtest= 100 tests and
each test hasNtrial = 550 trials, and hence,55 000 random
configurations in total for each class.

Algorithm 3 illustrates how we measure the execution
time for a single test of the proposed approach in batch
mode. FunctionFIND RELATIVE POS computes the position
(x, y) of Rother relative to Rego by assumingθe = θo =
0. Meanwhile, the functionCOMPUTE INDICES finds the
indices(i, j, k, l) in the lookup table for each dimension in
the argument list. Each index is computed with the formula
fZ/∆z, where the functionfZ is defined in (2) and the
identifier Z ranges over all dimensions in the argument

2Note that we are evaluating our approach against SeparatingAxis
Theorem only and not the whole OBB framework.

Algorithm 3 MEASURING PROPOSEDAPPROACH

1: start← GET CURRENT TIME()
2: for all trial ∈ test do
3: (x, y)← FIND RELATIVE POS(trial)
4: (i, j, k, l)← COMPUTE INDICES(x, y, θe, θo)
5: dist← table[i, j, k, l]
6: status← (dist = 0)
7: end for
8: end← GET CURRENT TIME()
9: elapsed← (end− start)/Ntrial

ego vehicle
other vehicleplanned path centreline

Fig. 7. First Scenario for measuring timing performance of planned path
verification.

list. We use an algorithm similar to Alg. 3 to measure the
timing performance of the approach based on the Separating
Axis Theorem. The only difference is that lines 3–6 are
replaced with specific instructions for the approach based
on Separating Axis Theorem (see [10]).

We measure the execution time for both approaches by
reading the current clock value in the hardware timer with
WINDOWS’ API QUERYPERFORMANCECOUNTER (QPC).
The timer has a clock resolution of333 ns and access time of
30 ns 3. Each algorithm is implemented in C++ and compiled
with M ICROSOFT V ISUAL C++ 2013 (optimisation level
O2). As for the hardware, we use the machine specified in
Sec. V to run this experiment.

B. Evaluating the Verification of a Planned Path

We devise two scenarios for evaluating the planned path
verification. Figure 7 and 8 illustrate the first and second
scenario, respectively. The first scenario depicts the situation
where both the ego and the other vehicle follow the centreline
of a curved lane. The second scenario shows the condition
where the ego vehicle must avoid the static obstacle by
crossing to the opposite lane, and also return quickly to
prevent collision with the other vehicle.

1) Scenario 1:For the first scenario, we generate the tests
by randomly creating the road model. To do this, we first
generate the centreline for the lower lane. The centreline of
the upper lane is then obtained by translating this line by
the width of the lane4. From these two lines, we generate

3http://msdn.microsoft.com/en-us/library/windows/
desktop/dn553408%28v=vs.85%29.aspx

4We assume that the lane width for both lanes are the same.



TABLE III

T IMING PERFORMANCE OF THE PROPOSED APPROACH AND THESEPARATING AXIS THEOREM

Random Rectangles (Ntest = 550) Scenario One (Ntest = 100) Scenario Two (Ntest = 100)

Average Std. Deviation Average Std. Deviation Average Std.Deviation

Lookup Table 6.66× 10−9 s 4.20× 10−9 s 2.73× 10−5 s 1.79 × 10−6 s 2.78× 10−5 s 2.29× 10−6 s

Sep. Axis Thm. 1.06× 10−7 s 1.42× 10−8 s 2.22× 10−4 s 1.88 × 10−5 s 2.69× 10−4 s 2.65× 10−5 s

Speedup 16.04 8.11 9.69

planned pathego vehicle

other vehicle

static obstacle

Fig. 8. Second scenario for measuring timing performance ofplanned path
verification.
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Fig. 9. Curvature profile for creating the lower lane of scenario 1.

the upper and lower border line and the line separating these
two lanes.

We can generate centrelines for the lane by firstly creating
random curvature profiles. For example, the centre line in
the lower lane of Fig. 7 is generated by the curvature profile
κ(s) shown in Fig. 9. The curvature profiles for scenario
1 are obtained by randomising the values of the curvature
at the initial, the middle, and the end of road parameter
s, and connecting these values with straight lines. Lastly,
the centrelines are obtained by solving the integral equations
given by Dickmanns and Mysliwetz [23].

2) Scenario 2:Since scenario 2 has a fixed road model,
the tests for this evaluation consist of the planned path for
avoiding an obstacle and another vehicle. Instead of using
the curvature profile, as in the previous scenario, we use
Bézier curves of degree four to model the planned path [24]
as shown in Fig. 10. After we obtain the Bézier curve, we

P0

P2

P1

P3 P4

P5 P6

first segment second segment third segment

Fig. 10. An example of planned path for scenario two.

TABLE IV

NUMBER OF FALSE POSITIVES FORLOOKUP TABLE APPROACH

Random Rect. Scenario 1 Scenario 2

false positives 4252 0 16

rate 7.73% 0% 16%

reparameterise the curve as a function of arc lengths 5 to
obtain a set of equidistant points on our path.

We generateNtest = 100 tests for each scenario and they
are generated from MATLAB code. The evaluation, however,
is performed with Alg. 2 and it is implemented in C++. We
use the same compiler, optimisation level, timer API, and
hardware specification as in the previous subsection.

C. Results and Discussion

Table III summarises the timing performance of the pro-
posed approach and the approach based on the Separating
Axis Theorem. As can be seen from the table, our proposed
approach isfaster by a factor of 16.04 during collision
detection of random rectangles. Additionally, it isfaster on
average by a factor of8.9 when we verify the planned path.

Table IV reports on the number of false positives. For
the random rectangles evaluation, a false positive occurs
when our approach detects a collision, but there is actually
no collision. For scenario 1 and 2, it is defined as a plan
considered unsafe by our approach but it is actually safe.

5Our code is based on the following work. David Eberly. Moving
Along a Curve with Specified Speed. Geometric Tools, LLC.
2007. http://www.geometrictools.com/Documentation/
MovingAlongCurveSpecifiedSpeed.pdf



By looking at Tab. III, we can see that the execution time
for the proposed approach is indeed smaller than the access
time provided in Sec.VII. If we divide the execution time
per test by the access time,

100 ≤
550 × 6.66× 10−9 s

3× 10−8 s
= 122.1 ≤ 1000

we see that it is in the range of valid measurement. Therefore,
our choice ofNtrial = 550 is also justified.

Table III also shows the timing performance for evaluating
a single planned path with the approach based on the Sep-
arating Axis Theorem, which is in the order of10−4 s. In a
real-world implementation, a path planner could generate104

planned paths and leading to verification times in the order of
seconds. This is unacceptably long, and our approach helps
to decrease verification times to fractions of seconds.

VIII. C ONCLUSION AND FUTURE WORK

We have described how we can trade memory for time in
collision checking between rectangles, and how the safety
verification of a planned path can be reduced to a series of
collision checks between rectangles. We have also evaluated
the proposed approach, and the results show that the timing
performance improves on average by a factor of8.9. As for
future work, we intend to use real data from an autonomous
vehicle to evaluate the proposed approach further.
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