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Abstract— Robots acting in populated environments must be
capable of safe but also time efficient navigation. Trying to
completely avoid regions resulting from worst case predictions
of the obstacle dynamics may leave no free space for a robot to
move, especially in environments with high dynamic. This work
presents an algorithm for a ”soft” risk mapping of dynamic
objects leaving the complete space free of static objects for
path planning. Markov Chains are used to model the dynamics
of moving persons and predict their potential future locations.
These occlusion estimations are mapped into risk regions which
serve to plan a path through potentially obstructed space
searching for the trade-off between detour and time delay.
The offline computation of the Markov Chain model keeps
the computational effort low, making the approach suitable for
online applications.

I. INTRODUCTION

A major goal in current mobile robotics research is to
bring robots into natural human-populated environments.
This imposes great challenges on human-robot interaction
capabilities. Action in human environments and interaction
with humans is one of the striving goals of the Autonomous
City Explorer (ACE) project [1]. The objective of the project
is to create a robot (Fig. 1) which explores an unstructured
and populated urban environment, given neither map knowl-
edge nor being equipped with GPS. Instead it is primarily
gathering information through interaction with people. One
fundamental task within this scope is a sophisticated naviga-
tion in densely populated environments.

Such scenario requires safe navigation amongst people.
However, too passive and conservative motion may not work
in densely populated places. To be able to move deftly
and goal-oriented within populated areas, the environmental
dynamics has to be predicted and taken into account during
path planning. This requires first to perceive dynamic objects,
second to predict their future motions and third to plan a
sophisticated path based on this knowledge. The focus of
this paper is primarily on the second step, in presenting an
algorithm for a ”soft” mapping of predicted dynamics into
risk areas. Instead of ”hard” avoidance of obstacle areas,
the perceptual reasoning system provides a mean to plan
through potentially obstructed space searching for the trade-
off between detour and time delay.

The remainder of the paper is structured as follows: The
next section provides an overview about related work. Sec-
tion III starts with an outline of the overall system in which
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Fig. 1. The Autonomous City Explorer (ACE) robotic platform.

the presented approach is embedded, followed by a detailed
description of the risk map computation and how these can
be used for replanning. Section IV gives experimental results
followed by a conclusion in Section V.

II. RELATED WORK

The capability to distinguish between the static envi-
ronment and moving persons requires a people tracking.
Recognition of people has been widely studied using vision
systems, e.g. [2], [3], [4]. While stereo vision systems like
[3], [4] provide an expedient way to retrieve depth informa-
tion from a camera scene, visual systems are facing problems
when being confronted with varying lightning conditions.
Consequently they are not the best choice for outdoor scenar-
ios. An alternative way to perceive and track people is using
laser range finders as in [5] and [6], having the advantage
of robustness to sunlight. Furthermore, the gathered depth
information suffers usually less noise and covers distances
far beyond reliable visual depth reconstruction.

In addition to people tracking, a major challenge of
navigation within populated environments is considering the
perceived people during path planning. While safety can be
ensured by using a low level obstacle avoidance like [7], path
planning focusing on smooth continuous motion demands an
efficient handling of the environmental dynamics.

A lot of research is engaged in the path finding problem of
robots navigating in dynamic environments. In [8] the Multi-
partite Rapidly-exploring Random Tree (MP-RRT) algorithm
for efficient path planning in dynamic environments is in-
troduced. The single-query character of RRTs is extended
by subtree re-use and planning around moving obstacles
with unknown dynamics. A combination of probabilistic path
planning with deterministic approaches – using Probabilistic
Roadmaps (PRMs) and Anytime D* [9] respectively – is
presented in [10]. This approach provides anytime replanning



in situations where an agent may have no full information
about the dynamics of the environment. Besides the path
length, further cost metrics such as traversal risk and time,
stealth or visibility are mentioned. Dynamic obstacles are
modeled as space-time volumes using a deterministic or
worst case approach. In [11] Cell-based PRMs (CPRMs)
are presented, which focus on efficient replanning especially
in large environments. In [12] the velocity obstacle (VO) is
introduced, being the conical velocity space derived from the
set of colliding relative velocities between robot and moving
object. Under the assumption of constant velocities, any
relative velocity within the VO is causing a collision. The VO
is extended in [13] by a probabilistic version (PVO), where
the perception system is modeled probabilistically while the
obstacle model itself remains deterministic.

Modeling of dynamic obstacles is also extensively covered
in the field of computer graphics. In [14] a neighborhood
graph is used for collision detection in a crowd of virtual
humans. The collision avoidance is based on linear trajectory
extrapolation and local speed adaptation for each virtual
human. In [15], Finite State Machines (FSM) are used to
model virtual humans. While dealing with virtual humans
provides to use deterministic dynamics of the persons, these
approaches usually do not cover all circumstances facing a
robot in the real world. Consequently they are often leading
to inaccurate results when applied there.

The above mentioned approaches have in common, that
they aim for collision free path planning, i.e. hard avoidance
of potentially obstructed space. This can be a necessity in
many scenarios, thinking e.g. about applications with high
velocities like autonomous cars [16] where the acceptable
collision rate drops down to zero. On the other hand, trying
to completely avoid intersections with any potential obstacle
trajectory may leave no feasible path at all, especially within
densely populated environments.

In [17] a probabilistic navigation function (PNF) is pre-
sented, using a probabilistic risk map for path planning with
E* [18]. The risk map is derived from a co-occurrence
estimation of dynamic obstacle and robot, which is based on
worst-case assumptions assuming that the object can change
its speed (within a bounded interval) and direction of travel.
In [19] motion patterns of people are learned to predict
their future behaviors. In a pre-processing phase trajectories
are derived from laser range data and clustered by using
expectation maximization. The outcome then serves to learn
a Hidden Markov Model (HMM) for each person, which later
is used to predict the most likely trajectories of the tracked
persons. This technique can perform very well for known
environments and is able to keep track of persons even after
they left the sensory range, at least for some time. However,
a required pre-learning and a finite set of preferably well
distinguishable trajectories make this approach not applicable
in unknown environments with arbitrary trajectory runs.

Focused especially on unknown and densely populated
environments, this work presents an approach using Markov
Chain (MC) models to predict probabilistic reachable sets
of persons, which are then used to compute a risk map
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Fig. 2. Outline of the proposed approach.

for replanning. MCs, a probabilistic version of FSMs, are
in [20] and [21] already successfully applied to verify safe
locomotion of cognitive cars and are here used to model
the dynamics of real humans. Using risk regions instead of
hard dynamic obstacle avoidance provides a soft risk measure
while leaving the complete space free of static objects for
path planning. Provided that a reliable low-level collision
avoidance prevents real collisions, the worst-case is a time
delay resulting in a situation where the robot has to stop.

In the next section is described how these reachable sets
are derived from raw laser range data and then mapped
into risk regions. Furthermore a cost metric is presented to
determine the trade-off between a detour and a time delay
during path planning.

III. APPROACH

This section starts with an outline of the overall system
followed by a description of its submodules, where the focus
is on the risk map computation and how these can be used
for replanning.

A. Algorithm Overview

Several subtasks are necessary to perceive dynamics in the
environment, predict its future changes and plan the most
promising path with respect to it. Fig. 2 gives an overview
of the entire system in which the risk mapping is embedded.

Laser range and odometry data serve as input to create and
update an occupancy grid by applying grid-based Simulta-
neous Localization and Mapping (SLAM).

The people tracker matches the occupancy grid with the
laser scans to extract moving persons and provide an estimate
of their current states consisting of positions and velocities.

A high level (HL) path planner removes the objects
associated with the person states from the occupancy grid.
Then the remaining static part of the occupancy grid is
used to build a visibility graph on which an A* search is
performed, resulting in an optimal static global path [22].

In parallel, a Markov Chain (MC) model predicts the
probabilistic reachable sets for each person using the state
estimations retrieved from the people tracker, as described



below. The reachable sets provide the probabilities of the
person dynamics being in a certain state within a certain
time interval.

A low level (LL) path planner transforms the probabilistic
reachable sets from the MC model into risk maps, which
provide the probability that the corresponding person will
occupy a certain grid cell in a certain time interval. Then a
greedy path search is applied using a cost function incorpo-
rating static path costs and the risk maps to determine the
time-minimizing compromise between path length and travel
speed.

B. SLAM and People Tracker

The SLAM module and the People Tracker have been
implemented as described in [6]. For SLAM, a Rao-
Blackwellized particle filter and an Iterative Closest Point
approach is used in combination with odometry information.
The people tracker combines conditional particle filters [5]
with SLAM for enhanced data association. Scan matching
of the current with previous measurements is performed to
perceive moving persons and provide for each perceived
person an estimate of its current state vector

P̂ = (x, y, vx, vy)
T , x,y,vx,vy ∈ R, (1)

wherex andy are thex- andy− position andvx andvy are
the velocities inx andy direction in global coordinates.

C. High Level Path Planning

The high level path planner is used to extract the static
parts of the occupancy grid and plan a path from the current
robot location to a given goalpoint within it. The goalpoint
is retrieved through the behavior selection described in [6].
Depending on the current situation, the robot decides whether
to explore the environment, approach a person, drive to a
specific location or improve SLAM via loop closing.

To reach the next goalpoint, the robot has to navigate out-
doors in unknown, dynamic, and unstructured environment.
Therefore frequent and complete replanning is required.
Methods like Voronoi Diagrams or Potential Fields are rather
inappropriate for this purpose, since they either might result
in huge detours by trying to keep the robot as far away from
obstacles as possible or they suffer from high computational
costs. Therefore a method suitable for outdoor scenarios [22]
is applied, using a visibility graph on which A*-search is
performed. Fig. 3 shows an occupancy grid with visibility
graph and static path, derived online with the ACE robot.

In a first step, all frontiers and obstacles within the
occupancy grid are determined. Frontiers are connected
unexplored cells having each at least one free neighboring
cell, while obstacles are defined as connected occupied cells.
In a next step the position(x,y)π of each perceived person
π is transformed into cell coordinatescπ = 〈m,n〉π (0≤ m<
wog; 0 ≤ n < hog; m,n,wog,hog ∈ N

+
0 ), wherewog and hog

are the number of columns and rows of the occupancy grid
respectively. Then each obstacleoi for which holdscπ ∈ oi

is removed from the grid by setting the value of all cells
coi ∈ oi to free space, leaving only the static obstacles for
the HL path planning.

Fig. 3. Occupancy grid with visibility graph (solid cyan lines) and static
path (dashed red lines), which is blown up by the width of the robot (green).

Within this static grid, obstacles are clustered into rect-
angular boxes on which C-Space projection is performed
by blowing them up by the robot width, shown as blue
rectangles in Fig. 3. The vertices of these rectangles serve
as nodes to build a visibility graph and determine a global
path by applying classical A* following [22]. This path is
guaranteed to avoid static objects in an optimal manner and
can be adjusted considering the dynamic parts as described
in the following.

D. Human Markov Chain Model

In order to obtain time varying and probabilistic occu-
pancy grids (risk maps) of humans surrounding the robot,
the continuous dynamics of humans is abstracted to Markov
chains. Two different models describing the dynamics of
humans are considered. The first model, referred to as
velocity model, assumes that the humans move at constant
speedv with heading angleβ . The resulting dynamic model
for the x- andy-position is

ẋ = cos(β )v , ẏ = sin(β )v. (2)

The tracker data is used to initializev(0) =
∣

∣(vx,vy)
T
∣

∣ and
β (0) = ∠(vx,vy).

The second model, referred to asacceleration model,
is defined as a hybrid system. Hybrid systems combine
continuous and discrete dynamics such that the system
state is a combination of continuous and discrete states
[23]. Discrete states are often referred to as locations or
modes. The hybrid model of the humans has three modes:
standstill, accelerationand maximum velocity. The system
evolves in modestandstill if the velocity v is zero and in
modemaximum velocityif v has reached maximum velocity
vmax, which can be freely chosen. Otherwise, the mode
acceleration is active which also considers deceleration if
the acceleration has negative sign. The dynamics of the mode
standstillis ẋ= 0, ẏ= 0 and of the modemaximum velocityis
ẋ = cos(β )vmax, ẏ = sin(β )vmax. For theaccelerationmode,
the interval of possible acceleration valuesa∈ [a,a] (a,a∈R)
is introduced, such that the continuous dynamics of (2) is
extended by

v̇ = a, a∈ [a,a], (3)

where the intervala ∈ [a,a] can be freely chosen. The
abstraction from continuous dynamics to Markov chains is
performed as presented in [20], [21]. Before applying this
scheme, the state space and input space of (2) and (3) are
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Fig. 4. Rectangularly discretized state space (left) and reachable set starting
from a cell of the discretized state space (right).

gridded into rectangular cells of equal size, see Fig. 4 for an
exemplary two dimensional state space.

The cells of the discretized state space are denotedzq and
the ones of the input space ˆzp. The lengthρz of the cellszq

in the dimension of thex- and y-position are chosen to be
a natural multiple of the cell sizeρc of the occupancy grid.
This simplifies the matching of cellszq of the reachable sets
to corresponding occupancy grid cellsc. The discretization
of the velocityv in (3) and the inputs can be chosen arbitrary.

The discretization allows the abstraction of continuous
space to discrete space, where each cell represents a discrete
state and a region of the continuous space. The discrete
state is denotedq∈ N

+ and the discrete input ˆq∈ N
+. The

probability that the discrete stateq has a certain valuei is
denotedpi = P(q= i), whereP() is the operator returning the
probability of an event andp is referred to as the probability
vector. The probability vector for the time stepk+1 (k∈N

+

with time increment∆t = r) is denotedp((k + 1)r) and
the one for a time intervalt ∈ [kr,(k + 1)r] is denoted
p([kr,(k+1)r]).

In a next step, the conditional probability that the system
starting from stateq= i with input q̂= l , is in states within
the time intervalt ∈ [0, r] is computed. These conditional
probabilitiesP(q′ = s|q = i, q̂ = l , t ∈ [0, r]) are stored inl
matricesΦl

si wheres is the row andi the column number.
The conditional probabilities are obtained by computing the
reachable set of the continuous system. The exact reachable
setRe(r) of a system ˙x= f (x)+v(t) where the uncertain in-
put is taken from a bounded setv(t)∈V ⊆R

n at timet = r ∈
R

+ is defined as the set of states, that can be reached starting
from a set of initial statesX0 under all possible uncertain
inputs: Re(r) = {x|x(t) is a solution of ˙x = f (x) + v(t), t =
r, x(0) ∈ X0,v ∈ V}. Overapproximations of reachable sets
are denotedR(r) ⊃ Re(r) and the overapproximated set for
the time intervalt ∈ [0, r] is defined as the union of allR(t)
within t ∈ [0, r]: R([0, r]) :=

⋃

t∈[0,r] R(t). Reachable sets that
are computed from an initial setX0 = zi are denotedRl

i ([0, r])
(indexed by the starting cell as well as the input cell). Under
the assumption, that trajectories are equally distributedwithin
Rl

i ([0, r]), the probability of reaching the discrete states is
obtained geometrically by computing the intersection of the
reachable setRl

i ([0, r]) with other cellszs:

Φl
si([0, r]) =

V((Rl
i ([0, r])∩zs)

V(Rl
i ([0, r]))

(4)

The operator V() returns the volume of a geometric object
and the setsRl

i ([0, r]) are computed as presented in [24]. An
illustration of this approach is given in Fig. 4 on the right.
This procedure is repeated in an offline computation for all
possible combinations of cellsi,s, l . The left side in Fig.
5 shows a numerical example of an arbitrary reachable set
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starting fromX0 = zi . The right side shows the correspond-
ing probabilistic reachable set from the same initial state
obtained by the computed transition probabilitiesΦl

si([0, r]).
The darker the color of the reached cells, the higher is the
probability of reaching that cell.

Besides the computation of the transition matrix
Φl

si([0, r]), the special case of a transition matrixΦl
si(r) for

the time pointt = r is computed analogously. This allows to
compute the probabilistic reachable set for both, time points
and time intervals. This is done as the reachable set for time
intervals is based on initial cells at the time pointt = 0 such
that the probability vector for the time interval is based on
the probability vector for a time point:

ps((k+1)r) = Φl
si(r)pi(kr)

ps([kr,(k+1)r]) = Φl
si([0, r])pi(kr)

(5)

Note that the matrix multiplications in (5) are the only online
computations that are necessary to obtain the probabilistic
reachable sets of the humans.

The discrete inputl is chosen such that it includes the
person stateP̂ received from the tracker. In case of the
velocity model, the chosen inputl represents the cell ˆzl which
includes the heading angleβ and the velocityv ([β ,v]T ∈ ẑl ).
As the velocity is a state variable in theacceleration model, ẑl

is chosen in this case such that it includes the heading angle
only. An exemplary probabilistic reachable set for the time
interval case (t ∈ [1s,1.5s]) using theacceleration modelis
shown in Fig. 6 (left), with initial stateX0 and velocity vector
−−−→
vπ(0) = (ẋ(0), ẏ(0))T . To have a finite set of time intervals for
the practical implementation, a maximal temporal prediction
horizon T with k ∈

{

0,1, . . . ,(T
r −1)

}

is introduced, where
T is a natural multiple ofr. Fig. 6 (right) shows all resulting
reachable sets forT = 3r. How these reachable sets are used
to perform the probabilistic mapping of the tracked persons
is described in the following.

E. Low level Replanning

To enable safe and efficient navigation in crowded places,
the static global path from the high level planning has to be
adjusted by considering the dynamics of the persons. In this
subsection a cost function applicable for a time minimizing
path search is deduced. Focusing on a short-term adjustment
of the global plan, the next waypoint of the latter is used
as intermediate goalpointcgp for local replanning. First a
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potential field is computed, which provides the residual path
costsW to cgp. In parallel the reachable sets for each person
π are computed and a velocity obstacle model is used to
derive the delay costsD. A weighted sum ofW and D
leads to the combined costsC, which are used for greedy
replanning.

1) Computation of the residual path costs W:Since the
growing uncertainty for larger prediction intervals results
in flatter distributions of the reachable sets, the prediction
horizon T is chosen depending on the model dynamics to
allow predictions within a reasonable time window. GivenT
and the desired velocityvr of the robot, the local replanning
is limited to the areaAll , which is robot-centered and of
quadratic size(2Tvr)× (2Tvr).

A wavefront algorithm as described in [25] is used to
compute a local-minima-free potential field, providing the
residual path costsW = {Wc|c∈ All } whereWc is the path
cost from cellc to cgp. To provide a temporal metric the

cost for moving from cellci to cell c j is
d(ci ,c j )

vr
, where

d(ci ,c j) =
∥

∥ci ,c j
∥

∥

2 ∈ R
+ is the Euclidean distance of the

respective cell centers. FurthermoreWcgp = 0 is the unique
global minimum.

2) Computation of the delay costs D:The probability
vectorpπ([kr,(k+1)r]) is computed for allk and each person
π according to (5). The delay costDπ

c in cell c occuring from
personπ, is given by the temporal delay resulting when
the robot is forced to slow down or wait until the person
moved out of the way.D is the set{Dπ

c |c∈ All ,π ∈ Π}
whereΠ is the set of perceived persons. To computeDπ

c the
velocity obstacle approach shown in Fig. 7 is used. Taking
the respective obstacle widthwπ and robot widthwr into
account and further assuming both to have circular shape, a
potential collision occurs in case the robot moves fromcr to
c′r while the obstacle moves fromcπ to c′π , whered(c′π ,c′r) =
0.5(wπ + wr). For this computation constant velocities are
assumed, i.e.v′r = vr and v′π = vπ , while the headingβ ′

π =

∠(
−−→
cπc′π) and β ′

r = ∠(
−−→
crc′r). Setting the velocity vector

−→
v′π

of personπ into relation with the velocity vector
−→
v′r of the

robot, v′π can be split into a parallel partv‖ = |−→v‖ | and an
orthogonal partv⊥ = |−→v⊥|, where

−→
v′π =

−→
vπ
‖ +

−→
vπ
⊥, with

−→
vπ
‖ ‖

−→
v′r ,

−→
vπ
⊥ ⊥

−→
v′r . (6)

Under the assumption that the people are avoiding the robot
as well, it does not have to move backwards out of the
way. So in case the robot meets personπ, its possible speed
vπ

r is bounded by 0≤ vπ
r ≤ min(vr ,vπ

‖ ) for the duration of
1

2vπ
⊥
(wπ + wr) until the person moved at least 0.5(wπ + wr)

to the side. Such a deceleration leads – under assumption of
constant velocities – to the delay cost

Dπ
c′r

=
wπ +wr

2vπ
⊥



1−
max

(

min
(

vr ,vπ
‖

)

,0
)

vr



 (7)

for meeting personπ when being in cellc′r . However, it has
to be taken into account thatDπ

c′r
applies only with probability

Aπ
c =

1
γ

µπ
c (τr) , where

γ =

(

ρc

ρz

)2 υ

∑µπ
υ (τr) ,

τr =

{

[kr,(k+1)r] |
d(cr ,c)

vr
∈ [kr,(k+1)r[

}

.

(8)

The probability µπ
c (µπ

c = {0|c /∈ pπ}) is the entry of the
probability vectorpπ from (5) corresponding to cellc and
τr is the time interval in which the robot would pass cellc.
The right boundary of the conditional interval is excluded
here to ensure an explicit assignment of cells to intervals.γ
is a normalization factor to encounter cluttered environment.
ρc andρz are the respective cell resolutions of the occupancy
grid and the reachable sets andυ is the set of cells visible
to personπ. In that only the part of the reachable sets is
encountered, that lies in free space and is in direct line of
sight to personπ.

3) Computation of the costs C:For the path replanning
the path costsW and the delay costsD have to be both
considered. The combined cost

Cc = αWc +(1−α)
Π

∑Aπ
c Dπ

c (9)
of traversing cellc results from a weighted sum of its path
costWc and its overall delay costDc whereα ∈ ]0,1] is a
weighting factor providing different replanning strategies. A
small α corresponds to a low risk strategy, resulting in a
path primarily avoiding people while a largeα corresponds
to a strategy preferring short path length and accepting
higher collision risks. The lower interval boundary has been
excluded, sinceα = 0 leads toCc = 0 in all cells which
do not intersect with the reachable sets of dynamic objects
and consequently results in a violation of the constraint for
C = {Cc|c∈ All } to have a single global minimum.

To adjust the global path, a simple greedy search onC is
used for replanning. SinceC can have local minima within
risk regions, hill-climbing is enabled by limiting the search
from cell ci to the set of neighboring cellscn for which
Wcn ≤Wci . In the next section, some experimental results for



TABLE I

MODEL PARAMETERS

Robot: vr = 2m
s

Resolutions: ρc = 0.15m
ρz = 0.6m
∆t = 0.5s, T = 3s

Dynamic model: v∈ [0m
s ,2.4m

s ]
∆v = 0.8m

s (3 sectors)
∆β = π

5 (10 sectors)
only acceleration model a∈ [−1.0 m

s2 ,1.0 m
s2 ]

∆a = 2
3

m
s2 (3 sectors)

Simulated Persons (ground truth): vπ = 1m
s

Replanning:
short distance path (cyan) α = 1
fast path (blue) α = 10−5

low risk path (green) α = 10−18

TABLE II

REPLANNING DURATION (AVERAGED OVER 100 RUNS)

No. of Velocity model Acceleration model
Persons µ ±σ max µ ±σ max

1 45ms±4ms 50ms 100ms±4ms 109ms
2 85ms±4ms 108ms 198ms±4ms 214ms
3 117ms±5ms 127ms 308ms±6ms 322ms

various situations are given, showing risk maps and resulting
path for different values ofα.

IV. EXPERIMENTAL RESULTS

The described algorithm has been fully implemented
in C++ as part of the ACE project [1]. Fig. 8 shows
results derived online with the ACE robot. Given that
real data suffers from various sources of uncertainty, the
remaining results (Fig. 9 and Fig. 10) have been de-
rived using the Stage simulator of the Player Project (see
http://playerstage.sourceforge.net). Thus, ground truth for
the person statesP could be used, giving the results an en-
forced stand-alone character. To achieve comparability ofthe
scenes, a constantvr was used only for replanning, meaning
the robot did not move during the shown simulations. Table
I contains the parameters used for the simulations.

Fig. 9 shows the risk regions for thevelocity and ac-
celeration modelfor a scene with three persons in free
space. Replanning with constantvr and constant∆t leads
to an uniform spatial interval propagation around the robot,
observable in the slight ring structure of the risk regions.Fig.
9 shows furthermore the resulting paths for replanning with
three values ofα, revealing how the value ofα is influencing
the magnitude of deviation from the shortest path. The paths
for α = 1 are disregarding the delay costsD completely,
resulting in paths with shortest length. The triangular shape
results from the cell-wise replanning. Replanning withα =
10−18 indicates the opposite case where the path costsW are
almost neglected and the delay costsD are given a strong
weight, resulting in low risk paths trying to avoid the risk
regions as far as possible. The paths withα = 10−5 are
searching for a trade-off between goal-orientation and risk
minimization. The small order of magnitude ofα arises from
the broad and therefore flat risk distributions and furthermore
from the γ-normalization, which considers the mapping of
onez cell to here 16 correspondingc cells.

t = t1 t = t2 t = t3

Fig. 8. Scene with one person for three time steps in clutteredenvironment
(C-Space), derived online with the ACE robot (acceleration model).
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α = 1−5
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space
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Fig. 9. Scene with three persons in free space: comparison ofvelocityand
acceleration modelfor different values ofα.

t = t1 t = t2 t = t3

Fig. 10. Scene with three persons in cluttered environment for three time
steps (acceleration model, α = 10−5).

Comparing in Fig. 9 thevelocity model(left) with the
acceleration model(right), shows broader and flatter risk
regions for the latter case. This can be traced back to the
extended model dynamics, which consider also the possibil-
ity of a turn around in case of a deceleration. This becomes
very clear when considering the low risk paths forα = 10−18.
For thevelocity modelthe risk regions of the upper and the
middle person do not intersect, leading to a feasible low risk
path passing between them. The risk regions derived with the
acceleration modeldo intersect. Therefore the low risk path
deviates in the beginning to the top, until the hill-climbing
behavior forces it to pass in front of the upper person.

Fig. 10 points out the effect of theγ-normalization. Here
for the upper person heading towards the wall at the top (t =
t1∧ t = t2), only the parts of the reachable sets lying below
the wall are considered. This leads to higher risk potentials in
front of the wall compared to the risk regions corresponding
the other two persons.

The softness attribute of the approach is especially per-
ceivable at t = t3, when considering the person heading
to the right through the upper door. In this situation, hard
obstacle avoidance or space-time volumes might block the



door resulting in no feasible path at all, while the presented
approach is still capable to find a valid path.

All results were derived on a AMD Athlon 64 X2 Dual
Core 3800+ with 2GHz and 2GB RAM. The average and
maximal replanning durations for the scenario of Fig. 10
are shown in Table II. The complexity to computeW scales
linear with the size(2Tvr)

2 of All . The complexity to
compute D scales linear with the number of personsΠ,
where the complexity to computeAπ

c scales quadratic with
the number of acceleration sectorsu (u = 1 for the velocity
model). Thus the complexity to compute the costsC results
in O((2Tvr)

2 +Πu2).

V. CONCLUSION

An approach for a risk mapping of moving persons is
presented which leaves the complete space free of static
objects for path planning. The dynamics of people are
modeled offline with Markov Chains, which are used online
to predict reachable sets of tracked persons and provide an
estimate of their potential future locations. These estimates
are then combined with a velocity obstacle approach to
determine the delay costsD, resulting in case of a potential
co-occurence of robot and respective person. A weighted sum
of delay costsD and path costsW serves to adjust a global
static plan by considering the environmental dynamics. The
weighting factorα provides the soft trade-off between detour
and time delay for replanning.

The results show the capability of the approach to find
a valid path through potentially obstructed space in densely
populated environments. Furthermore the suitability for on-
line applications could be shown. Although the approach is
here applied to people, it can be easily extended to other
dynamic objects.

Future work may concentrate on extended MC models
considering also interactions of dynamic objects with the en-
vironment. Further interesting developments especially with
focus on fast replanning are to combine the delay costsD
with anytime path planning solutions such as AD*. Another
important concern is that object occlusion often causes the
data association of the tracker to fail, resulting in inaccurate
state estimations of the persons. More reliability in this
respect would considerably increase the robustness of the
presented approach.
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