
Human Activity Recognition in the Context of
Industrial Human-Robot Interaction

Alina Roitberg†, Alexander Perzylo∗, Nikhil Somani∗, Manuel Giuliani∗, Markus Rickert∗, and Alois Knoll†
†Technische Universität München, Bolzmannstr. 3, 85748 Garching, Germany

∗fortiss GmbH, Guerickestr. 25, 80805 Munich, Germany

Abstract—Human activity recognition is crucial for intuitive
cooperation between humans and robots. We present an approach
for activity recognition for applications in the context of human-
robot interaction in industrial settings. The approach is based
on spatial and temporal features derived from skeletal data of
human workers performing assembly tasks. These features were
used to train a machine learning framework, which classifies
discrete time frames with Random Forests and subsequently
models temporal dependencies between the resulting states with
a Hidden Markov Model. We considered the following three
groups of activities: Movement, Gestures, and Object handling.
A dataset has been collected which is comprised of 24 record-
ings of several human workers performing such activities in a
human-robot interaction environment, as typically seen at small
and medium-sized enterprises. The evaluation shows that the
approach achieves a recognition accuracy of up to 88% for some
activities and an average accuracy of 73%.

I. INTRODUCTION AND MOTIVATION

Human-robot interaction (HRI) is often researched in the
context of domestic applications or social studies. The ap-
plication of HRI in industrial domains differs in several
important aspects. One of these aspects is the types of activities
which are recognized, which are very different for service /
personal robotics and industrial robotics. Also, the working
environment and the contained objects are very different in
such scenarios. In this paper, we focus on activity recogni-
tion suitable for small and medium-sized enterprises (SME).
In contrast to large-scale industries, production processes in
SMEs are less structured and change more frequently, which
requires higher flexibility and reconfigurability from the used
HRI system. These systems should enable their operators to
easily set up new tasks and they should be able to some extent
to adapt to unforeseen situations. Human activity recognition
can be used by HRI systems to assess the current state of
interaction with the human and to predict the following events
in the work flow.

In this paper we present a machine-learning framework
for human activity recognition in an industrial HRI workcell
and a systematic evaluation of different machine learning
techniques, which have been tested on this framework. We
recorded and manually annotated RGB-D videos and skeletal
data of multiple humans performing typical activities related to
manufacturing in SME-like environments. Figure 1 depicts the
used testbed. Human activities were grouped into three classes:
Movement activities (e.g. Entering and Leaving the scene),
Gestures and communication signals (e.g. Pointing to and
Presenting objects), and Object handling (e.g. Grasping and

Fig. 1: The SME-like robotic workcell for human-robot co-
operation consists of two industrial robot arms, a table and
a cage equipped with 2 Kinect sensors. The monitored work
space is shared with a human to work on assembly tasks.

Moving an object). For collecting data on the human’s actions,
we use two synchronised Microsoft Kinect RGB-D sensors,
which are installed on the HRI workcell in a configuration
in which they cover the whole work space. The gained data
is used to train a machine learning framework for human
activity recognition. We compared different machine learning
algorithms using leave-one-out cross-validation and found that
a combination of Random Forests and Hidden Markov Models
(HMM) performs best.

The main contributions of this paper are: (1) the develop-
ment of a human activity recognition framework in the context
of industrial HRI scenarios, which uses a two-step approach
for the recognition of spatio-temporal activities, (2) the design
of feature vectors which are suitable for recognition of such
activities, and (3) a comparison of different machine learning
algorithms for feature importance estimation and classification.

II. RELATED WORK

A good portion of recent research in computer vision has
focused on detection of human activity, mostly with data
obtained from 2D videos [17], [22], [13]. The recent popularity
of affordable RGB-D sensors such as Microsoft Kinect or Asus
Xtion made it possible to collect high quality 3D data and lead



to development of skeleton tracking software such as Nite and
Kinect SDK. Following the work of Shotton et al. [19], which
introduced a robust real-time method for skeleton capturing
with random forests, the usage of 3D skeleton data for activity
recognition gained popularity in the past few years [14],
[16]. Machine learning methods that were applied to activity
recognition include both discriminative classifiers such as
support vector machines, k-nearest neighbours, and random
forests [1], [2], [4], [25] as well as generative approaches
such as Hidden Markov Models (HMMs). In our work, we
use HMMs for modelling and recognising activity sequences.
Yamato et al. [24] were the first who proposed to use discrete
HMMs for human activity recognition. In their work, they
applied a clustering algorithm on the vectors of image features
and then used centroid of the corresponding cluster as input
symbol for the HMM. Similar to Yamato et al’s work, we
combine a classification algorithm and train a Hidden Markov
model with the corresponding labels as input. Instead of
unsupervised clustering, we apply a supervised classification
algorithm for quantisation and subsequently use an HMM to
represent temporal relationships between different activities.

Similar to our work, researchers in activity recognition
recorded datasets for training and testing their recognition
methods. The Cornell Activity Dataset (CAD) [20], [21] is
one example for a dataset that was used by several researchers.
The CAD-60 dataset includes 12 activities from five different
domestic environments, for example cooking or brushing
teeth. Sung et al. [20], [21] proposed to decompose complex
activities into sub-activities and to use a maximum entropy
Markov model for recognition. With this method the authors
reached the precision/recall values of 67.9%/55.5% with a
person not present in the training set. Koppula et al. [9],
[8] reported significantly improved recognition results (preci-
sion/recall 80.8%/71.4%) when using structured support vector
machines on the same data set. The MSRAction3D dataset
[11] contains recordings of 20 activities, such as hammering,
drawing, and hand clapping. The MSRDaily3D dataset [23]
covers daily human activities, for example drinking, writing,
and using a laptop. The MSRPair3D dataset [15] contains pairs
of actions, including picking up and putting down a box. In
our work, we are using a data set that we recorded ourselves,
because there are no activity datasets available for our target
scenario, the cooperation of humans and robots in an industrial
context.

The potential of using human gestures in context of indus-
trial HRI has been discussed by Gleeson et al. [5]. The authors
have designed an experiment to identify the common gestures
that would be naturally used by human workers during collab-
oration on a defined assembly task. The experiment has shown
that body gestures is a highly efficient way of interaction,
though the interpretation is highly context sensitive. Based on
the observations the authors have created a lexicon of most
useful hand gestures, which also included multiple gestures
used in our experiment (e.g. pointing, presenting). These
findings demonstrate the importance of realizing HRI systems
based on body gestures, which is also the focus of our work.

Fig. 2: Fifteen skeleton joints provided by the NITE skeleton
tracker.

Despite of the findings of Gleeson et al., there is a lack
of work focused on activity recognition in industrial environ-
ments. The work most similar to ours is that of Lenz et al. [10].
The authors automatically recognised the activities of humans,
who were sitting in front of a work table and collaborated with
an industrial robot. They tracked the positions of the humans’
hands using 3D occupancy grids and used a composite HMM
for recognition of hand gestures and work-flow analysis.

III. HUMAN ACTIVITY RECOGNITION

In this section, we describe our approach for human activity
recognition. Section III-A describes the HRI system that
we used for recording the activity data. Section III-B gives
details about the used RBG-D sensors, their calibration and
synchronisation. The activities and scenarios that we used for
the recordings are described in sections III-C and III-D. Finally
we give technical details about the used features and machine
learning model in sections III-E and III-F respectively.

A. Human-robot interaction system

For the activity recordings, we recreated a typical environ-
ment of a human-robot cooperation in the context of an SME.
Figure 1 shows a picture of the environment, which consists of
a working table with a human on one side and two industrial
robots assisting the worker from the other side of the table.
The human can either stand or sit in front of the table. As
manufacturing work flows usually include working with tools
(sawing, drilling etc.), there were several objects, including
work tools and coloured boxes, placed on the work table.

The setup also contains a metal frame that surrounds the
work table and the robots and can be used to place sensors
and displays in the environment. We placed two Microsoft
Kinect RGB-D sensors on the metal frame above the left and
right corners of the table, facing the typical worker position
at an angle of approximately 45 degrees. The best calibration
pose for skeleton tracking is one facing towards the sensor
at a distance of approx. 2.5m. Hence, placing the sensors in
this configuration allows more flexibility during the entering
part, as usually one of the sensors would track the skeleton,
depending on the side from which the human enters.



B. Sensor calibration and synchronisation
As mentioned above, we used two Microsoft Kinect RGB-

D sensors. For image segmentation and person tracking, we
used the Nite skeleton tracking algorithm1 that provides the
poses of fifteen joints for each tracked human. Figure 2 shows
a picture of the skeleton joints. Kinects capture RGB data with
a 1280x960 pixel resolution as well as the corresponding depth
map depicting. We recorded depth and colour frames at 30 Hz
frequency, which is also the frequency of the detected skeletal
frames.

Combining multiple Kinect sensors: Conditions for ideal
skeleton tracking with RGB-D sensors include full body
visibility, as well as facing the sensor at a distance of ap-
proximately 2.5 meters. When using such sensors in complex
environments, joint occlusions often become a problem. This
is especially true in an industrial setup, where the person
focuses on the work table and is rarely looking directly at
the sensor, while the lower body is completely covered by the
table. Obtaining high quality skeleton data in such settings is
very challenging. To increase the robustness and flexibility of
the system, two Microsoft Kinect sensors were combined to
increase the field of view. The sensors are facing the position
of the worker at approximately 45 degrees from the left and
the right side. The sensors were calibrated extrinsically using
images of a planar checker board pattern as a reference grid
with Camera Calibration Toolbox for Matlab2. The coordinates
of the skeletons of each Kinect were transformed with corre-
sponding translation and rotation to the common coordinate
system, with the point of origin placed approximately at the
ideal workers position.

As both sensors together cover almost all of the possible
movement-space, a person entering the scene in the calibration
pose is quickly tracked by one of the sensors (depending on the
side from which the person enters). If the human is tracked
by only one sensor (depending on the entrance point), the
skeleton is transformed to the common coordinate system and
directly used. In the case where the user is tracked by both
sensors, we select one of them and use its tracking results as
long as it provides good quality data (based on the confidence
values). The tracking sensor is switched only if the current
device loses the skeleton or has not provided any data with
satisfying confidence (i.e. at least one joint of the upper body
part with 1.0 confidence value) during the last ten frames.
This method assures continuous motion of the joints which is
interrupted only if the currently used sensor is not tracking the
skeleton correctly.

The common issue of the interfering infra-red patterns when
combining multiple depths sensors [12] was not significant
for our placement of the sensors and no significant decline in
quality of skeleton tracking was observed.

C. Recorded Activities
In order to train and test our human activity recognition

approaches, we recorded typical activities related to humans

1http://www.openni.org
2http://www.vision.caltech.edu/bouguetj/calib doc/

working in SME environment. We divided these activities into
three groups: Movement, Gestures and Object Handling. The
activities in each group are independent from activities in other
groups and can occur simultaneously. More formally, this can
be expressed as: at each time instance of interaction with the
HRI system, the activity state of the person can be determined
as a triplet (M,G,O), with M , G and O being the states
belonging to the Movement, Gestures and Object Handling
activity groups respectively. Table I gives an overview of all
activities and their relation to each of the recording scenarios
(Section III-D). The ground truth activity label for each group
was added to every skeleton frame.

Scenario number
Activity 1 2 3.1 3.2 3.3

Movement
Entering 4 4 4 4 4
Leaving 4 4 4 4 4
Stepping back 4 4 4
Sitting 4 4
Standing 4 4 4 4 4
Leaning Forward 4 4 4

Gestures
Pointing to an object 4
Presenting an object 4
Seeking attention
(waving) 4 4 4

Interrupt / Stop action 4 4 4
None 4 4 4 4 4

Object handling
Reaching 4 4
Grasping / Picking 4 4
Moving 4 4
None 4 4

TABLE I: Overview of activities and scenarios used for data
recordings.

1) Movement Activities: These activities include Entering
the scene, Leaving the scene, Stepping back from the table,
Sitting at the table, Standing at the table, and Leaning forward
to take a closer look at an object. We defined Entering the
scene as entering the environment in PSI-calibration pose and
moving towards the table. The transition from Entering to
Standing happens when a person stops moving and is no
longer in calibration pose. Leaving the scene usually began
with turning around. In some cases, however, the person took
several steps back before the turn, which made the distinction
between the states Leaving and Stepping back difficult. Figures
3a and 3b show example depth images for activities Entering
and Leaning forward, respectively.

2) Gesture Activities: This group of activities covers ges-
tures and represents the signals that the worker would send
to the robot in explicit communication. Gestures included
Pointing to or Presenting an object to a robot, Seeking at-
tention (waving the hand), Interrupt/stop the robot’s action
(both hands in front of the torso in a “stop” position) and
None (default activity). Figures 3c, 3d, and 3e show example
depth images for activities Presenting, Seeking attention, and
Interrupt/stop, respectively.



(a) Entering scene in calibration pose. (b) Leaning forward to take a closer look. (c) Presenting an object.

(d) Seeking attention (waving). (e) Interrupt/stop signal. (f) Reaching for an object.

Fig. 3: Depth images of selected activities.

3) Object Handling Activities: The third group includes all
activities related to object handling. This includes Reaching,
Grasping, Moving, and Placing an object. Again, we added
the None state, which represents not handling an object. The
activities in this group are causally dependant on each other,
Reaching is the predecessor of Grasping, followed by Moving
and Placing. Figure 3f shows an example depth image for the
Reaching activity.

D. Scenarios

We defined different scenarios to create appropriate se-
quences of activities. Each scenario shows one person entering
the scene in the calibration pose, heading towards the work
table, and stopping in front of it. The person then performs
a number of actions, either sitting or standing in front of the
work table and leaves the scene in the end. Table I shows an
overview of the activities which can be seen in each scenario.

In the first scenario, the person reaches for an object, grasps
it, presents it to the robot and puts it back down.

In the second scenario, the person reaches for an object on
the work table, picks it, and places it at a different location
on the table. The person then points to a box on the work
table. This action is an example for a signal to the robot for
performing further actions on an object.

The third scenario contains the longest chain of activities
and has several variations. The activities include seeking for
attention of the robot by waving the hand, interrupting the
robot’s action, leaning forward to take a closer look at an
object on the work table, and taking a step back. The activities
were performed in randomised order, either sitting on a chair

or standing in front of the work table. In one of the variations
the person performs the seeking attention activity after taking
a step back, being slightly distant from the table.

E. Features

The input of our activity recognition framework are RGB-
D images obtained from two Kinect sensors. Skeletons are
detected in each of these images using the NITE skeleton
tracking framework, which models a skeleton as a set of
positions and orientations of fifteen joints with respect to the
sensor as well as a set of confidence values, which can be
1 (tracking is working), 0.5 (joint configuration was inferred
from the skeleton heuristics) or 0 (tracking fails).

Raw skeletal information requires further processing. In the
SME-like work environment that we created for this paper,
the legs of the person in front of the sensors were rarely
visible, because they were occluded by the working table.
Therefore, the position information about the person’s legs that
NITE computes is wrong most of the time. For this reason,
we decided to completely dismiss leg information and put a
stronger focus on the position of the hands. Additionally, the
3D coordinates of all joints are given w.r.t. the sensor position,
which disturbs the inference of true body posture. We used
torso position to characterise the position of the person relative
to the point of origin, and the coordinates of all other joints are
calculated w.r.t. this frame. The extracted features are similar
to the ones proposed by Sung et al. in the Cornell Activity
Recognition project [20], [21]. The next paragraphs give a
more detailed description of all features.
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Fig. 4: Proposed machine learning framework (left) and an example showing the corresponding recognition process for the
Entering activity (right)

Position features: we define the body position of the person
as the coordinates of the torso joint w.r.t. the point of origin.
As a lot of attention is drawn to the pose of hands, we calculate
the pose of both hands and elbows w.r.t the torso as well as
the hand pose w.r.t. the elbow.

Orientation features: the orientation of upper body part
provides information about the direction of the person’s field
of view. Consequently, we calculate the angle between hip
line and shoulder line to estimate if the person has turned
or not. We also estimate body orientation in relation to the
camera, which is important for movement activities such as
Entering and Leaving. The angle of the vertical body line,
connecting head and torso, helps distinguish if the person is
leaning forward or standing straight. The angle of both elbows
as well as the angle of the arm relative to the body is used to
determine the position of the hands.

Temporal features: due to the dynamic nature of human
activities, analysing the velocity of the joints is crucial. We

use the skeletal configurations recorded with a delay of 0.5s,
1s, 1.5s, 2s, and 3s before any given feature set to calculate the
velocity of the body position, with direction and magnitude as
separate features, and the hand and elbow velocity as well as
the angular velocities of the orientation features.

F. Machine Learning Framework

Recognizing human activities based on body posture is a
complex task and has to be considered from various aspects.
On the one hand, looking at one video frame already gives the
information about body posture from which we can derive the
most likely activity by considering what the feature vector
looks like. Such classification methods are widely used in
activity recognition, with Support Vector Machines and K-
Nearest-Neighbours being the most prominent approaches [6].
Another important aspect of activity recognition are causal
and temporal relationships between different activities, which
have to be modelled as part of the recognition approach. The



probability of a video frame depicting a certain action also
depends on the state in which the human has been in the
previous frame, making it crucial to analyse the evolution of
activities over time.

An excellent way to model the sequential processes that we
are facing in human activity recognition are Hidden Markov
Models (HMM), which are widely used in speech and video
recognition. As stated by Rabiner[18] a discrete HMM is
given by an alphabet of possible hidden states and a set of
possible observations. At each time point, current state makes
a transition to a different state with a certain probability and
produces a visible emission. Assuming there are n hidden
states and m possible emissions, an HMM can be specified
as a triplet (π,A,B) where A is a n × n transition matrix
containing transition probabilities between the states, B is the
n ×m emission matrix with B(i, j) showing the probability
of a hidden state i producing a visible emission j and π being
the initial probability vector of hidden states.

HMMs can be used for a variety of problems, and in
our application the decoding and the learning problems are
significant.

• Decoding: It is the estimation of most likely sequence of
hidden states that took place with a given model (π,A,B)
and an observed sequence of emissions X . This problem
can be solved with the Viterbi Algorithm with run-time
complexity of O(n2T ), where n is the number of hidden
states and T the length of the sequence.

• Learning: It is the estimation of model parameters
(π,A,B). Here one should distinguish between super-
vised learning, where the corresponding sequence of
states is known, and unsupervised learning, when only
the emissions are given. In case of supervised learn-
ing the statistics of known samples can be used to
calculate the transition and emission probabilities. In
case of unsupervised learning, Baum-Welch expectation-
maximization algorithm can be used to optimize the
model parameters after an initial guess of transition and
emission probabilities.

For our activity recognition approach, we propose a two-
stage machine learning framework. Figure 4 shows a graphical
representation of the processing steps in this approach. In
the first stage, a supervised machine learning algorithm was
applied on a subset of the input feature vectors (described
in III-E) and a corresponding annotation to classify the data.
Thus, the input training data was a set of the data samples, in
which every sample consisted of the feature vector calculated
from a skeleton frame and the manually added annotation of
this frame. To reduce bias towards over-represented classes,
which in our case is mostly the None activity, the training data
was randomly sampled such that there were equal number of
samples in each class. Different supervised learning algorithms
(KNN, SVM with Kernel, Decision Trees, Random Forests)
were considered for classification (see Sec. IV-D), and ran-
dom forests were chosen for the final model, since they had
the best performance. Figure 5 shows the results of feature
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Fig. 5: Feature importances estimated with forest of 30 ran-
domised trees (top ten features).

importance estimation using a forest of 30 randomised trees.
The second stage of training aims at modelling temporal

dependencies between different states with a HMM. This
grants control over causal relationships and allows restrictions
to the flow of actions. For example, action Moving an object
cannot take place without previous actions Reaching and
Grasping. In this phase of training each recording is used as an
input sequence for training of an HMM. For each video frame,
the feature vector was calculated, classified with the algorithm
from the first phase, and used as an emission input to train the
HMM. The training of HMM estimates the transition matrix
A, where A(i, j) is the probability of state i changing into
state j in the next frame, and emission matrix B, with B(i, j)
depicting the probability, that state i produces a feature vector
that will be classified as j in the first stage.

The models for activities of the three activity groups
Movement, Gestures, and Object handling were trained sep-
arately and are independent. Consequently, the classification
framework produces a triplet (M,G,O), where M is a state
representing a Movement activity, G represents a Gesture



True/Predicted  Entering  Leaving  Stepping back  Sitting   Standing
 Entering scene                         81.90% 7.46% 0.80% 1.19% 5.41% 3.24%
 Leaving scene                          1.53% 85.00% 3.96% 1.20% 7.66% 0.65%
 Stepping back                          1.60% 15.57% 61.48% 0.00% 21.36% 0.00%
 Sitting                                0.19% 4.46% 1.60% 60.50% 28.59% 4.65%
 Standing                               6.38% 10.69% 2.04% 7.27% 72.24% 1.38%
 Leaning forward                        0.08% 2.91% 0.00% 4.94% 4.29% 87.78%

 Leaning
 Forward

(a) Movement

True/Predicted None
None 96.27% 1.47% 0.43% 1.55% 0.27%
 Pointing to an object 16.79% 83.21% 0.00% 0.00% 0.00%
 Presenting an object 9.72% 0.00% 65.70% 2.10% 22.47%
 Seeking attention (Waving) 56.90% 0.00% 0.51% 42.58% 0.00%
 Interrupt/stop action                  15.98% 0.00% 8.17% 0.37% 75.49%

 Pointing to
 An object

 Presenting
 An object

 Seeking attention
 (waving)  

 Interrupt/stop
 Action

(b) Gestures
True/Predicted None  Reaching  Grasping/Picking  Moving
None 95.33% 0.80% 0.20% 3.66%
 Reaching                               24.59% 68.09% 3.31% 4.02%
 Grasping/Picking                       27.64% 14.32% 48.49% 9.55%
 Moving                                 18.56% 3.49% 5.06% 72.89%

(c) Object handling

Fig. 6: Confusion matrices for each activity group validaton.

activity, and O represents an Object handling activity. After
the model is trained, activity recognition of a sequence of
skeleton-frames can be performed by classifying the frames
with the learned model (in our case with random forest
approach), using the classified data as input to the estimated
HMM, and decoding it with the Viterbi algorithm to produce
the final labels (M,G,O).

IV. EVALUATION

A video showcasing results from the activity recognition
framework can be found online3.

A. Dataset

The framework was evaluated with 24 recordings (7 times
scenario 1, 7 times scenario 2 and 10 times scenario 3 in
different variations), with three different people performing the
actions. Most of the target activities occur in multiple scenarios
(e.g. entering, moving an object) while others take place in
only one (e.g., sitting). The sessions were recorded as ROS-
bag files, containing frames of skeleton information of both
Kinect sensors, annotation (three ground-truth states in each
frame) as well as colour and depth images. Please note that
we did not use the colour and depth images in this work,
but will use it in future work. Ground-truth annotation was
manually added to the skeleton frames. The whole test set
contains 23710 skeleton frames after synchronisation of both
sensors, with approximately 988 frames per recording session
on average.

3http://youtu.be/rNDR5EsSNfI

B. Feature Importances

We used random forests to estimate the importances of the
features for the classification task. In a decision tree, the depth
of a feature can be used to estimate its relative importance,
i.e. the expected fraction of samples they contribute to. In a
random forest this value can be estimated by calculating the
average fraction of wrongly classified samples after deletion of
the corresponding feature from the model [3]. Figure 5 shows
the results of the feature importance estimation.

As expected, the significant features of the Movement ac-
tivity group are concentrated around the torso position with
respect to the sensor and body/torso velocity. The vertical
angle of the body (angle between the backbone line and
Y-axis) is also significant, which is expected for activities
like Leaning forward. It is also not surprising, that the most
important features of the Gestures and Object handling activity
groups are focused around hands.

An interesting observable difference is the fact that the ten
best features of the Gestures group belong to the position and
orientation group, while velocity features are crucial for Object
handling. This observation is especially important because the
attempt to detect object handling actions without any object or
finger tracking was quite experimental and it was questionable
if it would be possible to differentiate Reaching, Grasping, and
Moving an object from gestures like Pointing. The Reaching–
Grasping–Placing sequence contains continuous and relatively
fast movements of the hands, whereas most of the gestures
(like Pointing or Seeking for attention) contained one fast
motion at the beginning and the end while being in more or
less constant state in between.

It should also be mentioned, that the problematic frames
in the Gestures activity group tend to occur at the beginning



and at the end of the gesture, while the frames in the middle
of action are usually recognized correctly. The fact that the
velocity features are not characteristic in the trained model is
a possible explanation for this phenomenon.

C. Activity Recognition Validation

We evaluated the performance of our activity recognition
approach with leave-one-out cross validation (LOOCV), using
each of the recordings as evaluation set once. The results
depict average values over 24 rounds of cross validation.
Figure 6 shows the validation results. We separately evaluated
the frame-wise accuracy for each activity and present the
results sorted by activity groups.

The Movement activity group detection performed the best
of the three groups, with most of the labels predicted correctly
in each class. Entering and Leaving the scene are usually
correctly detected (81.9% and 85.0%). The activities Standing
and Sitting are not easy to distinguish, which is justified by
the fact that the legs of the recorded persons are not visible
in our environment and the height differences between sitting
and standing positions are minor for some people involved in
the experiment. Nevertheless Sitting was correctly classified
in 60.5% of the frames while being wrongly labelled as
Standing in 28.59%. The best detected activity was Leaning
forward with 87.78% of samples recognized correctly. This
was expected, as this activity is very sensitive to the vertical
body angle, which is the third most important feature in the
Movement activity group.

Recognition of the activity Stepping back was also prob-
lematic, with 61.48% accuracy and high confusion with
Standing and Leaving (21.36% and 15.57% respectively). The
activity is problematic, since the frames were annotated as
Stepping back only if this was an explicit command of the
corresponding scenario. Small steps back which might occur
while performing tasks were classified as Standing. When
executing the command Leaving, the person turns around
immediately in most of the recordings, while some recordings
exist where several steps back are taken before the turn. The
whole sequence was also annotated as Leaving, adding to the
confusion.

Results in the Gestures activity group were mixed. While the
states None, Pointing, Interrupt/stop and Presenting an Object
performed well (accuracies 96.27%, 83.21%, 75.49% and
65.7%, respectively), Seeking attention (waving) was usually
misinterpreted (accuracy 42.58%). Nearly all activities in this
group, with an exception of the Presenting an object activity,
have shown a bias towards the None activity, while almost
never being confused with each other. The change of body
posture during hand gestures often contains three phases: a
fast movement at the beginning (moving the hands to the
corresponding position), a constant phase (e.g., pointing to an
object for several seconds) and another fast position change
in the end as the “return” to normal position. These phases
are also called preparation, nucleus, and retraction in gesture
literature[7]. During the annotation, the whole movement
sequence of a gesture was classified as the corresponding

Validation set Training set

Activity Sensitivity Specificity Sensitivity Specificity
 None 96,27% 94,69% 96,71% 99,89%
 Pointing to an object 83,21% 100,00% 99,97% 100,00%
 Presenting an object                   65,70% 87,11% 99,91% 100,00%
 Seeking attention (e.g. waving)        42,58% 99,48% 98,85% 99,92%
 Interrupt/stop action                  75,49% 99,96% 99,42% 100,00%

(a) Gestures
Validation set Training set

Activity Sensitivity Specificity Sensitivity Specificity
 Entering                      81,90% 86,79% 97,12% 94,74%
 Leaving           85,00% 67,85% 97,24% 92,27%
 Stepping back                          61,48% 55,59% 99,87% 68,33%
 Sitting                                60,50% 78,06% 97,36% 96,70%
 Standing                               72,24% 99,17% 89,93% 99,96%
 Leaning forward                        87,78% 99,99% 99,15% 100,00%

(b) Movement
Validation set Training set

Activity Sensitivity Specificity Sensitivity Specificity
 None 95.33% 97.11% 97.27% 99.96%
 Reaching                               68.09% 69.90% 99.13% 99.32%
 Grasping/Picking                       48.49% 66.54% 99.51% 93.74%
 Moving                                 72.89% 99.99% 98.23% 100.00%

(c) Object handling

Fig. 7: Validation results (sensitivity and specificity) for each
group of activities in training and validation sets.

gesture, which might be confusing, as start and end phases
of such activities are very similar to each other and as well as
to object handling activities. When analysing video sequences,
the “constant” part of gestures was almost always recognised
correctly, while problems occurred when lifting up and putting
down the hands. This observation is also consistent with the
previous observation of feature importances, in which most
significant features of the Gesture activity group are static
features (not velocity features).

As shown in Figure 7, the specificity of the Gesture activi-
ties is very high compared to the None activity, which is the
lowest one (94%). However, these values should be analysed
with care, as some activities (especially the None activity) are
strongly over-represented. Hence, specificity of 94%, which
might seem high at first sight, is quite low due to the fact that
most of the time the person was doing nothing. The confusion
matrix is a better metric in this case, as it handles confusions
of each pair of classes separately.

The recognition results for the Object handling activity
group were surprisingly high, even with the absence of ad-
ditional object or finger tracking data. However, the results of
the feature importances analysis give us insight about the ways
such recognition might work with skeleton data only (position
and angular velocities of hands as well as angular velocity of
vertical slope of the body were of great importance). The fact
that all three activities in this group were a single sequence
(Reaching–Grasping–Moving) with only one possible order of
activity, made the detection with an HMM easier.

Although Object handling had lower accuracy compared to
Movement or Gesture detection, most of the samples were
labelled correctly, with None being correctly recognized in
95.33% of the frames, Reaching and Moving and Placing an
object recognized in 68.09% and 72.89% of the samples and
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Fig. 8: Comparison of different classification methods used in the first stage of the proposed framework. Note: in each case
classification with Hidden Markov Models was subsequently applied (second stage).

Grasping being the activity with the lowest results of 48.49%.
A possible explanation for this is the fact, that Grasping was a
much shorter action then other activities and common confu-
sion on the beginning and the end of the action results in major
decline in accuracy. Grasping was also often confused with the
similar activities Reaching and Moving/Placing (14.32% and
9.55% of the frames). All activities are frequently confused
with the None state. However, contrary to the recognition of
gestures, the specificity of the non-default states is not as high
as the states are often confused with each other.

Better results in the recognition of the Movement activities,
followed by Gestures and Object handling is not surprising.
Rough estimation of the skeleton position provides more
significant information about large body movements such as
Entering or Leaning forward then about precise movements
of the hands and interactions with objects. Although our
framework already puts more focus on the arms, more data
about the area around the hands such as finger or object
tracking might significantly improve the recognition results.
Besides this, separate feature selection and reduction for every
model would be beneficial as different types of features are
relevant for different groups of activities, as discussed in IV-D.
As a separate random forest classifier is trained for every
model, automatic weighting of the features based on their
importance is implicitly included. Nevertheless, the same set
of features is currently used for training of the random forests
and removal of not informative dimensions for each group
separately might lead to better results.

D. Comparison of different classification methods

Different classification methods were considered for the first
phase of the learning framework, with random forests showing
the best results in leave-one-out cross validation, followed
by support vector machines with kernel, which is a widely
used approach for human activity recognition. The following

results compare the performance of the proposed two-staged
framework (described in 4) with different machine learning
methods used in the first stage, while using the same Hidden
Markov Model classification approach for the second stage.

Different metrics can be used used to estimate the overall
performance of the model. The most commonly used measure
is the overall accuracy, as the fraction of correctly classified
frames and total number of the frames. However, this measure
is strongly biased towards over-represented classes, which is
the None state in our case. This is highly undesirable for us,
as we are more interested in the detection of “active” actions.

For this reason we also estimated the average accuracy over
all classes, for which the accuracy is measured separately for
each class and then divided by the number of classes, so that
all states contribute equally to the results. In other words,
average accuracy over all classes depicts the average value
of the confusion matrix diagonal. Figure 8 shows the results
of the average accuracies for all activities over all validation
rounds.

We compared the performance of random forests with
different number of randomised trees and decided to use
30 estimators (Movement: 74.82%, Gestures:72.65%, Object
handling: 71.2%), since using 10 estimators showed a decline
in performance. Further increase in the number of trees did not
result in any significant improvement producing both slightly
better and worse results. Support vector machines with radial
basis function kernel were the second best approach, showing
slight decline in Gesture recognition and a stronger decline
in Movement and Object handling recognition (Movement:
61.43%, Gestures: 68.74%, Object handling: 59.62%). The K-
nearest-neighbours algorithm with K = 20 as well as a single
decision tree have shown weaker performance. Nevertheless
the average accuracy over all classes is still higher then 50%
for each activity group.



V. CONCLUSION AND OUTLOOK

In this paper, we presented a two-step approach for activity
recognition based on random forests and Hidden Markov Mod-
els for use in industrial human-robot interaction scenarios. The
recognition is based on skeleton features. The 3D coordinates
of skeletal joints were obtained from RGB-D data of two syn-
chronised Microsoft Kinect sensors using NITE skeleton track-
ing algorithm. We defined different scenario-related activities
and grouped them into the three activity groups (Movement,
Gestures, and Object handling). As training data, we used
recordings of humans performing activities in three varied
scenarios, in different order and under different conditions.
We extracted position, orientation, and temporal features from
the raw skeleton data (positions of fifteen joints), dismissing
leg information and putting stronger focus on the hands. We
applied random forests on the calculated feature vectors to
choose the most important features. Finally, we trained a
Hidden Markov Model with the classified skeleton frames.
The performance of this system was evaluated based on
24 recordings of different scenarios with leave-one-out cross
validation. The results showed average frame-wise accuracy
(averaged over all possible classes) of 74.82% for Movement,
72.65% for Gestures and 71.2% for Object handling.

Most of the classification failures of the Movements and
Gestures activity groups occurred either at the beginning or at
the end of the corresponding activity, which can be explained
by overlapping movements (e.g., Stepping back while Leaving
the scene). Multi-level classification of activities could be
used to solve this problem. For example, detection of low-
level activities such as stepping back, moving forward or
sideways could build the basis for recognising more complex
activities like entering or leaving the scene. Also, we will
take advantage of more features extracted from RGB-D data.
Additional information around the hands and object and finger
tracking would be a straightforward improvement for object
handling activities. Gaze tracking might be very beneficial for
human-robot communication, as it is a direct indicator of what
a human’s attention is drawn to.
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