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ABSTRACT
We present an approach for monitoring and interpreting hu-
man activities based on a novel multimodal vision-based in-
terface, aiming at improving the efficiency of human-robot
interaction (HRI) in industrial environments.

Multi-modality is an important concept in this design,
where we combine inputs from several state-of-the-art sen-
sors to provide a variety of information, e.g. skeleton and
fingertip poses.

Based on typical industrial workflows, we derived multiple
levels of human activity labels, including large-scale activ-
ities (e.g. assembly) and simpler sub-activities (e.g. hand
gestures), creating a duration- and complexity-based hier-
archy. We train supervised generative classifiers for each
activity level and combine the output of this stage with a
trained Hierarchical Hidden Markov Model (HHMM), which
models not only the temporal aspects between the activities
on the same level, but also the hierarchical relationships be-
tween the levels.

Categories and Subject Descriptors
I.5.2 [Design Methodology]: Classifier design and evalu-
ation, Pattern analysis

General Terms
Theory, Design, Experimentation

Keywords
Human activity recognition; Hierarchical Hidden Markov
Model; Industrial robotics; Cognitive robotics
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1. INTRODUCTION
Vision-based human activity recognition has a strong po-

tential to improve the quality of human-robot-interaction,
e.g., for communication, dynamic task adaptation, or safety.
A lot of work has been done recently with a focus on recog-
nizing activities based on human skeleton tracking. Indus-
trial scenarios are typically more constrained and require
higher precision, especially for manipulation centric scenar-
ios where hand movement is a key element.

Different uses of human activity recognition may require
different levels of granularity. While the hand movement
might be important in manipulation tasks, the position of
the human in the working area might be sufficient for other
tasks. In order to handle these different requirements, we
propose a multi layer representation of activities (Fig. 1),
from coarse identification to fine grained detection.

Industrial usage requires a higher level of robustness. Dif-
ferent sensors suffer from their individual limitations. In ad-
dition, certain sensors are optimized for specific use cases,
e.g., hand-, head-, or skeleton tracking (Fig. 2). Therefore,
a combination of multiple different sensors is required to
provide adequate information to the system and to ensure
robust communication between the human and the robot.

We designed a set of typical industrial workflows and de-
rived four levels of human activities, ranging from large-scale
activities (e.g., assembly) to simple hand gestures, which
span a duration- and complexity-based hierarchy. A major
contribution of this work is the machine learning based ap-
proach for multi-level recognition of human activities with
respect to the defined semantics of this activity hierarchy.

The evaluation of this system was conducted on a data set
containing 98 recordings of six different people, four differ-
ent interaction scenarios and 38 activity types, using manual
frame-wise ground-truth labeling and 4-fold cross validation.
We systematically compare and discuss different generative
classifiers for the first recognition stage, the impact of dimen-
sionality reduction and the effects of combining data from
multiple sensors compared to using only one sensor. The
best recognition results were achieved using multiple input
modalities, and recognizing the human activity by combin-
ing a SVM with radial-basis-function kernel with a HHMM.
The average recognition accuracy varied between 81 % and



98 % for different levels of abstraction, which is especially
significant since it was evaluated across multiple different
people. A video showcasing results from the activity recog-
nition framework can be found online.1

2. RELATED WORK
Human activity recognition is a well-studied area, hith-

erto mostly focused on 2D video data [13, 17]. Over the
past few years the methods for obtaining high-quality 3D
data have drastically improved due to the emergence of new
affordable RGB-D sensors such as Microsoft Kinect or Asus
Xtion. This progress strongly influenced the activity recog-
nition research, with a large fraction of recent works based
on 3D skeleton data captured by these devices [11, 12]. In
our work, we also use the Kinect v2 and Leap Motion sen-
sors, which are not yet popular for human activity recogni-
tion.

Various machine learning methods have been used for hu-
man activity recognition, with a systematic overview of the
existing approaches provided in [1, 13]. In general, the ways
of addressing this problem can be divided in two categories.
In the first category, each feature vector carries all the infor-
mation used for prediction and is directly classified without
considering the temporal aspect. Such discriminative algo-
rithms are widely used for activity recognition, with SVM
and KNN being the most prominent approaches [2, 4, 12,
19]. In contrast, generative models such as Hidden Markov
Models (HMM) also handle the temporal relationships be-
tween different classes of activities. Yamato et al. [18] were
the first to use discrete HMMs for human activity recog-
nition. In recent years, discriminative and generative ap-
proaches were often combined (e.g. SVM-HMM) [9, 6]. Fine
et. al [3] extended HMM to a Hierarchical Hidden Markov
Model (HHMM), which is capable of modeling parent-child
relationships between the states and has also been used for
human activity recognition [10].

The Cornell Activity Dataset (CAD) [16] includes 12 ac-
tivities from five different domestic environments, e.g., cook-
ing or brushing teeth. Sung et al. [16] proposed to de-
compose complex activities into sub-activities and to use
a maximum entropy Markov model for recognition. With
this method the authors reached precision and recall values
of 67.9 % and 55.5 % respectively, with leave-one-person-out
cross validation. Koppula et al. [7] reported significantly im-
proved recognition results (precision 80.8 %, recall 71.4 %)
by using structured support vector machines on the same
dataset. Since no public datasets are available for the sce-
nario of human-robot cooperation in an industrial context,
we used a database that we recorded ourselves.

Hand gestures as an intuitive way of communication dur-
ing industrial assembly tasks have been recently discussed
by Gleeson et al. [5]. The results of the user study conducted
in this work has shown the high potential of body gestures as
an efficient way of interaction, although the interpretation
of the gestures by a user unfamiliar with the definitions is
highly context sensitive. These findings demonstrate the im-
portance of realizing HRI systems based on body gestures,
which is also the focus of our work. Despite the findings of
Gleeson et al., research on human activity recognition ad-
dressing industrial environments has been sparse so far.

The work most similar to ours is that of Lenz et al. [8],

1https://www.youtube.com/watch?v=ggb6nUOEcjE

Figure 1: HRI workcell used for human activity
recognition in industrial assembly scenarios. Data
from the Asus Xtion Pro sensor is processed into a
3D point cloud and further extended with the finger
tip positions obtained by Leap Motion sensors (red
arrows). The timeline bar on the bottom shows the
suggested multilevel annotation of human activities.

where the authors automatically recognized the activities of
humans who were sitting in front of a work table and collab-
orating with an industrial robot. They tracked the positions
of the humans’ hands using 3D occupancy grids and used a
composite HMM for the recognition of hand gestures and
workflow analysis.

In our previous work, we used skeleton information pro-
vided by a Microsoft Kinect sensor with a combination of
Random Forests and HMM for the recognition of simple hu-
man activities in industrial contexts [15]. In this work, we
exploit multiple and more advanced modalities to recognize
an extended set of more complex industrial activities with
different levels of granularity. Similar to the previous work, a
discriminative classifier is combined with a temporal model.
However, the key component of the proposed recognition
framework, i.e. its hierarchical modeling with HHMM, is a
new aspect.

3. MULTIMODAL INTERFACE DESIGN
We specifically target production processes in robotic work-

cells. While typical domestic activities (e.g. jumping, wav-
ing) are well represented using the body skeleton, industrial
systems have to accurately handle activities centered around
the hands. Thus, industrial HRI-interfaces additionally re-
quire accurate articulated hand tracking. Further challenges
of such systems are complex and occluded environments, and
visibility limitations caused by compact sizes of workcells.

3.1 System Setup
We propose a new multimodal HRI-system, that is inte-

grated in a typical industrial workcell and equipped with
three different kinds of sensors (Fig. 2). A Microsoft Kinect
v2 RGB-D sensor is mounted in front of the person, facing
diagonally from above. The Kinect v2 is used to detect and
track the human skeleton. An Asus Xtion Pro is placed on
the metal cage facing straight down towards the table, and
is intended for detecting objects on the table. For precise
tracking of the hand skeleton, the Leap Motion Sensor is
used. It is capable of calculating the position, orientation,

https://www.youtube.com/watch?v=ggb6nUOEcjE


Property Kinect v2 Asus Xtion PRO LeapMotion

Hardware
basics

Infrared (IR) light
source, RGB and IR-
cameras, microphone

Infrared (IR) light
source, RGB and IR-
cameras, microphone

Three IR LEDs ,
two IR cameras 

Raw image data
and resolution 

RGB: 1920×1080
Depth: 512x424

RGB: 1280x1024
Depth: 640x480

Both IR cameras:
640x240

Data frequency  
30 FPS (15-20 in our

system)
30 FPS

20 to 200 ( around 90 in
our system)

Input for the
proposed 

HRI system 

Skeleton tracking with
Kinect SDK v2: pose of

25 skeletal joints 

Intended be used for
object tracking from
RGB-D pointclouds

Hand skeleton tracking
with Leap Motion

SDK: pose and velocity
of hands and fingers

Data example

Asus Xtion

Kinect 2

Leap Motion

Figure 2: Overview of the input modalities and their integration in the industrial environment. The workcell
was equipped with three different types of sensors to capture human activities. A Kinect 2 sensor is frontally
facing the worker. An Asus Xtion Pro sensor monitors the work table (for future object tracking). Leap
Motion sensors are integrated into the tabletop.

direction and velocity of the finger tips with sub-millimeter
accuracy. Due to the small size, accurate hand tracking can
only be achieved within a very limited range. Hence, we
have integrated two Leap Motion sensors inside the table-
top facing towards the expected working area of each hand.

3.2 Sensor Data Synchronization
When combining data from sensors produced by differ-

ent manufacturers, data fusion quickly becomes a problem.
Besides, the skeleton tracking software Kinect SDK v2 is
restricted to Windows 8.1 only and multiple Leap Motion
sensors cannot be connected to the same machine due to
the lack of driver support.

We implemented a communication and control framework
which unifies the sensor data over multiple machines and op-
erating systems using the Robot Operating System (ROS)
and ZeroC ICE. The master server manages the entire input
as ROS messages, which can be easily saved and replayed as
ROS BAG files. Limitations of the network bandwidth as
well as the high resolution of the streamed videos occasion-
ally lead to the loss of Kinect v2 data, which is subsequently
corrected with a Kalman filter. The framework (Fig. 3) syn-
chronizes the data at 30 frames per second and keeps track of
the different coordinate systems using the ROS-TF library
and manually calculated calibration data.

4. HUMAN ACTIVITY RECOGNITION
The pipeline for human activity recognition consists of

several steps. In an offline stage, the scenarios and target ac-
tivities at different levels are defined. This is followed by the
design of the multimodal sensor setup and calibration. Dur-
ing runtime, the sensor data is processed to generate feature
vectors that are used by the machine learning framework to
estimate the activity labels.

4.1 Scenarios and Activities
We defined four different interaction scenarios for human-

robot cooperation that are typically seen in industrial man-
ufacturing processes. In the first scenario, a worker is fixing

Ubuntu 12.04
ROS Hydro
Leap Motion

SDK 2.0

Ubuntu 12.04
ROS Hydro
Leap Motion

SDK 2.0

Windows 8.1
Kinect

SDK 2.0

Data Unification with ROS
Visualization in RVIZ

ROS Master

Ubuntu 12.04
ROS Hydro

OpenNI

ZeroC ICE ROS ROS USB 2.0

Data Storage in
ROS BAG files

USB 3.0 USB 2.0 USB 2.0

Figure 3: System overview: communication and
control of multiple sensors.

a screw on a work piece by hand and tightening it further
using a tool. The second and third scenarios aim at the spec-
ification of welding tasks, by defining start and end points
(second scenario) or a trajectory (third scenario) on a piece
of metal using a predefined set of hand gestures. After the
gesture based command is given, the welding task is assumed
to be performed and the worker bends and takes a closer
look at the result (Fig. 4). The fourth scenario is another
assembly task with a different set of objects.

We analyzed the scenarios and derived a four-level hierar-
chy of activities (Fig. 5). The structure of the hierarchy is
based on complexity, duration (which is highly correlated)
and generalization. The activity of Level n (Ln) is linked
by a set of grammar rules to sub-activities from Ln+1. In
some cases, activities from Ln are generalizations of sub-
activities from Ln+1, for example, the Fixing activity from
L2 is a generalization of Fixing with tool and Fixing
with hands from L3. While the set of activities for each



(a) None (b) Fixing (c) Leaning forward to check result

Figure 4: Visualization of multimodal input to the HRI interface. For each of the three exemplary activities,
it depicts the RGB and Depth images (top left and top right) from a Kinect v2 sensor, the derived body
skeleton (bottom right), and the hand skeletons (bottom left) detected by two Leap Motion sensors.

level was derived manually by observing the recordings, the
exact semantics of the hierarchy was implicitly learned by
the proposed classification algorithm.

4.2 Feature Calculation and Preprocessing
In this section, we describe our preprocessing framework

for constructing feature representations from the sensor in-
put. The inputs to our machine learning framework are
poses of 25 skeleton joints calculated with the Kinect SDK
v2 at a frequency of 15-20 FPS along with poses, velocities
and directions of the hands and fingertips calculated with
the Leap Motion SDK at approx. 90 FPS.

To estimate the current state of activity, meaningful fea-
tures have to be carefully selected. Since the worker’s legs
are completely covered by the work table, skeleton informa-
tion about the lower body joints has very low confidence
and is hence ignored. We also calculate a set of position,
orientation and motion features, that are suited for our ap-
plication. Each position feature contains the 3D coordinates
(X,Y, Z) transformed in the coordinate system of the body
(skeleton joints) or the hand (finger tips). Orientation fea-
tures are either angles with a single value (α) or 3D rotations
represented as Euler angles (roll, pitch, yaw).

Due to the dynamic nature of human activities, motion
features carry significant information about human behaviour.
Thus, we capture the change of feature values within certain
time segments, i.e., the delta value as well as the variance
within a segment.

Kinect v2 features. We use the positions of the hands,
wrists and elbows and their motion information in the seg-
ment of the last 0.5 s. We put strong emphasis on the motion
of the skeletal angles of the upper body joints as well as the
orientation of the hip-, shoulder- and spine-line. Since the
Kinect SDK does not provide any velocity information, we
calculate the motion information in the last 0.5 s, 1 s as well
as the motion history in the frame segments of 0.5 s to 1 s
and 1 s to 2 s.

Leap Features. We use the positions of the fingertips
and the hands, their orientations as Euler angles and their
velocities, as provided by the Leap Motion SDK.

We use the same set of features for the training of L1 to 3.
Since L4 consists of hand gestures intentionally performed
with the right hand, we dismiss a set of features obviously
linked to the left body part. After the selection, the feature
set for L1, L2 and L3 consist of 162 Kinect v2 features and
96 Leap Motion features, while the set for L4 contains 146

Kinect v2 features and 45 Leap Features.
Since our feature vectors are derived from multiple sources

observing overlapping parts of the same scene, they have a
high number of redundant dimensions that also differ in their
representative power for our application. Dimensions with
low information content often result in noisy training data
that adversely affects the classification results. Furthermore,
high dimensionality requires higher computational power,
which is also an important aspect since we aim for the de-
velopment of a live interaction interface. We therefore use
Principal Component Analysis (PCA) for dimensionality re-
duction.

4.3 Classification
Inferring human activity from skeleton information is a

complex task with various facets. On the one hand, a single
data frame with wisely selected pose features already pro-
vides a significant amount of information and can be cat-
egorized with a discriminative classifier, such as SVM or
Random Forests. On the other hand, transitions between
different activities have a strong causal and temporal as-
pect which can be modeled with generative methods as a
part of the recognition approach, e.g., Moving an object
requires Grasping an object as its predecessor. Further-
more, multiple abstraction levels for activities imply addi-
tional causal relationships inside the hierarchy. Integrating
these dependencies in the recognition framework is crucial
for two reasons. Firstly, knowing current activity states of
the other levels would provide additional information for
classification. Secondly, a strict hierarchical model ensures
consistency of the classification output, e.g., L3 activity Se-
lecting trajectory and L2 activity Assembling, can not
occur simultaneously.

4.3.1 Hidden Markov Models
An excellent way to model such sequential processes are

Hidden Markov Models (HMM), which are widely used in
speech and video recognition. First introduced by Rabiner,
a discrete HMM is given by an alphabet of n possible hidden
states and a set of m possible observations [14]. Assuming
there are n hidden states and m possible emissions, a HMM
can be specified as a triplet (π,A,B) where A is a n×n tran-
sition matrix containing transition probabilities between the
states, B is the n×m emission matrix with B(i, j) showing
the probability of a hidden state i producing a visible emis-
sion j and π the initial probability vector of hidden states.



Algorithm 1 Training of a discriminative classifier

1: Input: X = [X1, ..., Xn] - a set of n feature vectors with
m features; start and end of each recording segment is
marked in X. S1 = [S1

1 , ...S
1
n] - annotation set con-

taining ground-truth states of activities, with s possible
states.

2: Output: C1 - a discriminative classifier. Y 1 - a se-
quence of predicted states constructed by classifying X
with C1. Y 1 is later used as input for the second phase.

3: Randomization: from the given training data X, ran-
domly select a subset (α = 75 %) of samples (feature vec-
tors) X.75 and the corresponding annotation S1

.75. This
step is done to avoid over-fitting in the second training
phase.

4: We use X.75 and S1
.75 for the training of a supervised

classifier C1 (e.g. SVM).
5: We use C1 to categorize the whole initial training data

set X (where 1−α is the percentage not used for training
of C1), which results in the predicted sequence Y 1 with
n samples.
Note: the notation abc uses both, subscript c and super-
script b as indices. The superscript does not represent
the exponent of the variable. In most cases, the variable
superscript b depicts a level in the activity hierarchy,
while the subscript c is a simple enumeration index.

The classification problem is equivalent to the estima-
tion of the most likely sequence of hidden states that took
place with a previously trained model (π,A,B) and an ob-
served sequence of emissions X. This problem can be solved
with the Viterbi Algorithm with a run-time complexity of
O(n2T ), where n is the number of hidden states and T the
length of the sequence.

For our activity recognition approach, we propose a strictly
hierarchical two-stage machine learning framework, which
combines discriminative and generative classification meth-
ods. The lowest level L1 is not subordinate to any other
levels and is processed independently from them. Conse-
quently, the hierarchical aspect is not present at this stage
and we use a discriminative classifier with a HMM for this
stage (Algorithms 1 and 2). The other three activity lev-
els are modeled using a Hierarchical Hidden Markov Model
(HHMM).

4.3.2 Hierarchical HMMs
Given n levels of states (activities), the recognition algo-

rithm is intended to produce n state predictions for each
data frame, while taking into account the semantics of the
learned hierarchy. In the previous section, we described our
classification approach on the lowest level of the hierarchy,
which is independent from the other levels, by combining
a discriminative classifier with a HMM. In this section we
describe the classification approach for all levels present in
the hierarchy.

Using a hierarchical model is highly significant for pre-
serving consistency between different levels, since the pro-
posed structure of activities follows certain semantic rules.
Fig. 5 shows the conditional probabilities of activities from
the neighboring levels of abstraction. In other words, it is
the probability P (an|an−1) of an activity an from a subor-
dinate level Ln occurring simultaneously with an activity

Algorithm 2 Training of a HMM

1: Input: Y 1 - a sequence of predicted states from the
first phase of training. S1 = [S1

1 , ...S
1
n] - annotation

set containing ground-truth states of activities, with s
possible states.

2: Output of both phases: (C1, (π,A,B)1), a trained
model for activity recognition on level 1, where C1 is
a discriminative classifier used in the first phase and
(π,A,B)1) is the HMM of the second phase.

3: Calculate the transition matrix A (s × s) by calculat-
ing the transition probabilities for each pair of possible
states from the annotation sequence S1.

4: Calculate the emission matrix E (s × s) by calculat-
ing the probabilities for possible combination of states
(given by S1) and emissions (given by Y 1). The predic-
tions of C1 are used as observed emissions. The set of
possible states and emissions is equivalent in our case.

5: Calculate the vector of initial state probabilities, π. π is
calculated by counting the frequencies for each possible
state of being the first state in a sub-segment.

Algorithm 3 Training approach with HHMM for Level K

1: Input: X = [X1, ..., Xn] - a set of n feature vectors
with m features; start and end of each recording seg-
ment are marked in X. Sk = [Sk

1 , ...S
k
n] - annotation

set containing n ground-truth states of activities for the
current level K, with sk possible states and ski refer-
ring to the i-th possible state in the state set of level
K. Sk−1 = [Sk−1

1 , ...Sk−1
n ] - annotation set containing n

ground-truth states of activities for previous level K−1,
with sk−1 possible states.

2: Output: The training of a higher level of a HHMM
results in sk−1 separate trained classification models
(Ck

sk−1
i

, (π,A,B)k
sk−1
i

), where sk−1
i is the state of the

previous level, to which our model belongs.
3: Sorting the training data (X,Sk) by the state of previous

level K−1: we divide the training data into sk−1, where
each sub-set corresponds to a possible state of previous
level K − 1. This results in a set of feature vectors and
corresponding annotation of level K for every state of

level K − 1: T = [(X1, Sk,1), ..., (Xsk−1

, Sk,sk−1

)].
4: Training of multiple models: For every possible state
sk−1
i , i ⊂ [1, sk−1], we train a classification model

(Ck

sk−1
i

, (π,A,B)k
sk−1
i

) with the same training approach

used for the lowest activity level, as described in before.

an−1 from a higher level of abstraction Ln−1. The condi-
tional probability of 1 means that the subordinate activity
is a specialization of a higher activity, while a value of 0 (a
missing edge in Fig. 5) shows that those two activities (from
different levels) never occur simultaneously in the database.

The Hierarchical Hidden Markov Model (HHMM) is an
extension of HMM, that is capable of handling a topology
of states based on parent-child relationships between mul-
tiple levels[3]. A HHMM consists of a set of simple HMMs
with separate model parameters (π,A,B). The essence of a
HHMM is a strict hierarchical order of the levels L1, ..., Ln,
where every possible state of the Lk−1 itself contains an
HMM for the classification of Lk. The algorithm for train-
ing a HHMM is presented in Algorithm 3.



Selecting
start of

trajectory

Drawing
trajectory

Selecting
end of

trajectory

Fixing
with hand

Fixing
with tool

Leaning
forward

Reaching
for object

Grasping
object

Moving
object

Moving
hand

Placing
object

Selecting
point

Holding
object

AssemblingNone
Retracting

hand

Back to 
normal

AssemblingNone
Placing
object

Selecting
points for
welding

Picking
second
object

Picking
object

Selecting
trajectory for

welding
Fixing

Checking
result

Selecting
trajectory for

welding

Working 
on piece

Selecting
points for
welding

AssemblyNone

LEVEL 1 LEVEL 2 LEVEL 3
P(A|B)

B A

0.55

0.07

1.0 1.0
0.33 0.67 0.85

1.0

0.15

1.0

0.49

0.51
1.0

0.17 0.21

1.0 1.0
1.0

1.0

0.6

0.13
1.0 0.34

0.06 0.17
0.83

1.0
0.59

0.28

1.0 1.0

1.0

1.0 1.01.01.0 1.0

Figure 5: Conditional probabilities of the activities from levels L1 to L3 calculated from the collected database.

5. EVALUATION
The framework was evaluated on a database containing

98 recordings of four interaction scenarios with six different
people. Video and skeleton data was recorded as ROS BAG
files with manual frame-wise annotation added to it as a
post-processing step. Please note that the data collected
from the Asus Xtion sensor was not yet used for the activity
recognition, but will be integrated in the system for object
detection. The whole data set contains 33032 data frames
after synchronization.

5.1 Methodology
Our approach was evaluated using 4-fold cross validation,

where the data set was randomly divided into four equal sub-
sets containing approx. 25 recordings each. It was ensured
that each scenario was equally represented in each data set,
while no such regularity was made as it came to different
users. This was made intentionally, since recognition of un-
known people is important for the practical usage of our
system and the possibility of a person being present only in
the test set or training set is a reasonable approximation.

Since each frame was annotated manually, accuracy of the
ground-truth labeling itself should be taken into account.
Due to the high frequency (30 Hz), slight annotation glitches
during activity transitions are inevitable. The impact of this
error is strongly dependent on the activity duration. For
short dynamic activities, e.g., Putting the thumb down,
that start and end within a fraction of a second, false clas-
sification of a few frames at the beginning and the end can
lead to a strong decline in accuracy.

For practical use, it is important that an activity is de-
tected in its essential phase. To address this issue, we evalu-
ate our system by counting correctly classified activity se-
quences, in contrast to correctly classified frames. We de-
fine a single activity sequence as the segment of frames dur-
ing which the ground-truth activity label has not changed.

5.1.1 Metrics
The following notation is being used for the evaluation:

[A1, ..., An] represent possible activity labels; Acorr
i is the

number of correctly classified instances of class Ai; A
total
i is

the true total number of instances of class Ai; A
pred
i is the

number of instances classified as class Ai.

Avg.Accuracy =

n∑
i=1

Acorr
i

Atotal
i

n
(1)

P =
Acorr

i

Apred
i

, R =
Acorr

i

Atotal
i

, F1 = 2× P ×R
P +R

(2)

In order to avoid a bias towards overrepresented classes,
we use the average accuracy over all possible activity classes
as the evaluation metric for the comparison of different clas-
sifiers (Fig. 6). In Table 1 we present a detailed evaluation
of the recognition framework for each activity individually
and evaluate the performance when using single sensor and
multi sensor input. We calculate the Precision (P), Recall
(R) and F1-score (2), with the F1-score being the key metric
for single sensor and multi sensor comparisons.

5.2 Recognition and Prediction Results
We have tested several widely used classification algo-

rithms for the first phase of the training and achieved best
recognition results with a RBF-SVM estimator (98 %, 92 %,
81 %, 81 %), closely followed by linear SVM. Good classifi-
cation results were also achieved by using Random Forests
or K-Nearest-Neighbors with 20 neighbors (KNN-20), while
KNN-200 and Gaussian Naive Bayes performed poorly. De-
tailed evaluation results are shown in Fig. 6.

Table 1 shows classification results for each activity in-
dividually and compares different subsets of features (Leap,
Kinect v2 and Kinect v2 + Leap), while Figure 7 shows the
confusion matrices for every activity level with the best fea-
ture set (Kinect v2 + Leap for L1, L2, L3 and Leap for L4).

The lowest level L1 consists of a small number of large-
scale activities and had the best recognition results, with
99 % of the sequences classified correctly when using Kinect
v2 + Leap features. The confusion between the activities
Selecting points for welding and Selecting trajec-
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Figure 6: Average classification accuracy of differ-
ent discriminative classification methods considered
for the first phase of training. Best results were
achieved with RBF-SVM for all levels.
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Figure 7: Confusion matrices for each level of activ-
ities with the best recognition approach (RBF-SVM
+ HHMM). Correspondence of the IDs to the actual
activity names can be found in Table 1

tory for welding is to be expected, since the scenarios
differ only in the way of specifying the trajectory.
L2 represents decomposition of L1 in more specific sub-

activities. The best results were achieved when combin-
ing both sensors (avg. F1=0.93), except for the activities
Selecting points for welding and Selecting trajec-
tory for welding, where best results were achieved when
using Leap features only. This is because these scenarios
contain predefined hand gestures, for which precise finger
tracking is crucial, while rough body pose is insignificant.
Hence, these activities are the two most poorly recognized
labels when using Kinect v2 data only. On the other hand,
the activity Checking the result, where the human leans
forward and takes a closer look at the workpiece, relies on

      Leap only    
R P F1 R P F1 R P F1

ID LEVEL 1
0 None 0.98 1.00 0.99 0.91 0.98 0.94 0.87 0.99 0.92
1 Selecting points for welding 1.00 0.96 0.98 0.96 1.00 0.98 0.79 0.79 0.79
2 Selecting trajectory for welding 0.96 1.00 0.98 0.93 1.00 0.96 0.75 0.99 0.85
3 Working on a piece 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 Assembly 1.00 1.00 1.00 0.94 0.94 0.94 0.88 0.88 0.88

Average 0.99 0.99 0.99 0.95 0.98 0.96 0.86 0.93 0.89
LEVEL 2

0 None 0.94 0.95 0.94 0.91 0.98 0.94 0.83 0.84 0.83
1 Picking a second object 0.88 1.00 0.93 0.75 0.80 0.77 0.81 0.93 0.87
2 Picking an object 0.90 0.98 0.94 0.83 0.95 0.89 0.68 0.94 0.79
3 Placing an object 0.89 1.00 0.94 0.79 0.99 0.88 0.75 0.98 0.85
4 Selecting points for welding 0.96 0.92 0.94 1.00 0.96 0.98 0.50 0.74 0.60
5 Selecting trajectory for welding 0.89 1.00 0.94 0.93 1.00 0.96 0.61 0.98 0.75
6 Assembling 0.94 0.79 0.86 0.94 0.71 0.81 0.50 0.73 0.59
7 Checking the result 0.85 1.00 0.92 0.28 0.76 0.41 0.85 0.85 0.85
8 Fixing 0.95 0.96 0.95 0.91 0.93 0.92 0.98 0.86 0.92

Average 0.91 0.96 0.93 0.82 0.90 0.84 0.72 0.87 0.78
LEVEL 3

0 None 0.89 0.90 0.90 0.85 0.86 0.85 0.78 0.65 0.71
1 Placing an object 0.71 0.96 0.81 0.67 0.90 0.77 0.74 0.91 0.81
2 Reaching for an object 0.69 0.88 0.77 0.68 0.96 0.80 0.43 0.91 0.59
3 Retracting the hand 0.67 0.93 0.78 0.77 0.95 0.85 0.60 0.92 0.72
4 Selecting a point 0.88 0.95 0.91 0.94 0.88 0.91 0.50 0.75 0.60
5 Selecting the trajectory end 0.69 1.00 0.82 0.71 1.00 0.83 0.11 0.98 0.19
6 Selecting the trajectory start 0.64 1.00 0.78 0.79 1.00 0.88 0.34 0.98 0.51
7 Assembling 0.89 0.88 0.89 0.94 0.56 0.70 0.56 0.38 0.45
8 Back to normal 0.88 0.50 0.64 0.33 0.60 0.42 0.80 0.56 0.66
9 Drawing the trajectory 0.84 0.88 0.86 0.89 0.93 0.91 0.50 0.29 0.36

10 Fixing with a tool 0.89 0.88 0.88 0.96 0.75 0.84 0.96 0.59 0.73
11 Fixing with hands 0.84 0.89 0.86 0.79 0.67 0.72 0.82 0.72 0.77
12 Grasping an object 0.79 0.78 0.79 0.80 0.79 0.79 0.64 0.65 0.65
13 Holding an object 0.19 0.57 0.29 0.20 0.50 0.29 0.40 0.33 0.36
14 Leaning forward 0.73 0.96 0.83 0.35 0.57 0.43 0.85 0.81 0.83
15 Moving an object 0.64 0.87 0.74 0.76 0.82 0.79 0.57 0.86 0.68
16 Moving the hand 0.54 0.80 0.65 0.71 0.85 0.77 0.13 0.75 0.21

Average 0.73 0.86 0.78 0.71 0.80 0.74 0.57 0.71 0.58
LEVEL 4 (Gestures)

0 None 0.95 0.58 0.72 0.93 0.70 0.80 0.98 0.23 0.37
1 Pointing 0.82 0.82 0.82 0.92 0.89 0.90 0.15 0.48 0.23
2 Thumb double-click 0.71 0.83 0.76 0.88 1.00 0.93 0.10 0.42 0.17
3 Two fingers: putting thumb down 0.30 1.00 0.46 0.63 0.95 0.76 0.00
4 Two fingers: releasing  the thumb 0.42 1.00 0.59 0.74 0.96 0.84 0.06 1.00 0.12
5 Two fingers: thumb down 0.83 0.91 0.87 0.87 0.99 0.93 0.20 0.97 0.33
6 Two fingers: thumb up 0.75 0.99 0.86 0.84 0.99 0.91 0.28 0.98 0.44
7 Average 0.68 0.88 0.73 0.83 0.93 0.87 0.25 0.68 0.28

 Kinect 2 + Leap     Kinect 2 only

nan nan

Table 1: Single sensor and multi sensor recognition
results: Precision (P), Recall (R) and F1-score for
each type of activity. Using multiple sensors shows
the best average recognition results for L1, L2 and
L3. L4 contains hand gestures, with the best clas-
sification results therefore obtained with the Leap
Motion features only.

the body pose only and can not be recognized with Leap
data only (R=28 %). When using both sensors or Kinect v2
only, the situation drastically improves (R=85 %). Combin-
ing both sensors still provides the best average recognition
results.
L3 has 17 sub-activities, with the best recognition results

achieved with the combination of sensors (avg. F1=0.78).
Since we aimed at a very precise set of sub-activities, the
frequency of occurrence in the data set may vary.

In contrast to the other levels, best recognition results for
L4 were obtained by using Leap features only (F1=0.87).
The activities at this level contain both very short dynamic
gestures that last for fractions of a second (e.g. putting
the thumb up or releasing it back down) and static ges-
tures, which usually last longer. Short dynamic gestures
were harder to classify, with Putting the thumb down
showing the lowest classification result (F1=0.76), while all
static gestures have reached an F1 score over 0.9.



6. CONCLUSION
The contributions of this paper are two-fold. Firstly, we

designed a multimodal interface integrated in a robotic work-
cell for HRI, tailored to recognize human activities and ges-
tures. In spite of the diverse data sources and the complex
communication framework, the system is easy to maintain
and extend due to its compatibility with ROS. Secondly,
we proposed a two-stages machine learning approach for the
classification of human activities on multiple levels of ab-
straction. We use PCA for dimensionality reduction and
combine a RBF-SVM estimator with a HHMM. The com-
parison of the recognition results using single and multiple
sensors shows that multi-modality is crucial for our applica-
tion. While the Leap Motion sensor offers the key data for
the recognition of hand-centered activities, the Kinect v2
sensor provides better information about large-scale body
movements, such as Leaning forward. All in all, fusing
multiple sensors is highly beneficial as it comes to recog-
nizing both, hand-centered and body-centered movements.
However, if the set of activities is limited to a certain type of
movements, it might be useful to select the best data source
and hence avoid unnecessary noise. The hand tracking pro-
vided by the Leap Motion sensor is therefore more signifi-
cant for industrial manufacturing processes, than the body
skeleton obtained with the Kinect v2 sensor. Besides higher
success rates during the activity recognition, a combination
of multiple data sources improves the system reliability by
enlarging the observable area and adding input redundancy.
Hence, a failure of one sensor can be compensated by an-
other one. In the live system, it would be recommended to
use three trained models, one for a combined feature set and
one for each feature set originated from one of the sensors
only. The system could use the combined model as long as
all of the devices are providing reliable data, and switch to
a single-sensor mode in case of a sensor drop out.
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