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Abstract. Policy Gradient methods are model-free reinforcement learn-
ing algorithms which in recent years have been successfully applied to
many real-world problems. Typically, Likelihood Ratio (LR) methods
are used to estimate the gradient, but they suffer from high variance
due to random exploration at every time step of each training episode.
Our solution to this problem is to introduce a state-dependent explo-
ration function (SDE) which during an episode returns the same action
for any given state. This results in less variance per episode and faster
convergence. SDE also finds solutions overlooked by other methods, and
even improves upon state-of-the-art gradient estimators such as Natural
Actor-Critic. We systematically derive SDE and apply it to several illus-
trative toy problems and a challenging robotics simulation task, where
SDE greatly outperforms random exploration.

1 Introduction

Reinforcement Learning (RL) is a powerful concept for dealing with semi-super-
vised control tasks. There is no teacher to tell the agent the correct action for a
given situation, but it does receive feedback (the reinforcement signal) about how
well it is doing. While exploring the space of possible actions, the reinforcement
signal can be used to adapt the parameters governing the agent’s behavior.
Classical RL algorithms [1,2] are designed for problems with a limited, discrete
number of states. For these scenarios, sophisticated exploration strategies can
be found in the literature [3,4].

In contrast, Policy Gradient (PG) methods as pioneered by Williams [5] can
deal with continuous states and actions, as they appear in many real-life settings.
They can handle function approximation, avoid sudden discontinuities in the
action policy during learning, and were shown to converge at least locally [6].
Successful applications are found e.g. in robotics [7], financial data prediction [8]
or network routing [9].

However, a major problem in RL remains that feedback is rarely available at
every time step. Imagine a robot trying to exit a labyrinth within a set time,
with a default policy of driving straight. Feedback is given at the end of an
episode, based on whether it was successful or not. PG methods most commonly
use a random exploration strategy [5,7], where the deterministic action (“if wall
ahead, go straight”) at each time step is perturbed by Gaussian noise. This way,
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the robot may wiggle free from time to time, but it is very hard to improve the
policy based on this success, due to the high variance in the gradient estimation.
Obviously, a lot of research has gone into devising smarter, more robust ways of
estimating the gradient, as detailed in the excellent survey by Peters [7].

Our novel approach is much simpler and targets the exploration strategy
instead: In the example, the robot would use a deterministic function providing
an exploration offset consistent throughout the episode, but still depending on
the state. This might easily change the policy into something like “if wall ahead,
veer a little left”, which is much more likely to lead out of the labyrinth, and thus
can be identified easily as a policy improvement. Hence, our method, which we
call state-dependent exploration (SDE), causes considerable variance reduction
and therefore faster convergence. Because it only affects exploration and does
not depend on a particular gradient estimation technique, SDE can be enhanced
with any episodic likelihood ratio (LR) method, like REINFORCE [5], GPOMDP
[10], or ENAC [11], to reduce the variance even further.

Our exploration strategy is in a sense related to Finite Difference (FD) meth-
ods like SPSA [12] as both create policy deltas (or strategy variations) rather
than perturbing single actions. However, direct parameter perturbation has to
be handled with care, since small changes in the policy can easily lead to un-
forseen and unstable behavior and a fair amount of system knowledge is therefore
necessary. Furthermore, FD are very sensitive to noise and hence not suited for
many real-world tasks. SDE does not suffer from these drawbacks—it embeds
the power of FD exploration into the stable LR framework.

The remainder of this paper is structured as follows: Section 2 introduces
the policy gradient framework together with a thorough derivation of the equa-
tions and applications to function approximation. Our novel exploration strategy
SDE will be explained in detail in section 3. Experiments and their results are
described in section 4. The paper concludes with a short discussion in section 5.

2 Policy Gradient Framework

An advantage of policy gradient methods is that they don’t require the envi-
ronment to be Markovian, i.e. each controller action may depend on the whole
history encountered. So we will introduce our policy gradient framework for gen-
eral non-Markovian environments but later assume a Markov Decission Process
(MDP) for ease of argument.

2.1 General Assumptions

A policy π(u|h, θ) is the probability of taking action u when encountering history
h under the policy parameters θ. Since we use parameterized policies throughout
this paper, we usually ommit θ and just write π(u|h). We will use hπ for the
history of all the observations x, actions u, and rewards r encountered when
following policy π. The history at time t = 0 is defined as the sequence hπ

0 =
{x0}, consisting only of the start state x0. The history at time t consists of
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all the observations, actions and rewards encountered so far and is defined as
hπ

t = {x0, u0, r0, x1, . . . , ut−1, rt−1, xt}.
The return for the controller whose interaction with the environment produces

history hπ is written as R(hπ), which is defined as R(hπ) = aΣ

∑T
t=0 aD rt

with aΣ = (1 − γ), aD = γt for discounted (possibly continuous) tasks and
aΣ = 1/T , aD = 1 for undiscounted (and thus necessarily episodic) tasks. In this
paper, we deal with episodic learning and therefore will use the latter definition.
The expectation operator is written as E{·}.

The overall performance measure of policy π, independent from any history h,
is denoted J(π). It is defined as J(π) = E{R(hπ)} =

∫
p(hπ)R(hπ) dhπ. Instead

of J(π) for policy π parameterized with θ, we will also write J(θ).
To optimize policy π, we want to move the parameters θ along the gradient

of J to an optimum with a certain learning rate α:

θt+1 = θt + α∇θJ(π). (1)

The gradient ∇θJ(π) is

∇θJ(π) = ∇θ

∫

hπ

p(hπ)R(hπ) dhπ =
∫

hπ

∇θp(hπ)R(hπ) dhπ . (2)

2.2 Likelihood Ratio Methods

Rather than perturbing the policy directly, as it is the case with FD methods
[12,7], LR methods [5] perturb the resulting action instead, leading to a stochas-
tic policy (which we assume to be differentiable with respect to its parameters
θ), such as

u = f(h, θ) + ε, ε ∼ N (0, σ2) (3)

where f is the controller and ε the exploration noise. Unlike FD methods, the new
policy that leads to this behavior is not known and consequently the difference
quotient

∂J(θ)
∂θi

≈ J(θ + δθ) − J(θ)
δθi

(4)

can not be calculated. Thus, LR methods use a different approach in estimating
∇θJ(θ).

Following the derivation of e.g. Wierstra et al. [13], we start with the proba-
bility of observing history hπ under policy π, which is given by the probability
of starting with an initial observation x0, multiplied by the probability of taking
action u0 under h0, multiplied by the probability of receiving the next obser-
vation x1, and so on. Thus, (5) gives the probability of encountering a certain
history hπ.

p(hπ) = p(x0)
T−1∏

t=0

π(ut|hπ
t ) p(xt+1|hπ

t , ut) (5)
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Inserting this into (2), we can rewrite the equation by multiplying with 1 =
p(hπ)/p(hπ) and using 1

x∇x = ∇ log(x) to get

∇θJ(π) =
∫

p(hπ)
p(hπ)

∇θp(hπ)R(hπ) dhπ (6)

=
∫

p(hπ)∇θ log p(hπ)R(hπ) dhπ . (7)

For now, let us consider the gradient ∇θ log p(hπ). Substituting the probability
p(hπ) according to (5) gives

∇θ log p(hπ) = ∇θ log
[
p(x0)

T−1∏

t=0

π(ut|hπ
t ) p(xt+1|hπ

t , ut)
]

= ∇θ

[
log p(x0) +

T−1∑

t=0

log π(ut|hπ
t ) +

T−1∑

t=0

log p(xt+1|hπ
t , ut)

]
. (8)

On the right side of (8), only the policy π is dependent on θ, so the gradient can
be simplified to

∇θ log p(hπ) =
T−1∑

t=0

∇θ log π(ut|hπ
t ). (9)

We can now resubstitute this term into (7) and get

∇θJ(π) =
∫

p(hπ)
T−1∑

t=0

∇θ log π(ut|hπ
t )R(hπ) dhπ

= E

{
T−1∑

t=0

∇θ log π(ut|hπ
t )R(hπ)

}

. (10)

Unfortunately, the probability distribution p(hπ) over the histories produced
by π is not known in general. Thus we need to approximate the expectation,
e.g. by Monte-Carlo sampling. To this end, we collect N samples through world
interaction, where a single sample comprises a complete history hπ (one episode
or rollout) to which a return R(hπ) can be assigned, and sum over all samples
which basically yields Williams’ [5] episodic REINFORCE gradient estimation:

∇θJ(π) ≈ 1
N

∑

hπ

T−1∑

t=0

∇θ log π(ut|hπ
t )R(hπ) (11)

At this point there are several approaches to improve gradient estimates, as
mentioned in the introduction. Neither these nor ideas like baselines [5], the
PEGASUS trick [14] or other variance reduction techniques [15] are treated here.
They are complementary to our approach, and their combination with SDE will
be covered by a future paper.
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2.3 Application to Function Approximation

Here we describe how the results above, in particular (11), can be applied to
general parametric function approximation. Because we are dealing with multi-
dimensional states x and multi-dimensional actions u, we will now use bold font
for (column) vectors in our notation for clarification.

To avoid the issue of a growing history length and to simplify the equations,
we will assume the world to be Markovian for the remainder of the paper, i.e. the
current action only depends on the last state encountered, so that π(ut|hπ

t ) =
π(ut|xt). But due to its general derivation, the idea of SDE is still applicable to
non-Markovian environments.

The most general case would include a multi-variate normal distribution func-
tion with a covariance matrix Σ, but this would square the number of parameters
and required samples. Also, differentiating this distribution requires calculation
of Σ−1, which is time-consuming. We will instead use a simplification here and
add independent uni-variate normal noise to each element of the output vector
seperately. This corresponds to a covariance matrix Σ = diag(σ1, . . . , σn).1 The
action u can thus be computed as

u = f(x, θ) + e =

⎡

⎢
⎣

f1(x, θ)
...

fn(x, θ)

⎤

⎥
⎦ +

⎡

⎢
⎣

e1
...

en

⎤

⎥
⎦ (12)

with θ = [θ1, θ2, . . .] being the parameter vector and fj the jth controller output
element. The exploration values ej are each drawn from a normal distribution
ej ∼ N (0, σ2

j ). The policy π(u|x) is the probability of executing action u when
in state x. Because of the independence of the elements, it can be decomposed
into π(u|x) =

∏
k∈O

πk(uk|x) with O as the set of indices over all outputs, and
therefore log π(u|x) =

∑
k∈O

log πk(uk|x). The element-wise policy πk(uk|x) is
the probability of receiving value uk as kth element of action vector u when
encountering state x and is given by

πk(uk|x) =
1√

2πσk

exp
(

− (uk − μk)2

2σ2
k

)

, (13)

where we substituted μk := fk(x, θ). We differentiate with respect to the pa-
rameters θj and σj :

∂ log π(u|x)
∂θj

=
∑

k∈O

∂ log πk(uk|x)
∂μk

∂μk

∂θj

=
∑

k∈O

(uk − μk)
σ2

k

∂μk

∂θj
(14)

1 A further simplification would use Σ = σI with I being the unity matrix. This is
advisable if the optimal solution for all parameters is expected to lay in similar value
ranges.
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∂ log π(u|x)
∂σj

=
∑

k∈O

∂ log πk(uk|x)
∂σj

=
(uj − μj)2 − σ2

j

σ3
j

(15)

For the linear case, where f(x, θ) = Θx with the parameter matrix Θ = [θji]
mapping states to actions, (14) becomes

∂ log π(u|x)
∂θji

=
(uj −

∑
i θjixi)

σ2
j

xi (16)

An issue with nonlinear function approximation (NLFA) is a parameter di-
mensionality typically much higher than their output dimensionality, constitut-
ing a huge search space for FD methods. However, in combination with LR
methods, they are interesting because LR methods only perturb the resulting
outputs and not the parameters directly. Assuming the NLFA is differentiable
with respect to its parameters, one can easily calculate the log likelihood values
for each single parameter.

The factor ∂μk

∂θj
in (14) describes the differentiation through the function ap-

proximator. It is convenient to use existing implementations, where instead of
an error, the log likelihood derivative with respect to the mean, i.e. the first
factor of the sum in (14), can be injected. The usual backward pass through
the NLFA—known from supervised learning settings—then results in the log
likelihood derivatives for each parameter [5].

3 State-Dependent Exploration

As indicated in the introduction, adding noise to the action u of a stochastic
policy (3) at each step enables random exploration, but also aggravates the
credit assignment problem: The overall reward for an episode (also called return)
cannot be properly assigned to individual actions because information about
which actions (if any) had a positive effect on the return value is not accessible.2

Our alternative approach adds a state-dependent offset to the action at each
timestep, which can still carry the necessary exploratory randomness through
variation between episodes, but will always return the same value in the same
state within an episode. We define a function ε̂(x; θ̂) on the states, which will act
as a pseudo-random function that takes the state x as input. Randomness origi-
nates from parameters θ̂ being drawn from a normal distribution θ̂j ∼ N (0, σ̂2

j ).
As discussed in section 2.3, simplifications to reduce the number of variance
parameters can be applied. The action is then calculated by

u = f(x; θ) + ε̂(x; θ̂), θ̂j ∼ N (0, σ̂2
j ). (17)

2 GPOMDP [10], also known as the Policy Gradient Theorem [6], does consider single
step rewards. However, it still introduces a significant amount of variance to a rollout
with traditional random exploration.
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Fig. 1. Illustration of the main difference between random (left) and state-dependent
(right) exploration. Several rollouts in state-action space of a task with state x ∈ R

2

(x- and y-axis) and action u ∈ R (z-axis) are plotted. While random exploration follows
the same trajectory over and over again (with added noise), SDE instead tries different
strategies and can quickly find solutions that would take a long time to discover with
random exploration.

If the parameters θ̂ are drawn at each timestep, we have an LR algorithm as
in (3) and (12), although with a different exploration variance. However, if we
keep θ̂ constant for a full episode, then our action will have the same exploration
added whenever we encounter the same state (Figure 1). Depending on the choice
of ε̂(x), the randomness can further be “continuous”, resulting in similar offsets
for similar states. Effectively, by drawing θ̂, we actually create a policy delta,
similar to FD methods. In fact, if both f(x; Θ) with Θ = [θji] and ε̂(x, Θ̂) with
Θ̂ = [θ̂ji] are linear functions, we see that

u = f(x; Θ) + ε̂(x; Θ̂)

= Θx + Θ̂x

= (Θ + Θ̂)x, (18)

which shows that direct parameter perturbation methods (cf. (4)) are a special
case of SDE and can be expressed in this more general reinforcement framework.

3.1 Updates of Exploration Variances

For a linear exploration function ε̂(x; Θ̂) = Θ̂x it is possible to calculate the
derivative of the log likelihood with respect to the variance. We will derive the
adaptation for general σ̂ji, any parameter reduction techniques from 2.3 can be
applied accordingly.

First, we need the distribution of the action vector elements uj:

uj = fj(x, Θ) + Θ̂jx = fj(x, Θ) +
∑

i

θ̂jixi (19)
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with fj(x, Θ) as the jth element of the return vector of the deterministic con-
troller f and θ̂ji ∼ N (0, σ̂2

ji). We now use two well-known properties of normal
distributions: First, if X and Y are two independent random variables with
X ∼ N (μa, σ2

a) and Y ∼ N (μb, σ
2
b ) then U = X + Y is normally distributed

with U ∼ N (μa + μb, σ
2
a + σ2

b ). Second, if X ∼ N (μ, σ2) and a, b ∈ R, then
aX + b ∼ N (aμ + b, (aσ)2).

Applied to (19), we see that θ̂jixi ∼ N (0, (xiσ̂ji)2), that the sum is distributed
as

∑
i θ̂jixi ∼ N (0,

∑
i(xiσ̂ji)2), and that the action element uj is therefore

distributed as
uj ∼ N (fj(x, Θ),

∑

i

(xiσ̂ji)2), (20)

where we will substitute μj := fj(x, Θ) and σ2
j :=

∑
i(xiσ̂ji)2 to obtain ex-

pression (13) for the policy components again. Differentiation of the policy with
respect to the free parameters σ̂ji yields:

∂ log π(u|x)
∂σ̂ji

=
∑

k

∂ log πk(uk|x)
∂σj

∂σj

∂σ̂ji

=
(uj − μj)2 − σ2

j

σ4
j

x2
i σ̂ji (21)

For more complex exploration functions, calculating the exact derivative for
the sigma adaptation might not be possible and heuristic or manual adaptation
(e.g. with slowly decreasing σ̂) is required.

3.2 Stochastic Policies

The original policy gradient setup as presented in e.g. [5] conveniently unifies
the two stochastic features of the algorithm: the stochastic exploration and the
stochasticity of the policy itself. Both were represented by the Gaussian noise
added on top of the controller. While elegant on the one hand, it also conceals the
fact that there are two different stochastic processes. With SDE, randomness has
been taken out of the controller completely and is represented by the seperate
exploration function. So if learning is switched off, the controller only returns
deterministic actions. But in many scenarios the best policy is necessarily of
stochastic nature.

It is possible and straight-forward to implement SDE with stochastic policies,
by combining both random and state-dependent exploration in one controller,
as in

u = f(x; θ) + ε + ε̂(x; θ̂), (22)

where εj ∼ N(0, σj) and θ̂j ∼ N(0, σ̂j). Since the respective noises are simply
added together, none of them affects the derivative of the log-likelihood of the
other and σ and σ̂ can be updated independently. In this case, the trajectories
through state-action space would look like a noisy version of Figure 1, righthand
side.
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3.3 Negative Variances

For practical applications, we also have to deal with the issue of negative vari-
ances. Obviously, we must prevent σ from falling below zero, which can happen
since the right side of (15) can become negative. We therefore designed the fol-
lowing smooth, continuous function and its first derivative:

expln(σ) =

{
exp(σ) σ ≤ 0
ln(σ + 1) + 1 else

(23)

expln′(σ) =

{
exp(σ) σ ≤ 0

1
σ+1 else

(24)

Substitution of σ∗ := expln(σ) will keep the variance above zero (exponential
part) and also prevent it from growing too fast (logarithmic part). For this, the
derivatives in (15) and (21) have to be multiplied by expln′(σ). In the experi-
ments in section 4, this factor is included.

4 Experiments

Two different sets of experiments are conducted to investigate both the theore-
tical properties and the practical application of SDE. The first looks at plain
function minimization and analyses the properties of SDE compared to REX.
The second demonstrates SDE’s usefulness for real-world problems with a sim-
ulated robot hand trying to catch a ball.

4.1 Function Minimization

The following sections compare SDE and random exploration (REX) with regard
to sensitivity to noise, episode length, and parameter dimensionality. We chose a
very basic setup where the task was to minimize g(x) = x2. This is sufficient for
first convergence evaluations since policy gradients are known to only converge
locally. The agent’s state x lies on the abscissa, its action is multiplied with a
step-size factor s and the result is interpreted as a step along the abscissa in
either direction. To make the task more challenging, we always added random
noise to the agent’s action. Each experiment was repeated 30 times, averaging
the results. Our experiments were all episodic, with the return R for each episode
being the average reward as stated in section 2.1. The reward per timestep was
defined as rt = −g(xt), thus a controller reducing the costs (negative reward)
minimizes g(x).

For a clean comparison of SDE and REX, we used the SDE algorithm in
both cases, and emulated REX by drawing new exploration function parameters
θ̂ after each step (see Section 3). Unless stated otherwise, all experiments were
conducted with a REINFORCE gradient estimator with optimal baseline [7] and
the following parameters: learning rate α = 0.1, step-size factor s = 0.1, initial
parameter θ0 = −2.0, episode length EL = 15 and starting exploration noise
σ̂ = e−2 ≈ 0.135.
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(a) σnoise = 0.5 (b) σnoise = 1.0 (c) σnoise = 1.5

Fig. 2. Convergence for different levels of noise, averaged over 30 runs per curve. The
upper solid curve shows SDE, the lower dotted curve REX.

Noise Level. First, we investigated how both SDE and REX deal with noise
in the setting. We added normally distributed noise with variance σ2

noise to each
new state after the agent’s action was executed: xt+1 = xt + sut + N (0, σ2

noise),
where s is the step-size factor and ut is the action at time t. The results of
experiments with three different noise levels are given in Figure 2 and the right
part of Table 1.

The results show that SDE is much more robust to noise, since its advantage
over REX grows with the noise level. This is a direct effect of the credit assign-
ment problem, which is more severe as the randomness of actions increases.

An interesting side-effect can also be found when comparing the convergence
times for different noise levels. Both methods, REX and SDE, ran at better
convergence rates with higher noise. The reason for this behavior can be shown
best for a one-dimensional linear controller. In the absence of (environmental)
noise, we then have:

xt = xt−1 + sut−1

ut = θxt + εexplore

Table 1. Noise and episode length (EL) sensitivity of REX and SDE. σnoise is the
standard deviation of the environmental noise. The steps designate the number of
episodes until convergence, which was defined as Rt > Rlim (a value that all controllers
reached). The quotient REX/SDE is given as a speed-up factor.

# steps # steps
σnoise EL Rlim REX SDE speed-up σnoise EL Rlim REX SDE speed-up

0.5

5

-1.8

9450 3350 2.82 0.5
15 -1.6

9950 2000 4.98
15 9150 1850 4.95 1.0 9850 1400 7.04
30 9700 1050 9.24 1.5 7700 900 8.56
45 8800 650 13.54
60 8050 500 16.10
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Fig. 3. Left: Results for different episode lengths, from top to bottom: 5, 15, 30. Right:
Nonlinear controller with 18 free parameters on a 2-dimensional task. With REX, the
agent became stuck in a local optimum, while SDE found the same optimum about 15
times faster and then converged to a better solution.

Adding noise to the state update results in

x′
t = xt + εnoise = xt−1 + sut−1 + εnoise

u′
t = θ(xt−1 + sut−1 + εnoise) + εexplore

= θ(xt−1 + sut−1) + θεnoise + εexplore

= θxt + ε′explore

with ε′explore = θεnoise + εexplore. In our example, increasing the environmental
noise was equivalent to increasing the exploratory noise of the agent, which
obviously accelerated convergence.

Episode Length. In this series of experiments, we varied only the episode
length and otherwise used the default settings with σnoise = 0.5 for all runs. The
results are shown in Figure 3 on the left side and Table 1, left part. Convergence
speed with REX only improved marginally with longer episodes. The increased
variance introduced by longer episodes almost completely outweighed the higher
number of samples for a better gradient estimate. Since SDE does not introduce
more noise with longer episodes during a single rollout, it could profit from longer
episodes enormously. The speed-up factor rose almost proportionally with the
episode length.

Parameter Dimensionality. Here, we increased the dimensionality of the
problem in two ways: Instead of minimizing a scalar function, we minimized
g(x, y) = [x2, y2]T . Further, we used a nonlinear function approximator, namely
a multilayer perceptron with 3 hidden units with sigmoid activation and a bias
unit connected to hidden and output layer. We chose a single parameter σ̂ for ex-
ploration variance adaptation. Including σ̂ the system consisted of 18 adjustable
parameters, which made it a highly challenging task for policy gradient methods.
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The exploration variance was initially set to σ̂ = −2 which corresponds to an
effective variance of ∼ 0.135. The parameters were initialized with θi ∈ [−1, 0[
because positive actions quickly lead to high negative rewards and destabilized
learning. For smooth convergence, the learning rate α = 0.01 needed to be
smaller than in the one-dimensional task.

As the righthand side of Figure 3 shows, the agent with REX became stuck
after 15, 000 episodes at a local optimum around R = −70 from which it could
not recover. SDE on the other hand found the same local optimum after a mere
1, 000 episodes, and subsequently was able to converge to a much better solution.

4.2 Catching a Ball

This series of experiments is based on a simulated robot hand with realistically
modelled physics. We chose this experiment to show the predominance of SDE
over random exploration, especially in a realistic robot task. We used the Open
Dynamics Engine3 to model the hand, arm, body, and object. The arm has
3 degrees of freedom: shoulder, elbow, and wrist, where each joint is assumed
to be a 1D hinge joint, which limits the arm movements to forward-backward
and up-down. The hand itself consists of 4 fingers with 2 joints each, but for
simplicity we only use a single actor to move all finger joints together, which
gives the system the possibility to open and close the hand, but it cannot control
individual fingers. These limitations to hand and arm movement reduce the
overall complexity of the task while giving the system enough freedom to catch
the ball. A 3D visualization of the robot attempting a catch is shown in Fig. 4.
First, we used REINFORCE gradient estimation with optimal baseline and a
learning rate of α = 0.0001. We then repeated the experiment with Episodic
Natural Actor-Critic (ENAC), to see if SDE can be used for different gradient
estimation techniques as well.

Experiment Setup. The information given to the system are the three coor-
dinates of the ball position, so the robot “sees” where the ball is. It has four
degrees of freedom to act, and in each timestep it can add a positive or negative
torque to the joints. The controller therefore has 3 inputs and 4 outputs. We map
inputs directly to outputs, but squash the outgoing signal with a tanh-function
to ensure output between -1 and 1.

The reward function is defined as follows: upon release of the ball, in each
time step the reward can either be −3 if the ball hits the ground (in which case
the episode is considered a failure, because the system cannot recover from it)
or else the negative distance between ball center and palm center, which can be
any value between −3 (we capped the distance at 3 units) and −0.5 (the closest
possible distance considering the palm heights and ball radius). The return for
a whole episode is the mean over the episode: R = 1

N

∑N
n=1 rt. In practice, we

found an overall episodic return of −1 or better to represent nearly optimal

3 The Open Dynamics Engine (ODE) is an open source physics engine, see
http://www.ode.org/ for more details.

http://www.ode.org/
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Fig. 4. Visualization of the simulated robot hand while catching a ball. The ball is
released 5 units above the palm, where the palm dimensions are 1 x 0.1 x 1 units.
When the fingers grasp the ball and do not release it throughout the episode, the best
possible return (close to −1.0) is achieved.

catching behavior, considering the time from ball release to impact on palm,
which is penalized with the capped distance to the palm center.

One attempt at catching the ball was considered to be one episode, which
lasted for 500 timesteps. One simulation step corresponded to 0.01 seconds,
giving the system a simulated time of 5 seconds to catch and hold the ball.

For the policy updates, we first executed 20 episodes with exploration and
stored the complete history of states, actions, and rewards in an episode queue.
After executing one learning step with the stored episodes, the first episode was
discarded and one new rollout was executed and added to the front of the queue,
followed by another learning step. With this “online” procedure, a policy update
could be executed after each single step, resulting in smoother policy changes.
However, we did not evaluate each single policy but ran every twentieth a few
times without exploration. This yields a return estimate for the deterministic
policy. Training was stopped after 500 policy updates.

Results. We will first describe the results with REINFORCE. The whole ex-
periment was repeated 100 times. The left side of Figure 5 shows the learning
curves over 500 episodes. Please note that the curves are not perfectly smooth
because we only evaluated every twentieth policy. As can be seen, SDE finds a
near-perfect solution in almost every case, resulting in a very low variance. The
mean of the REX experiments indicate a semi-optimal solution, but in fact some
of the runs found a good solution while others failed, which explains the high
variance throughout the learning process.

The best controller found by SDE yielded a return of −0.95, REX reached
−0.97. While these values do not differ much, the chances of producing a good
controller are much higher with SDE. The right plot in Figure 5 shows the
percentage of runs where a solution was found that was better than a certain
value. Out of 100 runs, REX only found a mere 7 policies that qualified as
“good catches”, where SDE found 68. Almost all SDE runs, 98%, produced
rewards R ≥ −1.1, corresponding to behavior that would be considered a “catch”
(closing the hand and holding the ball), although not all policies were as precise
and quick as the “good catches”. A typical behavior that returns R 	 −1.5 can
be described as one that keeps the ball on the fingers throughout the episode
but hasn’t learned to close the hand. R 	 −2.0 corresponds to a behavior where
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Fig. 5. Results after 100 runs with REINFORCE. Left: The solid and dashed curves
show the mean over all runs, the filled envelopes represent the standard deviation.
While SDE (solid line) managed to learn to catch the ball quickly in every single case,
REX occasionally found a good solution but in most cases did not learn to catch the
ball. Right: Cumulative number of runs (out of 100) that achieved a certain level.
R ≥ −1 means “good catch”, R ≥ −1.1 corresponds to all “catches” (closing the hand
and holding the ball). R ≥ −1.5 describes all policies managing to keep the ball on the
hand throughout the episode. R ≥ −2 results from policies that at least slowed down
ball contact to the ground. The remaining policies dropped the ball right away.

Fig. 6. Results after 100 runs with ENAC. Both learning curves had relatively high
variances. While REX often didn’t find a good solution, SDE found a catching behavior
in almost every case, but many times lost it again due to continued exploration. REX
also found slightly more “good catches” but fell far behind SDE considering both
“good” and “average” catches.

the hand is held open and the ball falls onto the palm, rolls over the fingers
and is then dropped to the ground. Some of the REX trials weren’t even able
to reach the −2.0 mark. A typical worst-case behavior is pulling back the hand
and letting the ball drop to the ground immediately.

To investigate if SDE can be used with different gradient estimation tech-
niques, we ran the same experiments with ENAC [11] instead of REINFORCE.
We used a learning rate of 0.01 here, which lead to similar convergence speed.
The results are presented in Figure 6. The difference compared to the results
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with REINFORCE is, that both algorithms, REX and SDE had a relatively
high variance. While REX still had problems to converge to stable catches (yet
showed a 26% improvement over the REINFORCE version of REX for “good
catches”), SDE in most cases (93%) found a “catching” solution but often lost
the policy again due to continued exploration, which explains its high variance.
Perhaps this could have been prevented by using tricks like reducing the learn-
ing rate over time or including a momentum term in the gradient descent. These
advancements, however, are beyond the scope of this paper. SDE also had trou-
ble reaching near-optimal solutions with R ≥ −1.0 and even fell a little behind
REX. But when considering policies with R ≥ −1.1, SDE outperformed REX
by over 38%. Overall the experiments show that SDE can in fact improve more
advanced gradient estimation techniques like ENAC.

5 Conclusion

We introduced state-dependent exploration as an alternative to random explo-
ration for policy gradient methods. By creating strategy variations similar to
those of finite differences but without their disadvantages, SDE inserts consid-
erably less variance into each rollout or episode. We demonstrated how various
factors influence the convergence of both exploration strategies. SDE is much
more robust to environmental noise and exhibits advantages especially during
longer episodes. In problems involving many tunable parameters it not only con-
verges considerably faster than REX, but can also overcome local minima where
the other method gets stuck. In a robotics simulation task, SDE could clearly
outperform REX and delivered a stable, near-optimal result in almost every trial.
SDE also improves upon recent gradient estimation techniques such as ENAC.
Furthermore, SDE is simple and elegant, and easy to integrate into existing pol-
icy gradient implementations. All of this recommends SDE as a valuable addition
to the existing collection of policy gradient methods. Our toy experiment serves
to illustrate basic properties of SDE, while the physics-based ball catching simu-
lation gives a first hint of SDE’s performance in real-world applications. Ongoing
work is focusing on realistic robot domains.
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