
Noname manuscript No.
(will be inserted by the editor)

Minimizing Data Consumption with Sequential Online
Feature Selection

Thomas Rückstieß · Christian Osendorfer ·
Patrick van der Smagt

Received: date / Accepted: date

Abstract In most real-world information processing problems, data is not a free
resource. Its acquisition is often expensive and time-consuming. We investigate
how such cost factors can be included in supervised classification tasks by de-
riving classification as a sequential decision process and making it accessible to
Reinforcement Learning. Depending on previously selected features and the inter-
nal belief of the classifier, a next feature is chosen by a sequential online feature
selection that learns which features are most informative at each time step. Exper-
iments on toy datasets and a handwritten digits classification task show significant
reduction in required data for correct classification, while a medical diabetes pre-
diction task illustrates variable feature cost minimization as a further property of
our algorithm.

Keywords reinforcement learning · feature selection · classification

1 Introduction

With the increasing computerization of society, the amount of stored data appears
to grow rapidly, without the corresponding growth in underlying information. Ac-
cording to various studies1, recent years showed an annual 40–60% increase of
commercial storage needs and a 40+-fold increase is expected in the next decade.
In other words, the redundancy of data continuously increases. It has been com-
monly understood that data redundancy negatively impacts the performance of

Thomas Rückstieß and Christian Osendorfer
Institute of Computer Science VI
Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany
E-mail: ruecksti@in.tum.de, osendorf@in.tum.de

Patrick van der Smagt
DLR / Institute of Robotics and Mechatronics
P.O.Box 1116, 82230 Wessling, Germany
E-mail: smagt@dlr.de

1 E.g., Gartner’s survey at http://www.gartner.com/it/page.jsp?id=1460213.

2

classification methods. For that reason, it is good practice to reduce data re-
dundancy in a pre-processing feature selection (FS) step, using methods such as
dimensionality reduction, PCA, etc. to extract few meaningful features that can
explain the data.

Going beyond traditional FS methods, in this paper we demonstrate an ap-
proach to select features in sequence, making the decision which feature to select
next (a) online, during classification and (b) dependent on previously selected fea-
tures and the current internal state of the classifier. In particular, we will reduce
data consumption by embedding reinforcement learning (RL) into classification
tasks leading to our sequential online feature selection (SOFS). The question we
address in this paper is: “Where do I have to look next, in order to keep data
consumption and expenses low while maintaining good classification results?”

Feature selection with RL has been previously addressed [?], yet the novelty
of our approach lies in its sequential decision process. Our work is based on and
inspired by existing research, combining aspects of online FS [?,?] and attentional
control policy learning [?,?,?]. A similar concept, Online Streaming FS [?], has
features streaming in one at a time, where the control mechanism can accept or
reject the feature. While we adopt the idea of sequential online feature selection,
our scenario differs in that it allows access to all features with the subgoal of
minimizing data consumption.

Also closely related to our work is [?], classifying inputs in a sequential man-
ner based on approximate policy iteration. Their work uses the features directly
rather than the classifier belief, leading to a more integrated approach where both
classification and feature selection is done by a single component.

Related work further includes [?] which uses RL for feature learning in object
tracking dependent on visual context, and [?], where RL is used to create an
ordered list of image segments based on their importance for a face recognition
task. However, their decision process is not dependent on the internal state of the
classifier, which brings their method closer to conventional FS.

Despite the similar name, our approach differs from popular sequential feature
selection methods like “Sequential Forward Floating Selection” (SFFS, e.g., [?]),
as they still choose features prior to classification and do not allow selection of
different features for individual data samples.

Our framework is mapped out in Section 2. After introducing the general idea,
we formally define sequential classifiers and rephrase the problem as a Partially
Observable Markov Decision Process (POMDP). In addition, a novel action selec-
tion mechanism without replacement is introduced. Section 3 then demonstrates
our approach, first on two artificially created toy examples, then on real-world
problems, both with redundant (handwritten digit classification) and costly (dia-
betes classification) data and discusses the results.

2 Framework

2.1 General Idea

In Machine learning, solving a classification problem means to map an input x to
a label c ∈ C. Classification algorithms are trained on labelled training samples

3

I = {(x1, c1), . . . , (xn, cn)}, while the quality of such a learned algorithm is de-
termined by the generalization error on a separate test set. We regard features as
disjunct portions (scalars or vectors) of the input pattern x, with feature labels
fi ∈ F and feature values fi(x) for feature fi. One key ingredient for good classifi-
cation results is feature selection (also called feature subset selection): filtering out
irrelevant, noisy, misleading or redundant features. FS is therefore a combinato-
rial optimization problem that tries to identify those features which will minimize
the generalization error. In particular, FS tries to reduce the amount of useless or
redundant data to process.

We wanted to take this concept even further and focus on minimizing data
consumption, as outlined in the introduction. For this purpose, however, FS is
not ideal. Firstly, the FS process on its own commonly assumes free access to
the full dataset. But more significantly, FS determines for any input the same
subset of features that should be used for a subsequent classification. We argue
that this limitation is not only unnecessary, but in fact disadvantageous in terms
of minimizing data consumption.

By turning classification into a sequential decision process, we can significantly
reduce the amount of data to process. In that case, FS and classification become a
closely intertwined process: deciding which feature to select next depends on the
previously selected features and the behaviour of the classifier on them.

To demonstrate that RL can be used to select features in an online, sequen-
tial manner, we will take a fully trained classifier as an environment for an RL
agent, which learns which feature to access next, receiving reward on successful
classification of the partially uncovered input pattern. While training the classifier
requires access to the full training dataset, subsequent classifications (e.g., on a
verification dataset or on unseen data) will access fewer features (consume less
data) and therefore incur reduced feature costs. It is further possible to train the
classifier and SOFS simultaneously for even greater cost reduction. However, this
is not within the scope of this paper and will be addressed in a future publication.

2.2 Additional Notation

For the next sections, we additionally require the following notation: ordered se-
quences are denoted by (·), unordered sets are denoted by {·}, appending an el-
ement e to a sequence s is written as s ◦ e. Related to power sets, we define a
power sequence powerseq(M) of a set M to be the set of all ordered permutations
of all elements of the power set of M , including the empty sequence (). As an
example, for M = {1, 2}, the resulting powerseq(M) = {(), (1), (2), (1, 2), (2, 1)}.
During an episode, the feature history ht ∈ powerseq(F) is the sequence of all
previously selected features in an episode up to and including the current feature
at time t. Costs associated with accessing a feature f are represented as nega-
tive scalars r−f ∈ R, r−f < 0. We further introduce a non-negative global reward

r+ ∈ R, r+ ≥ 0 for correctly classifying an input. A classifier in general is denoted
by K, and sequential classifiers (defined in Section 2.3) are written as K̃.

4

2.3 Sequential Classification

We define a sequential classifier K̃ to be a functional mapping from the power
sequence of feature values to a set of classes:

K̃ : powerseq
(
{f(x)}f∈F

)
→ C (1)

Our framework assumes that feature values are passed to the classifier K̃ one at
a time, therefore K̃ requires some sort of memory. Recurrent Neural Networks
(RNN) [?], for instance, are known to have implicit memory that can store in-
formation about inputs seen in the past. If the classifier does not possess such a
memory, it can be provided explicitly: at timestep t, instead of presenting only the
t-th feature value ft(x) to the classifier, the whole history (f1(x), . . . , ft(x)) up to
time t is presented instead.

As it turns out, the above approach of providing explicit memory can also be
used to turn any classifier which can handle missing values [?] into a sequential
classifier. For a given input x and a set F1 of selected features, F1 ⊆ F , the
values of the features not chosen, i.e., F\F1, are defined as missing, which we will
denote as φ. Each episode starts with a vector of only missing values (φ, φ, . . .),
where φ can be the mean over all values in the dataset, or simply consist of all
zeros. More sophisticated ways of dealing with missing values based on imputation
methods [?] can be implemented accordingly. At each time step, the current feature
gradually uncovers the original pattern x more. As an example, assuming scalar
features f1, f4 and f6 were selected from an input pattern x ∈ R6, the input to
the classifier K would then be: (f1(x), φ, φ, f4(x), φ, f6(x)). This method allows
us to use existing, pretrained non-sequential classifiers in a sequential manner.
Note that the classifiers will remain unchanged and only act as an environment in
which the SOFS agent learns. We therefore do not measure the performance of the
classifiers but rather the number of features necessary until correct classification
was achieved.

2.4 Classification as POMDP

We will now reformulate classification as a Partially Observable Markov Decision
Process2 (POMDP) [?], making the problem sequential and thus accessible to
Reinforcement Learning algorithms.

To map the original problem of classification under the objective to mini-
mize data consumption to a POMDP, we define each of the elements of the 6-
tuple (S,A,O,P, Ω,R), which describes a POMDP, as follows: the state s ∈ S

at timestep t comprises the current input x, the classifier K̃, and the previous
feature history ht−1, so that st = (x, K̃, ht−1). This triple suffices to fully describe
the decision process at any point in time. Actions at ∈ A are chosen from the set
of features F\ht−1, i.e., previously chosen features are not available. Section 2.5
describes how this can be implemented.

2 A partially observable MDP is a MDP with limited access to its states, i.e., the agent does
not receive the full state information but only an incomplete observation based on the current
state.

5

The observation is represented by the classifier’s internal belief of the class after
seeing the values of all features in ht−1, written as ot = b(x, K̃, ht−1) = b(st). Most
classifiers base their class decision on some internal belief state. A Feed Forward
Network (FFN) for example often uses a softmax output representation, returning

a probability pi in [0, 1] for each of the classes with
∑|C|
i=1 pi = 1. And if this is not

the case (e.g., for purely discriminative functions like a Support Vector Machine), a
straightforward belief representation of the current class is a k-dimensional vector
with a 1-of-k coding. In the experiments section, we will demonstrate examples
with FFN, RNN and Naive Bayes classifiers. Each of these architectures allows us
to use the aforementioned softmax belief over the classes as belief state for the
POMDP. The probabilities pi for each class serve as an observation to the agent:

ot = b(x, K̃, ht−1) = (p1, p2, . . . , p|C|) (2)

Assuming a fixed x and a deterministic, pretrained classifier K̃, the state and
observation transition probabilities P and Ω collapse and can be described by a
deterministic transition function T , resulting in the next state and observation:

st+1 = Tx(st, at) = (x, K̃, ht−1 ◦ at) (3)

ot+1 = b (st+1) (4)

Lastly, the reward function R returns the reward rt at timestep t for transitioning
from state st to st+1 with action at. Given c as the correct class label, it is defined
as:

rt =

{
r+ + r−at

if K̃
(

(hτ (x))0<τ≤t

)
= c

r−at
else

(5)

2.5 Action Selection without Replacement

In this specific task we must ensure that an action (a feature) is only chosen at
most once per episode, i.e., the set of available actions at each given decision step
is dependent on the history ht of all previously selected actions in an episode. Note
that this does not violate the Markov assumption of the underlying MDP, because
no information about available actions flows back into the state and therefore the
decision does not depend on the feature history.

Value-based RL offers an elegant solution to this problem. By manually chang-
ing all action-values Q(o, at) to −∞ after choosing action at, we can guarantee
that all actions not previously chosen in the current episode will have a larger
value and be preferred over at. A compatible exploration strategy for this action
selection without replacement is Boltzmann exploration. Here, the probability of
choosing an action is proportional to its value under the given observation:

p(at|ot) =
eQ(ot,at)/τ∑
a e

Q(ot,a)/τ
, (6)

where τ is a temperature parameter that is slowly reduced during learning for
greedier selection towards the end. Thus, when selecting action at+1, all actions in
ht have a probability of e−∞ = 0 of being chosen again. At the end of an episode,
the original Q-values are restored.

6

Algorithm 1 Sequential Online Feature Selection (SOFS)

Require: labelled inputs I, agent A, sequential classifier K̃
1: repeat
2: choose (x, c) ∈ I randomly
3: h0 ← (φ)

4: o1 ← b(x, K̃, h0)
5: for t = 1 to |F | do
6: at ← A(ot)
7: ht ← ht−1 ◦ at
8: ot+1 ← b(x, K̃, ht)

9: if K̃
(

(hτ (x))0<τ≤t

)
= c then

10: rt ← (r+ + r−at)
11: break
12: else
13: rt ← r−at
14: end if
15: end for
16: train A with (o1, a1, r1, . . . , rt, ot+1)
17: until convergence

2.6 Solving the POMDP

Having defined the original task of classification with minimal data consumption
as a POMDP and solved the problem of action selection without replacement,
we can revert to existing solutions for this class of problems. Since the transition
function is unknown to the agent, it needs to learn from experience, and a second
complication is the continuous observation space. For regular MDPs, a method
well-suited to tackle both of these issues is Fitted Q-Iteration (FQI) [?]. The

sequential classifier K̃ then takes care of the PO part of the POMDP, yielding a
static belief over the sequential input stream.

FQI uses a batch-trained function approximator (FA) as action-value function.
Various types of non-linear function approximators have been successfully used
with FQI, e.g., Neural Networks [?], CMACs [?], Gaussian Processes [?], Advantage
Weighted Regression [?], and others [?]. In this paper, we will use Locally Weighted
Projection Regression (LWPR) [?] as the value function approximator of choice,
as it is a fast robust online method that can handle large amounts of data.

The details of the algorithm are presented in Listing 1. The history is always
initialized with the missing value φ (line 3). This gives the system the chance to
pick the first feature before seeing any real data. The SOFS agent is trained after
every episode (line 16), which ends either with correct classification (line 9–11)
or when the whole input pattern was uncovered (line 15), i.e., all features were
accessed. Training is continued until the algorithm converges, i.e., the average
episodic return no longer significantly improves.

3 Experiments and Discussion

We evaluate the proposed method on four different datasets to demonstrate and
point out certain properties of SOFS: two artificial toy examples, the MNIST
handwritten digits classification task, and a medical dataset for diabetes predic-

7

6

9

5

3

8

1

4

7

2

6

9

5

3

8

1

4

7

2

6

9

5

3

8

1

4

7

2

6

9

5

3

8

1

4

7

2

pattern 1 pattern 2 pattern 3 pattern 4

Fig. 1 Artificial toy data to investigate whether SOFS bases its decision on the current state
or simply chooses informative features (like regular FS) independent of the state. Pattern 1
and 2 can be distinguished with features 8 or 9, while pattern 3 and 4 can be distinguished
with feature 6.

tion. Each experiment was repeated 25 times, the plots for MNIST and the diabetes
task show single runs (gray) and the mean value over all runs (black).

3.1 Toy Example I—Shapes

This toy dataset was inspired by the MNIST handwritten digits set (Section 3.3)
but is much simpler, has a lower dimension and only 4 different patterns, illustrated
in Figure 1. It was chosen to get an insight into the decision-making process of a
trained SOFS agent, which a large dataset like MNIST cannot provide that easily.

Each pattern consists of 3×3 pixels, and each pixel was considered a feature. We
used artificially created training data (1000 samples, each randomly chosen from
the four patterns). Before training the SOFS agent, we pre-trained a FFN classifier
with a 9-20-4 architecture, sigmoid activation functions in the hidden layer, and
softmax activation in the output layer. Training was conducted sequentially, using
the explicit memory approach from Section 2.3. The class targets used 1-of-n
encoding, training was conducted over the full dataset for 30 epochs with a learning
rate α = 0.1.

The FQI agent was then trained over 600 episodes according to Section 2.6. To
evaluate the learned behavior, exploration was deactivated, rendering the whole
process deterministic. The system was then presented with all four input patterns.
Figure 2 illustrates its response for each case and the decision process during an
episode. Since only four patterns were used without any noise, the system quickly
converged to a perfect solution, always classifying the correct pattern after looking
at 2 features at most.

3.2 Toy Example II—Cube

In this second toy example, we created an artificial dataset with an arbitrary
number of features F , which can be set upon creation of the data. The idea is
to have some useful information hidden in each data point while most of the
features are non-informative random values. The position of the useful features
are dependent on the class label, however.

This is how we created the cube dataset: Three of the features indicate x-,
y-, and z-coordinates in a three-dimensional space. Each of the coordinates was

8

(a)

(b)

(c)

(d)

f4

1 2

3

4

1

2

3 4

no

1 2 3 4

no
1
2 3 4

f6

f9

1 2 3

4

✓

✓
yes

✓

yes
✓

(e) φ

Fig. 2 Decision process of the SOFS agent after training. (a)–(d) each show the already
uncovered features in the explicit memory (left), the belief state histogram (middle) and the
action value table for selecting the next feature (right, white indicates high values). (e) shows
the decision process graphically. Initially the agent always sees the missing value and chooses
to look at feature 4 first. If the feature is white, the classifier favours class 2, and SOFS proposes
to select feature 9, should it be wrong (a). After looking at feature 9, the classifier then favours
class 1 (b). If feature 4 was black, however, the classifier favours class 3 and SOFS suggests
to select a different feature next, namely feature 6 (c). After looking at it, the classifier now
favors class 4 (d).

randomly chosen from a Bernoulli distribution with probability p = 0.5 to be either
0 or 1. Then, some normally distributed noise ε was added to the coordinates with
ε ∼ N (0, 0.1). This places each of the points around one of eight corners of a cube,
as shown in Figure 3. All other features carry no information and are initialised
with a uniformly drawn value between 0 and 1. The goal is to classify each of
the points into its correct cube corner. While it would be an easy task for any
feature selection method to isolate the three information- carrying features from
the random ones, we added one extra processing step to the dataset: The three
coordinate features are not at the same position in each data point, but shifted
depending on their class label. The index of the x-coordinate within a data point
for class label ci is (i mod |F |), y and z are positioned at (i + 1 mod |F |) and
(i + 2 mod |F |), respectively. The modulo operator ensures that the coordinate
indices are on valid positions, in case there are less then 10 features in the dataset.

This means that for class 1 with corner coordinate (0, 0, 0), a data point would
be (x, y, z, r1, r2, r3, . . .), with ri being the random features. For class 4 and corner
coordinate (0, 1, 1), the data points are defined as (r1, r2, r3, x, y, z, . . .), and so on.

Conventional FS methods can only fail with this dataset (it is constructed that
way). None of the features by itself is meaningful across all classes. The best they
can achieve is to pick the 10 features that contain some coordinate information.
While this seems to be a very unfair and artifical dataset, biased towards SOFS, one
should keep in mind that it is quite common for features to only carry information

9

0

1
0

1

0

1

Fig. 3 Visualisation of the cube toy dataset. Each data point is assigned to one of the
eight corners of a three-dimensional cube with a normally distributed noise in each dimen-
sion added. These three meaningful coordinate features are then combined with a number
of non-informative random features. Furthermore, the indices of the coordinate features are
different for each class.

in a certain class, or in other words, having class dependency. This experiment
demonstrates that SOFS can use this class dependency to select those features
during the classification process.

For classification, we use a logistic regression classifier with a softmax output
for multiple classes. We tested datasets with 5, 10, 20 and 30 random features
added in addition to the 3 meaningful coordinates. Each experiment was repeated
25 times with feature costs set to r−k = 0.1 ∀k and r+ = 1.0 and we compare the
development of the number of necessary features to access before correct classifi-
cation occurs. Figure 5 shows the results over 350 episodes of training the SOFS
agent. In all cases, the number of required feature quickly drops significantly be-
low 10, the best possible outcome for conventional FS methods. Initial number of
features and final number of features are displayed at the axis sides left and right
respectively.

3.3 Handwritten MNIST digit classification

In this experiment we looked at the well-known MNIST handwritten digit classifi-
cation task [?], consisting of 60, 000 training and 10, 000 validation examples. Each
pattern is an image of 28 × 28 pixels of gray values in [0, 1], the task is to map
each image to one of the digits 0–9. We split every image into 16 non-overlapping
7×7 patches, each patch representing a feature.

We present results for a FFN as a non-sequential classifier and a RNN with
Long Short Term Memory (LSTM) cells [?] as a sequential classifier with implicit
memory. The FFN was chosen because it is a well-understood simple method,
widely used for classification. The RNN was chosen to investigate, how naturally

10

x y z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

class 1

class 2

class 3

class 4

class 5

class 6

class 7

class 8

...

...

...

...

...

...

...

...

10 features carry useful information overall

3 features carry useful information per class

Fig. 4 Illustration of the coordinate feature placement for the cube dataset. The white boxes
resemble random features which carry no useful information for the classification task. The
black x, y, and z boxes are the informative features that describe a coordinate in three-
dimensional space. The coordinate features are shifted by one position for each class. Con-
ventional FS methods can only select features independent of the class and thus their best
possible outcome is to choose the 10 features that carry useful information.

sequential classifiers work with SOFS. Throughout this experiment, rewards were
set to r+ = 1.0 and r−k = −0.1 ∀k.

The FFN has one hidden layer with sigmoid activation, the architecture is 784-
300-10. The output layer uses softmax activation with a 1-of-n coding. Pretraining
of the classifier was executed online with a learning rate α = 0.1 on the full
training dataset. After 30 epochs of presenting all 60, 000 digits to the network,
the error rate on the test dataset is 1.18%, slightly better than reported in [?].
However, this result is secondary, as the network acts merely as an environment
for the SOFS agent. During SOFS training, each episode uses a random sample
from the test dataset. Experience replay [?] is not used, as the LWPR function
approximator is online in nature and can remember previous data. Figure 6 (left
two plots) shows the development of episode lengths and returns during training
of the SOFS agent. The average number of features required to correctly classify
dropped from initially 7.65 (random order) to 3.06 (trained SOFS). The rate of
incorrectly classified images was 0.77%.

The architecture of the RNN classifier is 49-50-10 with LSTM cells in the
hidden layer. The output activation function is softmax with a 1-of-n coding. The
RNN was pretrained with Back-Propagation Trough Time (BPTT), see e.g. [?],
with a learning rate of α = 0.01 and a random order of features. The results are
illustrated in Figure 6 (right two plots). The average number of required features
decreases from 4.91 features (random order) to 1.99 (trained SOFS). The rate of
incorrectly classified images was 1.71%.

11

30 rfa

20 rfa

10 rfa

 5 rfa

7.15
6.57

4.48
3.32

27.16

18.73

10.98

6.89

rfa = random features added

Fig. 5 Results of the SOFS training process on the cube dataset. The four plots show instances
of the dataset with a different number of random features added (rfa) to the 3 informative
features. In all cases, SOFS learns to ignore most of the random features and mostly focuses
on the informative ones. However, the more random features were added, the more difficult
it is to find the 3 coordinates. Initial number of features before training and final number of
features are displayed at the axis sides left and right respectively.

3.4 Diabetes Dataset with Naive Bayes Classification

For the second experiment, we chose a more practical example from the medical
field, the Pima Indians Diabetes data set [?]. We also decided on a Naive Bayes
classification, to demonstrate the flexibility of the proposed method in terms of
classifiers. The data set consists of 768 samples with 8 features (real-valued and
integer) and two target classes (diabetes, no diabetes). Pretraining with a Naive
Bayes classifier resulted in 73% correct prediction. There are two interesting as-
pects in this dataset. Firstly, it contains missing values, which should be handled
well as we already use missing values to turn classification into a sequential pro-
cess. Secondly, the features represent very different attributes of the (all female)
patients. Some are simple questions (e.g. age, number of times pregnant), others
are more complex medical tests (e.g. plasma glucose concentration after 2h in an
oral glucose tolerance test). While the MNIST experiment used uniform costs r−k

0 2 4 6 8 10
episodes (x 100)

2

3

4

5

6

7

8

9

fe
a
tu

re
s

FFN episode length

single runs
mean

0 2 4 6 8 10
episodes (x 100)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
tu

rn

FFN mean return

single runs
mean

0 10 20 30 40 50 60
episodes (x 1,000)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

fe
a
tu

re
s

RNN episode length

single runs
mean

0 10 20 30 40 50 60
episodes (x 1,000)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
tu

rn

RNN mean return

single runs
mean

Fig. 6 Results of MNIST with FFN (left two plots) and RNN (right two plots). For each
classifier, mean episode length and mean return over training episodes are shown.

12

Table 1 Assigned feature costs for diabetes dataset.

pregnant
2h glucose
concentr.

blood
pressure

skin fold
thickness

2h serum
insulin

BMI
diabetes
pedigree

age

-1 -120 -5 -5 -120 -5 -60 -1

0 10 20 30 40 50 60
episodes

3.0

3.5

4.0

4.5

5.0

5.5

fe
a
tu

re
s

uniform episode length

single runs
mean

0 10 20 30 40 50 60
episodes

0.50

0.45

0.40

0.35

0.30

0.25

re
tu

rn

uniform RL return

single runs
mean

0 10 20 30 40 50 60
episodes

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

fe
a
tu

re
s

variable episode length

single runs
mean

0 10 20 30 40 50 60
episodes

240

220

200

180

160

140

120

re
tu

rn

variable RL return

single runs
mean

Fig. 7 Results of the PIMA diabetes dataset with Naive Bayes classification. Left two figures:
episode lengths and mean returns for uniform feature costs. Right two figures: episode lengths
and mean returns for feature costs according to Table 1.

for all features fk, this experiment demonstrates another property of SOFS: the
feature costs can be weighted, representing cheaper and more expensive features.
To investigate the difference between uniform and variable feature costs, two sets
of experiments were conducted: The first uses uniform costs r−k = −0.1∀k, with a
final number of required features of 3.7 on average. The second variant uses vari-
able, estimated costs3 shown in Table 1. Number of features increased from 4.99
to 5.66 on average, while the average return increased from -218 to -141. Figure 7
shows the results of both variants graphically.

3.5 Discussion

Early on we wanted to find out whether the SOFS agent is in fact able to learn
to select features based on a current observation or if the selected features simply
improve the results on average, independent of the belief. The results of the first
toy experiment delivered an answer to that question: Figure 2 shows two cases (a)
and (c) with different states, leading to the selection of feature 9 and feature 6, re-
spectively. A first key finding is therefore, that SOFS is superior to any traditional
FS method in that it can select features during a decision sequence dependent on
the current observation.

The second toy dataset “Cube” was artificially created to demonstrate that
features with class dependencies are a real issue for conventional FS methods. We
didn’t include any comparison to other FS methods but assumed that they would
optimally choose the 10 features4 that carried useful information overall. In all
cases, SOFS could beat that number and reduce the amount of required features

3 These costs represent a rough estimate of the time in minutes it takes to acquire the feature
on a real patient. The estimates are based on oral communication with a local GP.

4 with the exception of the 5rfa experiment, which only has 8 features in total. All of them
carry information and an optimal static FS method would have to choose all 8.

13

to a significantly lower value by making the selection process dependent of the
class belief.

The MNIST experiment with FFN classifier demonstrates a significant reduc-
tion of data consumption in two ways. Firstly, by making the decision process
sequential, which enables the classifier to make decisions before all features have
been looked at. This step alone reduces the average number of required features
from all 16 features down to 7.65 (a reduction to 48%), and indicates that there
is in fact a lot of redundancy in the MNIST images. Secondly, consumption is
reduced further by learning the dependency of current belief and next feature,
instead of accessing them in random order. After training the SOFS agent, data
consumption decreases to 3.06 on average, 19% of the full data.

It is important to note that the stated error rates (1.18% for static and 0.77%
for sequential classification) cannot be compared directly, because of the very
different nature of the sequential approach. Sequential classification replaces the
conventional error rates as performance measure based on the binary success of
each sample (classified / not classified) with a scalar value (how many features
until classified). In order to compare both classification methods, we would have to
additionally learn when to stop the decision process, without using the class label.
This could be achieved with a confidence threshold (e.g. if max(belief) reaches a
certain value, as proposed in [?]) or by explicitly learning when to stop with either
supervised or RL methods (the latter was successfully used in [?]). In this paper,
we focussed on the RL feature selection process with existing classifiers rather than
the performance of sequential classifiers. This issue will be addressed in a future
publication.

Another aspect we investigated was the use of RNNs as naturally sequential
classifiers. Where static classifiers still need to look at a full input (at least in
terms of dimension, even though most of the pattern is filled with missing values),
RNNs can make use of their intrinsic memory and achieve similar results with
significantly fewer nodes in input and hidden layer and therefore even less data
processing. They also converge with lower variance and reduce data consumption
to a mere 12% on the MNIST task.

Finally, the Pima diabetes data set illustrates the use of variable feature costs,
a variant that is naturally supported in our framework. The left two plots in
Figure 7 show the development of episode length (i.e. number of selected features
until correct classification) and mean return of the uniform cost experiment. As
expected, episode lengths decrease with increasing returns, as the only objective for
the agent is: select those features first, that lead to correct classification. However,
if the reward scheme is changed (right two plots in Figure 7), we witness a growth
of episode lengths in most of the 25 trials and on average. Still, all trials increase
their returns (rightmost plot), which indicates that the agent does indeed learn
and improve its performance. Comparing the final return average of -141 and the
worst final return of -160 to the individual costs of Table 1, it becomes clear that
in all runs, only one of the three most expensive features (number 2, 5 and 7)
was selected. This behavior was caused by the different objective: minimize the
overall costs associated with the features. In other words, it is okay to select many
features, as long as they are cheap.

14

4 Conclusion

We have derived classification as a POMDP and thus made it accessible to RL
methods. The application we focussed on was minimization of data consumption,
by training an RL agent to pick features first that lead to quick classification.
We presented results for different classifiers (both static and sequential) on vision
and medical tasks. Our approach reduces the number of necessary features to
access to a fraction of the full input, down to 12% with RNN classifiers. We also
demonstrated that SOFS is able to deal with weighted feature costs, a property
that exists in plenty of real-world applications. A new action selection method
was introduced that draws actions without replacement. It should prove useful in
other ordering tasks as well, such as scheduling problems. Lastly, we would like to
point out that our approach is not limited to classification but easily extends to
regression or other supervised tasks.

