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Abstract

We describe a robust method for 3D visual ma-
nipulator control using a redundant uncalibrated
camera system. Under the assumption of a sim-
ple linear camera model a fusion equation is
derived for which only three parameters have
to be estimated regardless of the number of
cameras. Robustness is increased by detecting
measurement-failures exploiting a simple heuris-
tic symptom generation. In simulations as well
as in real experiments the feasibility of our ap-
proach under various failure-situations for a 3D
positioning task of a six degree of freedom Puma
260 is demonstrated.1

1 Introduction

It is a common task for visual-guidance systems
to track at least the object to be guided. The prob-
lem that is tackled in this work is how to detect
sensory failures in such systems.

In our recent work [6] we presented a method
which exploits several arbitrary positioned uncal-
ibrated cameras to guide a 6 degrees-of-freedom
robot towards a 3D goal-position. A simple lin-
ear relationship between 3D displacements and
their projection onto each image plane was de-
rived and estimated with three initial linear in-
dependent robot movements. This directly mea-
sured hand-eye transformation formed the base
of a dynamic-look-and-move [4] strategy.

Doing this we could abstain from an laborious
and cumbersome explicit calibration of the cam-

1The work presented in this paper has been funded by
the German Research Foundation (DFG) in the collabora-
tive research afford SFB 360, project D4.

eras and their transformation w. r. t. the robot.
In each step the image-displacement between the
manipulator and the goal was measured locally
in every image. The single measurements were
fused together using a Kalman filter in order to
estimate a 3D correction. This procedure was
repeated until the goal has been reached. We
showed that increasing the number of cameras
the overall accuracy and tolerance w. r. t. simple
failures (e. g. increased noise, no data anymore)
could be increased. On the other hand the goal
could not be reached if the noise in one camera
was significantly higher or the tracking-process
stuck on another object although other cameras
still provided sufficient data.

Hence the present work describes the idea of de-
tecting several possible measurement failures in
order to prevent the system from relying on erro-
neous information. We used a few so called [2]
heuristic symptoms to generate residuals and
evaluated them before a 3D correction is calcu-
lated. If an incorrect measurement is detected its
contribution to the overall result is neglected.

2 Visual Guidance Strategy

The task is to position a manipulator holding an
object over a desired target (Fig. 1) by utilising
several uncalibrated cameras. The key idea of
our visual control approach is to assume a paral-
lel camera model for the image forming process.
We than define an image-based position error in
j different views and construct a simple linear
equation from the parallel camera-model. The
latter is called the fusion equation and is used for
a resulting Cartesian correction movement. The
parameters of this equation are estimated with



a linear Kalman filter (KF) using measurements
obtained by the cameras in different locations.

(a) (b)

Fig. 1: Initial (a) and final position (b) of the
manipulator and its projected trajectory as seen
from one camera.

Using a parallel projection [3] Pj to generate the
feature fj of a 3D point m given in homoge-
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Assuming that both the target and the manipula-
tor can be represented as points in Cartesian 3D
space, a simple error function for a linear point-
to-point movement of a manipulator at m to a
goal g results from defining an appropriate error-
displacement vector �de which is to be min-
imised:

�de �m� g � � (2)

For the corresponding displacement feature �fje
in the jth camera using eq. (1) a simple linear
relationship follows:

�f je � f jm � f jg
� P j �mw � P j � gw

� Rj �m� tj �Rj � g � tj

� Rj ��de

(3)

Given a base of three orthogonal displacement
vectors2 fd��d��d�g the error-displacement

2Since only displacements are considered, the� is omit-
ted in the sequel.

vector de can be calculated by their linear com-
bination:
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Using Rj , the projected version of eq. (4) is:
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Hence under this assumption fe is a linear-
combination of the projected base using the same
� as in 3D space. Calculating an appropriate set
of scalars ��� ��� �� in the image space and insert-
ing them into eq. (4) leads directly to the desired
displacement-vector in the Cartesian 3D space.

Unfortunately, eq. (5) is under determined.
Therefore at least two views are necessary yield-
ing an over-determined system. Assuming a re-
dundant multi-camera system with j different
cameras, all views can be integrated simply by
solving the following over-determined system:�
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Eq. (6) is the aforementioned fusion equation,
which plays the central role in our approach.
Only three parameters need to be estimated (in-
dependent of the number of cameras) and only
three initial test movements are necessary for this
purpose. H is determined simply by measuring
the projection of each test move in all the images.

We use a linear discrete Kalman filter to solve for
the parameters of eq. (6). Assuming zero-mean,
white-noise v and w, the plant and measurement
equation are:

��k � �� � ��k� � v
z�k� � H�k� � ��k� �w

v � N���Q��w � N���R�

(7)

The incremental prediction and update solutions
can be found in the literature [1]. In our approach
the whole system dynamic is included in its noise



v. We have chosen pure diagonal matrices for
Q, R and the initial state covariance P��j�� with
the diagonal elements ��P��j��

� ���� ��Q � ����

and ��R � ���. The initial state-estimate is set to
���j�� � ��� �� ��T . For a point-to-point move-

ment to a selected target the projection f
j
i of

the manipulator during the three Cartesian test
moves are obtained first. With the measured po-
sition residuals an initial down-scaled correction
movement dc � s �de�� ��� �	 is calculated. Af-
ter each movement a new � is estimated. This is
iterated until the target is reached (dynamic look-
and-move). Results from simulations and real ex-
periments showing the accuracy of the proposed
method can be found in [6].

3 Residual Generation

To realise the above described visual-guidance
scheme it is necessary to track the robots posi-
tion in each image. When using several redun-
dant cameras one should expect to benefit from
the redundancy not only by an increased accu-
racy but also from an increased robustness. This
is true (up to a certain amount) for noisy mea-
surements (s. Fig. 2(a)) but in case of serious
errors (e.g. the robot is occluded or the algorithm
tracks something else) the target is not reached
anymore.
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(a) Faultless trajectory.

real
trajectory

drifting goal
real goal
position

(b) Undetected fault.

Fig. 2: Trajectory from a faultless camera and
a failing camera without detection (stopped after
30 iterations).

Fig. 2(b) shows the (simulated) case of a
tracking-failure. After a few iterations the goal
starts to drift away from its initial position. With-
out a failure detection the faulty measurements
result in a trajectory far from the desired goal.

Under the constraint of a non moving target we

defined five heuristic symptoms to detect several
failures. All of them are measured and evaluated
locally for each image:

� dT
The distance from the projection of the de-
sired trajectory. This projection is a straight
line from the manipulators position after the
test moves towards the desired goal. A fail-
ure occurs if the manipulator moves to far
away from the desired trajectory.

� �T
The actual angle between the desired trajec-
tory and the last piece of the manipulators
actual trajectory (calculated from the actual
and the last manipulator-position).

� dm
The projection of the last piece of the ma-
nipulators actual trajectory onto the desired
trajectory between two successive images.

� dg
The moved distance of the goal between the
first and the actual detected position.

� dmg

The remaining distance between manipula-
tor and goal.
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Fig. 3: Symptoms of a faultless camera.

Fig. 3 shows an example symptoms-plot of a
faultless camera. With these symptoms we have
defined three failure-indicators:

1. Trajectory is (not) ok.
traj ok � �dT � 
� and �T � 
����.
If the manipulator distance is less than 20



pixels and the angle between the actual
trajectory-piece and the desired trajectory is
less than 25 degrees then the manipulators
is still on its desired path otherwise not. Un-
fortunately �T tends to oscillate very strong
the nearer the manipulators comes to the
goal. Therefore �T is set to zero if dmg �

���.

2. The manipulator is not moving.
m static � dm � ���. This is the case
if the manipulator-tracker stucks to another
object. In order to prevent false alarms near
the desired goal this indicator is evaluated
only in a certain distance from the goal (if
dmg � 
���).

3. The goal is not static.
g static � dg � ����. Due to noise the
goal is allowed to move only a small dis-
tance from its initial detected position.

A failure is generated if any of the above indica-
tors is on. The contribution of an erroneous mea-
surement to the overall result is neglected simply
by zeroing the corresponding innovation in the
Kalman filter.

4 Simulation

We first show examples of detected failures gen-
erated within a simulation. For each modelled
failure we present an image of the situation ob-
served by the failing camera. We used four cam-
eras from which one produces a failure after the
fifth iteration. The cameras are placed at dis-
tances between two and three meters from the
goal. The initial distance between the goal and
the manipulator is approx. 40cm. Each measure-
ment is overlayed with simulated Gaussian noise
with a deviation of two pixels. With the afore-
mentioned heuristic rules we are able to detect
the following failure situations:

� Heavy noise.
Due to very high noise no reliable displace-
ments are detectable. This results in a mov-
ing target (g static is not true) and/or a non
straight manipulator trajectory (traj ok is
not true) (s. Fig. 4(a)).

� Non moving manipulator.
This includes the case of a stationary differ-
ence (always the same measurement). De-
tected with m static (s. Fig. 4(b)).

� Manipulator drift and/or goal drift.
E. g. if the tracker looses contact to one or
both of them and drifts away gradually. The
traj ok flag indicates the drifting of the ma-
nipulator while g static signals a non sta-
tionary goal (s. Fig. 4(c)).

� Manipulator and/or goal walk.
Due to a tracking failure something else is
tracked instead. This failure is simulated by
an incremental random-walk (s. Fig. 4(d)).
As in the case of a drifting goal g static sig-
nals a moving goal. A walking manipulator
is detected either with traj ok or m static

(if it is still on the trajectory but makes no
progress).

noisy goal

noisy manipulator

(a) Heavy noise.

non moving
manipulator

(b) Non moving manip-
ulator.

drifting manipulator

drifting goal

(c) Drifting goal and
manipulator.

walking goal

walking manipulator

(d) Walking goal and
manipulator.

Fig. 4: Trajectories in the presence of detected
failures.

5 Real Experiment

In this section we present two common failure-
situations detectable with our approach. The first
is the tracking of another robot resulting either in



(a) (b)

(c) (d)

Fig. 5: Initial conditions of all cameras after the
test moves.

a faulty trajectory or a non moving manipulator.
The second failure is the occlusion of the robot
and the goal. Similar to the simulation we used
four cameras to guide the manipulator. The track-
ing was performed using a template-match. The
task in the experiment was to position the robot
carrying a yellow wooden cube above a desired
target (also a cube). Fig. 5 shows the starting
conditions of all cameras for all experiments after
having performed the initial test moves. In Fig. 6
the corresponding last images for a faultless run

(a) (b)

(c) (d)

Fig. 6: Result of a faultless run.

(a) (b)

(c) (d)

Fig. 7: Fault induced by a non moving second
manipulator. The failing camera is (d).

are displayed showing the projected trajectory af-
ter task-completion within 22 iterations.

In the first experiment we moved manually an ad-
ditional manipulator into the scene. Fig. 7 shows
the last images of the corresponding sequence.
Although the tracking-algorithm got caught after
8 iterations (which was detected in the 9th itera-
tion) to the non moving manipulator (Fig. 7(d))
the goal-position above the desired target was
reached roughly after 22 iterations (Fig. 7(a) to
(c)).

Fig. 8 shows the result when the second manip-
ulator is moving instead of holding its position.
Fig. 8(d) shows the tracked trajectory of the ma-
nipulator in the foreground which was moved
manually. In this case the target was successfully
reached again due to the three faultless working
cameras (Fig. 8(a) to (c)).

In the second experiment the failure was induced
by occlusion of the manipulator in the sight of
another camera. After 8 iterations the manipu-
lator was occluded by a newspaper and became
invisible. However, the tracking-algorithm de-
tected the best match resulting in a randomly
walking manipulator (Fig. 9(c)). As within the
other experiments the desired goal-position could
still be reached but took 24 iterations this time
((Fig. 9(a), (b) and (d)).



(a) (b) .
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Fig. 8: Fault induced by a moving additional ma-
nipulator. The failing camera again is (d).

6 Conclusions

In this work we presented an uncalibrated vi-
sual manipulator control using redundant cam-
eras. Independently of the number of cameras
only three parameters have to be estimated. Al-
though one should expect that using a redun-
dant camera-system should increase the system-
robustness we found situations in which rely-
ing on erroneous measurements would result in
a complete failure. Therefore we introduced
a heuristic-symptom based fault-detection. We
demonstrated the appropriateness of this scheme
both in simulations and real-world experiments.

As every model-based fault-detection our scheme
suffers from the fact that unmodelled faults won’t
be detected and/or that the defined fixed thresh-
olds in the residual evaluation are not usable in
every situation.

Therefore our future work will tend to go into
two directions which we would like to evaluate
and to compare to each other. First we think of
exploiting the Kalman filter itself to detect faults
with ideas presented in [5] for detection of faults
in navigation systems. On the other hand we
would like to extend the residual evaluation with
learning methods as described in [2] but using a
neuro-fuzzy approach developed in our group [7]
in order to overcome the fixed-threshold prob-
lem.

(a) (b)

(c) (d)

Fig. 9: Fault due to occlusion. The failing cam-
era is now (c).
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