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Abstract—Existing content-based music similarity estimation
methods largely build on complex hand-crafted feature extrac-
tors, which are difficult to engineer. As an alternative, unsuper-
vised machine learning allows to learn features empirically from
data. We train a recently proposed model, the mean-covariance
Restricted Boltzmann Machine [1], on music spectrogram ex-
cerpts and employ it for music similarity estimation. In k-NN
based genre retrieval experiments on three datasets, it clearly
outperforms MFCC-based methods, beats simple unsupervised
feature extraction using k-Means and comes close to the state-
of-the-art. This shows that unsupervised feature extraction poses
a viable alternative to engineered features.

I. INTRODUCTION

Fostered by the advancement of digital technologies, both
catalogs of music distributors and personal music collections
have grown to sizes that call for automated methods to manage
them. Classification algorithms, for instance, help grouping
music according to a given taxonomy. Here we consider the
more difficult task of estimating perceived music similarity,
which may be used to recommend music based on examples
or to generate well-sounding playlists. In particular, we are
interested in content-based methods that rely on sound only,
not requiring any metadata.

Existing content-based music similarity estimation systems
usually compare music in three stages: (a) extracting local
features from the audio signals, (b) aggregating these features
into a global descriptor for each song and (c) calculating the
distance between global models. While machine learning tech-
niques have been employed for global modelling (e.g., GMMs
and HMMs [2] or HDPs [3]) and metric optimization [4], fea-
ture extraction is mostly hand-crafted. Supplementing generic
low-level audio features such as MFCCs [5], state-of-the-art
systems rely on elaborate transformations of spectrograms,
tuned to capture different musical aspects (e.g., fluctuation
patterns [6], onset patterns [7] and block-level features [8]).
An alternative to such knowledge engineering is empirical
induction [9] by unsupervised machine learning, which has
been shown to yield feature extractors similar to mammals’
primary visual cortex [10] and cochlear [11] and thus might
also learn what humans perceive in music [12]. A recently
proposed method for unsupervised feature extraction from
images, the mean-covariance Restricted Boltzmann Machine
(mcRBM) [1], has successfully been applied to spectrogram
excerpts to model speech [13], but never to music.

In this work, we build a music similarity estimation sys-
tem based on an mcRBM. Section II briefly reviews former
attempts at unsupervised music feature extraction, Section III
details our approach and introduces the mcRBM, Section IV
evaluates our system on three genre-labeled datasets, com-
paring it to baseline methods and the state-of-the-art, and
Section V gives a conclusion and outlook on future work.

II. RELATED WORK

In literature, unsupervised learning on music has mostly
been focusing on source separation. As an early example,
Abdallah [12] showed that sparse coding of harpsichord music
spectrograms could reveal notes. Hoffmann et al. [14] train a
shift-invariant HDP on spectrograms and yield decompositions
of songs into musically meaningful components such as drum
sounds and vocals, as well as transcriptions of songs in terms
of these components. While this demonstrates the power of
unsupervised learning, such complex song descriptions are not
directly usable for similarity estimation.

RBMs have been applied to music, but only for supervised
classification: Lee et al. [15] train stacked convolutional RBMs
on frame-wisely PCA-compressed spectrograms, yielding fea-
tures that surpass MFCCs in 5-way genre and 4-way artist
classification (not stating the method used). Hamel et al. [16]
train a stack of RBMs on spectral frames, extensively fine-tune
the network using genre labels and use it to extract frame-
wise features. Afterwards, they train a non-linear SVM to
classify these features into the genres they have been tuned for.
Classifying songs with a winner-takes-all scheme, they report
improved accuracy over MFCCs. Both results are interesting
for genre classification, but it remains unclear if and how such
features can form a genre-independent, song-level similarity
measure. Moreover, both approaches compete with MFCCs,
whereas we tackle music-specific state-of-the-art features.

Pohle et al. [17] are closest to our work. They applied ICA
to PCA-compressed mel-sone music spectrogram excerpts and
compared the components’ activation histograms for music
pieces to estimate their musical similarity. However, in 1-NN
genre classification this approach proved inferior even to the
classic MFCC-based approach of [2].
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Fig. 1. Block diagram of our music similarity estimation system. Ellipses denote data, blocks denote transformations, tiled blocks represent alternatives.

III. OUR APPROACH

We designed our music similarity estimation system as de-
picted in Fig. 1. Its feature extraction/abstraction chain follows
Dahl’s application of mcRBMs to speech recognition [13], but
works with longer contexts as we assume musical features
to last longer than phones. To build global song models, we
calculate histograms of local features, which proved superior
to Gaussian-based models in preliminary experiments.

In the following, we will discuss each stage in detail,
including explanations of the methods for better understand-
ing, choices of hyperparameters for easy reproduction and
justifications of decisions wherever suitable.

A. Feature Extraction

Given the audio signal, our system extracts short mel-
spectral frames using yaafe [18] (see first row of Fig. 1).
We use a frame size of 64 ms with 32 ms overlap – this is
in the typical range reported in literature, but has not been
optimized – and a mel filterbank of either 40 bands from 130
to 6854 Hz (yaafe’s default) or 70 bands from 50 to 6854 Hz.
Consecutive frames are then concatenated to form fixed-size
blocks.1 We tried block lengths of 9, 15, 39 and 75 frames
with a hop size of 1 frame. For shorter blocks, subsequently
learned features looked less interesting, and for longer blocks,
our computational resources were insufficient. We did not try
larger hop sizes as we do not expect a positive effect on the
similarity estimation quality.

B. Feature Abstraction

The core of the system is a data-driven feature abstraction
stage obtaining useful high-level descriptions of local features.
In particular, we train a mean-covariance Restricted Boltzmann
Machine (mcRBM) [1] on mel-spectral blocks sampled across

1Effectively, these blocks are excerpts of a log-frequency log-magnitude
spectrogram. This type of spectrogram is used for MFCCs, but also forms
the basis for higher-level features engineered over the course of several years
[6], [7], [8] – these are what we position our approach against, reusing their
common low-level basis rather than trying to learn it as well.

a collection of songs, then treat its latent representations
conditioned on blocks as local high-level features.

To assess the benefit of an mcRBM over more basic feature
abstractors, we compare it to standard RBMs and a variant of
k-Means clustering suitable for large data sets. In addition, we
experiment with Deep Belief Nets (DBNs) formed by training
an RBM on another RBM’s feature descriptions. For all
methods, data preprocessing turned out to be crucial. We will
thus briefly describe how we preprocess data, then introduce
RBMs and mcRBMs and finish with a short description of
mini-batch k-Means++.

1) Preprocessing: The previously extracted mel-spectral
blocks are both high-dimensional (up to 3000 dimensions)
and highly correlated (in addition to correlations inherent in
music, the components overlap both in time and frequency).
We apply PCA whitening (decorrelation and normalization
of each component to unit variance) and discard the least
significant components to retain 99% of the original variance.

2) The mean-covariance Restricted Boltzmann Machine: A
Restricted Boltzmann Machine (RBM) [19] is an undirected
bipartite graphical model consisting of visible units v and
latent variables h. It associates each configuration of v and
h with an energy E(v,h,θ) inducing a probability density
p(v,h|θ) = 1

Z(θ)e
−E(v,h,θ), where Z(θ) =

∑
u,g e

−E(u,g,θ)

is the normalizing partition function. Training an RBM means
finding θ such that p(v|θ) approximates the observed distri-
bution of training data2, after which the hidden unit proba-
bilities p(h|v,θ) are interpretable as features extracted from
v. A technique called Contrastive Divergence [19] allows fast
training of RBMs without computing the partition function.

Different types of RBMs can be defined by choosing
the energy function appropriately. Setting Em(v,hm,θ) =
−vTWhm− 1

2 (v−a)T (v−a)−bThm, where θ = (W ,a, b)
are the connection weights, visible and hidden bias terms,
results in (conditionally) binary hidden units and Gaussian
visible units p(v|hm,θ) = N (Whm, I), such that columns

2This equals maximizing the likelihood of the model under the data.
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Fig. 2. Diagrams of the two parts of an mcRBM.

of W can be interpreted as templates for representing input
vectors. As only the means depend on hm, this model is called
mRBM (Fig. 2a). It is the standard type of RBM to model real-
valued inputs. However, independent Gaussian noise does not
yield a good generative model for most real-world data.

To model pairwise dependencies of visibles gated by hid-
dens, a third-order RBM can be defined, with a weight wijk for
each triplet vi, vj , hk. By factorizing and tying these weights
[20], parameters can be reduced to a filter matrixC connecting
the input twice to a set of factors and a pooling matrix P
mapping factors to hidden variables (Fig. 2b). The energy
function is Ec(v,hc,θ) = −(vTC)2Phc − cThc, yield-
ing p(v|hc,θ) = N (0, (Cdiag(Phc)CT )−1). This model,
termed cRBM, uses the states of its hidden units to represent
abnormalities in the local covariance structure of a data point,3

combined from filters in C. However, it can only generate
Gaussian inputs of zero mean.

For general Gaussian-distributed inputs, the mRBM and
cRBM can be combined into an mcRBM by simply adding
their respective energy functions, resulting in p(v|hm,hc,θ)
becoming the product of the two models’ conditional Gaus-
sians. For more details on this model and its training proce-
dure, we refer the reader to [1] and [20].

Replacing the mRBM’s energy function with E(v,hb,θ) =
−vTWhb − vTa − hbT b, we obtain an RBM with both
(conditionally) binary visible and hidden units. This bRBM
can be trained to model the binary latent representations of
another RBM, further abstracting the data. The resulting stack
of two or more RBMs is referred to as a Deep Belief Net
(DBN) [21].

3) mini-batch k-Means++: In order to assess the impor-
tance of using an mcRBM in our architecture, we compare
it to a simple drop-in replacement for unsupervised feature
learning: k-Means clustering. Despite its simplicity, k-Means
has lately been shown to outperform both sparse RBMs and
mcRBMs on an image classification task [22], making it an
interesting benchmark candidate. It has also been applied to
music feature extraction with both positive [3] and negative
results [2], [23], but only in a frame-wise manner.

Lloyd’s k-means algorithm [24] refines an initial clustering
until convergence to a local optimum. We choose the initial
cluster centres using k-means++, which gives an initial clus-
tering that is Θ(log k)-competitive with the optimal clustering

3For example, in natural images, such abnormalities could be edges.

[25]. For refining, Lloyd’s classic batch learning is slow when
handling millions of data points. Instead we refine the cluster-
ing based on mini-batches (small random subsets of samples),
converging orders of magnitude faster to only slightly worse
solutions [26]. Having created a global codebook, features
extracted from songs are abstracted by replacement with their
cluster labels.

C. Global Modeling

We aggregate local features into a global descriptor by
histogramming, which discards the order of features similar to
Bag-of-Words approaches successfully used in text processing
[27]. This is straightforward for k-Means features: We just
count the number of occurrences of each cluster label. For
mcRBMs, mRBMs and DBNs, we interpret hidden units as
independent soft feature detectors and separately add up each
unit’s activations over the whole song.

To account for songs of different lengths, all histograms are
normalized to unit `1 norm before comparing them.

D. Distance Measure

The feature histograms can be compared using any vector
distance measure. Alternatively, normalized histograms can be
interpreted as discrete probability distributions, for which fur-
ther comparison methods exist. We tried the cosine, euclidean
(`2) and manhattan (`1) distance as well as the symmetrized
Kullback-Leibler and Jenson-Shannon (JS) divergence. Across
all datasets, the best working measure was `1, sometimes
slightly surpassed by JS.

For better comparability to the state-of-the-art methods of
[7] and [8], we optionally perform what Seyerlehner et al.
termed Distance Space Normalization (DSN): After computing
the full distance matrix, each entry is normalized with respect
to the mean and standard deviation of its row and column.

IV. EXPERIMENTAL EVALUATION

In this section, we introduce the datasets used in our
experiments, show and interpret features learned by the system
and report results on its similarity estimation performance.

A. Datasets

We performed experiments on three freely available
datasets. 1517-Artists [8] consists of 3180 full tracks by
1517 artists spanning 19 almost uniformly distributed genres
of Western music. Homburg [28] is composed of 1886 10-
second song excerpts by 1436 artists unequally distributed
over 9 genres that are similar to the ones in 1517-Artists.
The Ballroom dataset [29] contains 698 30-second snippets
of music for 8 different ballroom dances, which is useful for
evaluating rhythm features.

B. Training Details

Both RBM training and k-Means clustering were performed
on GPU using cudamat [30]. To cut down computation times,
models for 1517-Artists were trained on a random subset of 1
million blocks. For mcRBMs, we used architectures of 1296
or 2500 factors, 324 or 625 hidden covariance and 256 or 512
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Fig. 3. Exemplary features learned by mcRBMs, mRBMs and k-Means
on music excerpts of two datasets. Each block represents 1248 ms of a
spectrogram: Time increases from left to right, mel-frequency from bottom to
top, bright and dark indicate positive and negative values, respectively.

hidden mean units, referred to as mcRBM 580 and mcRBM
1137, respectively. P was initialized and constrained to a 2D
topographic mapping, all other training parameters match the
example configuration of the code accompanying [1]. mRBMs
were trained for 100 epochs with momentum and weight
decay, using 1024 hidden units to be of comparable size to the
mcRBMs. k-Means++ was initialized on a subset of 350 000
blocks, then refined using a couple hundred mini-batches of
1024 blocks on the full datasets.

C. Learned Features

In Fig. 3, we visualize typical filters learned for the feature
abstraction stage – for mcRBMs, we unwhiten the incoming
weights of factors and mean units, for mRBMs, we unwhiten
the incoming weights of hidden units, and for k-Means, we un-
whiten the cluster centroids. Fig. 3a shows two examples each
for recurring schemes in the covariance part (the factors) of an
mcRBM trained on 1517-Artists interpretable as (in reading
order) note onsets, fixed-length notes, repetitive percussion,
chords and note transitions, as well as two uninterpretable
filters. The mean part of this model (Fig. 3b) only developed
note onset and mixed tone filters. On Ballroom, results were
similar, with a higher dominance of repetitive filters and fewer
note onset or harmonic filters (Fig. 3c). k-Means learned less
abstract features: When resynthesized, most cluster centres
sound like noisy music excerpts including vocals; notable
exceptions are strongly harmonic or look like note onsets
(Fig. 3d). mRBMs fail to learn clearly-structured features
(Fig. 3e). This corroborates Krizhevsky’s results [31], who
only succeeded in training this model on image patches when
reducing their size to 8× 8 pixels.

D. k-NN Genre Classification and Retrieval

Under a good music similarity measure, pairs of songs
assigned a low distance should be perceptually similar. Such
pairs can be found by considering the k nearest neighbors to a

TABLE I
PRECISION AT 10 ON 1517-Artists FOR SHALLOW MODELS

mel block length
model bands 1 9 15 39 75

k-Means 1024 40 20.0 22.4 21.6 16.7

mRBM 1024 40 12.7 12.8 12.5 12.9
mcRBM 580 40 16.5 21.9 23.0 24.0 23.6
mcRBM 1137 40 20.1 22.4 24.2 23.4
mcRBM 580 70 22.9 23.6 23.6

TABLE II
PRECISION AT 10 ON 1517-Artists FOR STACKED RBMS

mel block hidden layer
model bands length 1. 2. 3. 4.

mRBM 1024 40 9 12.8 13.0 12.2 12.6
mcRBM 580 40 9 21.9 22.4 22.3 21.4
mcRBM 580 40 39 24.0 23.7 23.7 23.9

query song. Ideally, we would ask human test subjects to judge
their perceptual similarity, but this is impractical. Instead, we
assume songs of a same genre to be similar, and report the
fraction of songs among the k nearest neighbors to a query that
have the same genre as the query, averaged over all possible
query songs (precision at k). We exclude same-artist tracks
when determining the neighbors, as otherwise results would
be over-optimistic [32].

While this evaluation method seems simplistic, it has been
shown to highly correlate with human judgements [33, p. 28
and 26], [34, p. 52 and 57], and both precision at k and
the related k-NN genre classification accuracy are established
methods for evaluating music similarity measures [2], [3], [7],
[8], [17], [23]. We focus on precisions because they are more
consistent over different choices of k (Fig. 4).

Note that we are not actually interested in achieving a
high precision or accuracy on a particular dataset. Unlike in
classification, we use genre labels merely as binary similarity
ground truth and do not train on them, as this would tie the
measure to a specific genre taxonomy and dataset.

1) Model and Input Sizes: In Table I, we compare k-Means
with 1024 centres to mRBMs with 1024 hidden units and
mcRBMs with 580 or 1137 hidden units. Interestingly, k-
Means performs best for relatively short blocks of 9 frames
and gets notably worse for larger ones, while mcRBMs profit
from longer blocks and are worst for single frames. Across all
block lengths, mRBMs perform above the random baseline of
5.3%, but well below the other models. The small mcRBM
beats k-Means by 1.8 percent points, even using only half
as many features, and the larger mcRBM at blocks of 39
frames is still marginally better. Increasing the number of mel
bands only helps on smaller blocks, and further increasing the
block length to 75 frames hurts performance – possibly the
dimensionality of the data gets too high in these cases.

2) Deep Architectures: In the next set of experiments, we
assess the use of stacking bRBMs on top of a trained mRBM



TABLE III
PRECISION AT 10 ON 1517-Artists, Homburg AND Ballroom

COMPARED TO STATE-OF-THE-ART APPROACHES

model dim. 1517-A. Homb. Ballr.

Random baseline 0 5.3 15.6 12.8

G1 of MFCCs [35] 230 16.1 40.3 37.4
GMM-20 of MFCCs [2] 800 15.6
RTBOF [7] 1331 25.5 46.2 77.5
BLS [8] 9448 26.5 45.3 67.7

k-Means 1024, 40×9* 1024 22.4 43.5 42.1
k-Means 1024, 40×9, DSN 1024 23.5 42.8 45.3
mcRBM 580, 70×15 580 23.6 44.0 50.0
mcRBM 580, 70×15, DSN 580 25.0 45.5 53.1
mcRBM 580, 40×39 580 24.0 44.0 62.8
mcRBM 580, 40×39, DSN 580 24.8 44.7 65.1
mcRBM 1137, 40×39 1137 24.2 44.2 61.0
mcRBM 1137, 40×39, DSN 1137 25.1 45.5 63.4

*size of input blocks in mel bands × block length

TABLE IV
CROSS-DATASET GENERALIZATION OF THE MCRBM MODELS,

PRECISION AT 10

mcRBM 580, evaluated on
40×39 1517-A. Homb. Ballr.

tr
ai

ne
d

on 1517-Artists 24.0 43.5 51.0
Homburg 22.0 44.0 47.3
Ballroom 20.4 39.9 62.8

or mcRBM to form a DBN extracting more abstract features.
We use 2048, 1024 and 580 hidden units for the second, third
and forth hidden layer, respectively. Table II does not show any
consistent positive or negative effect. Possibly, the additional
layers are only useful when subsequently fine-tuned to a task.

3) Comparison to Existing Approaches: As shown in Ta-
ble III and Fig. 4, our approach compares favorably to the
Single Gaussian and the Gaussian Mixture Model of MFCCs
[35], [2]. Being based on a simple feature, surpassing these
popular baseline approaches serves as a sanity check. More
importantly, our results are in the vicinity of the state-of-the-
art results4 of Pohle et al. [7] (RTBOF) and Seyerlehner et al.
[8] (BLS), when using Distance Space Normalization (DSN)
as employed by their methods. This is an encouraging result
for unsupervised feature extraction, considering that both are
based on several carefully tuned hand-crafted features. Note
that we achieve these results with 580-dimensional song mod-
els, while RTBOF and BLS use 1331 and 9448 dimensions,
respectively.

As the only exception, there is a large margin to RTBOF
on Ballroom (which RTBOF has been optimized on). This
suggests that our system is not yet optimally suited for
modeling rhythms, although it does learn some useful long-
term features if given a chance to: On Ballroom, short blocks
perform considerably worse than long blocks.

4reproduced using the distance matrices available at www.seyerlehner.info

4) Generalization: Up to now, we have only reported
results for models trained unsupervisedly on the very same
dataset they are evaluated on. For most practical applications,
it is infeasible to always train a feature extractor on the
collection we want to compute similarities for.

To investigate how well a learned feature set generalizes,
we evaluate it on the datasets it has not been trained on.5

Table IV shows that the feature extractors of 1517-Artists
apply well to Homburg, but not vice versa, possibly because
Homburg contains less training data. Extractors of Ballroom
do not perform well on the other datasets and vice versa.
This indicates that feature extractors trained on a particular
collection are only applicable to collections of music similar
to it. The Ballroom dataset contains a fairly different set
of musical styles and possibly requires features the model
could not learn from 1517-Artists or Homburg. Indeed, in
Section IV-C we noted that models trained on Ballroom
seemed to develop more rhythmic feature detectors.

This can be seen as a disadvantage against the state-of-the-
art, which performs well on all three datasets with a single
set of features. However, future experiments will show if
training on a more diverse collection yields more general,
competitive features and whether our method can benefit from
its adaptability when applied to non-Western music.

V. CONCLUSION

We have presented a system for content-based music simi-
larity estimation based on a feature set learned unsupervisedly
by an mcRBM. It does not surpass the carefully engineered
state-of-the-art in similarity estimation, but performs remark-
ably close to it without requiring any time-intensive hand-
crafting of features. It also turns out that simple k-means
clustering for feature extraction reaches good performance, if
data is appropriately preprocessed.

To improve on these initial results, we will explore several
extensions to our method: By training deep architectures to
hierarchically integrate information over longer contexts, we
hope to improve modeling of temporal structure such as
rhythms. To yield pitch-independent features, we will limit
spectrogram excerpts not only in time, but also in frequency.

In addition to employing unsupervised learning for local
feature extraction, we will leverage larger datasets to also
unsupervisedly learn the global song models. More generally,
we think that separating learning of feature sets from using
them for encoding of music data, similar to [36], is an exciting
approach for future research.
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