
εSOA – Service Oriented Architectures
adapted for Embedded Networks

Andreas Scholz, Irina Gaponova, Stephan
Sommer, Alfons Kemper, Alois Knoll

Technische Universität München

{scholza,gaponova,sommerst,kemper,knoll}@in.tum.de

Christian Buckl
fortiss GmbH

buckl@in.tum.de

Jörg Heuer, Anton Schmitt
Siemens AG, Corporate Technology,

Multimedia and Network Communication

{joerg.heuer,anton.schmitt}@siemens.com

Abstract—The development of embedded networks poses sev-
eral challenges: complexity and size of the network, heterogeneity
of nodes, and infrastructure dynamics. From other IT domains
it is known that many of these challenges can be met by a
Service Oriented Architecture (SOA). In the context of embedded
networks, an application can be interpreted as a set of interacting
services that produce, consume or manipulate data. However,
the hard boundary conditions of embedded networks, such as
limited resources and real time requirements, have to be taken
into account. This paper discusses an embedded SOA (εSOA)
concept based on the definition of an embedded service (εService)
term and the differences to traditional Web services based SOAs.
The paper describes a middleware platform that supports the
execution and development of embedded network applications
by employing model based code generation and a pattern based
service composition model. The advantages of the approach are
showcased using an application from the building automation
sector, focusing on the energy management of smart buildings.

I. INTRODUCTION

Embedded networks containing a multitude of networked

nodes with varying sensing, acting, and processing capabilities

are gaining increasing importance in many application areas

such as the automotive, building management, or factory

automation sector. Besides the challenges concerning the de-

velopment of suitable hardware devices and communication

infrastructures, the application development is increasingly

difficult. The special characteristics of embedded networks,

such as resource limitations, heterogeneous hardware, ranging

from PCs over embedded controllers to primitive devices like

switches, and the use of diverse communication protocols pose

new and unique challenges. Analogous to other distributed

systems, the development of customized solutions for ev-

ery single installation is too costly and time consuming. A

promising approach is to rely on the concepts of a Service

Oriented Architecture (SOA): an application is interpreted as

a set of data providing (sensors), data processing (application

logic), and data consuming (actuators) services. Nowadays,

Web services are the most prominent SOA implementation

and have proven their suitability for building SOA based

applications over the Internet. However, the notion of SOAs

known from the Web service domain is not applicable for

embedded networks, mainly due to hardware constraints.

The contributions of this paper are: (1) an analysis of em-

bedded network requirements, (2) a rationale why traditional

SOAs are not able to fulfill these requirements and the de-

velopment of an adapted embedded SOA (εSOA) concept, (3)

and the design of a corresponding middleware solution. These

topics are covered in the following three sections. In Section 5,

we present technical solutions for individual requirements and

show how an integration between εSOAs from the embedded

domain and SOAs from the Web service domain can be

performed. In Section 6 we describe a prototypical realization

of the εSOA approach for a building management scenario.

In Section 7 we discuss related work. Finally in Section 8 we

summarize the paper and outline open research topics.

II. EMBEDDED NETWORK REQUIREMENTS

The term embedded network is used for a variety of setups

which comprise diverse hard- and software components. In

this paper, we will focus on embedded sensor-actor networks,

which are used to perform control and automation tasks. Start-

ing from these rough characteristics we identify the following

detailed requirements:

Heterogeneity. A network built for automation purposes will

typically contain nodes with a broad range of different capa-

bilities. Depending on their task, nodes possess a diversity of

processing, storage, sensing, and acting capabilities stemming

from hardware components supplied by various manufacturers.

Another source of diversity are user supplied devices which

are used by the end-user to interact with the system, such as

cell phones, PDAs, PCs, etc. This heterogeneity requires tools

that allow building applications without prior knowledge of the

exact hardware configuration, while simultaneously exploiting

the given hardware resources as efficient as possible.

Distributed and Reconfigurable Architecture. In a con-

trol oriented network multiple distributed applications are

simultaneously executed, each of them accessing a subset

of the available sensors and actuators. As a consequence,

a decentralized network structure is beneficial for control

applications. It avoids the bottleneck of a single central node

and ensures that not all applications cease to work if a single

node fails. A distributed execution is also beneficial from

an optimization point of view, because often the amount of

transferred data can be reduced by placing the data consuming

control logic nearby the data producing sensors. Furthermore,

control networks have to be reconfigurable at run-time. At any

time, new nodes with previously unknown functionality can be

599978-1-4244-3760-3/09/$25.00 c© 2009 IEEE

added. To support these dynamics, the network has to provide

a repository of the available devices and a logging facility

that allows to retrace changes. Because new applications can

be installed at run-time, the purpose of individual nodes in the

network is not fixed but changes throughout the lifetime of the

network. This requires a dedicated life cycle management that

supports the installation, startup, shutdown, and removal of

applications on the nodes in the network.

Resource Limitations. Hard boundary conditions of sensor

networks are resource limitations imposed by the underlying

hardware. Consequently, an efficient execution of applications

and compact network protocols are important. The diversity

of the available hardware additionally requires scalable func-
tionality. Small devices should only contain the bare minimum

of functionality needed to perform their tasks, whereas more

powerful nodes should be flexible enough to provide run-time

adaptability.

Error Detection and Recovery. Node failure or communi-

cation problems are likely to occur in embedded networks,

especially if battery powered devices or wireless links are

used. Some problems can be compensated by the used network

protocols, e.g., by re-routing data on alternative paths. Other

exceptional situations, e.g., a non-functional sensor or actua-

tor, may be compensable if redundant hardware is available.

Development tools should support the creation of robust ap-
plications, which benefit from redundantly available hardware.

Furthermore, foreseeable exceptional situations, e.g., energy

depletion, should be detected and reported before an actual

failure occurs.

End-User Programming. The applications running on a

sensor network are typically not known in advance and often

no trained personnel are available for the installation of

new applications. E.g., an end-user, who wants to configure

the mapping of lights and switches in his automated home,

has neither programming experience, nor detailed know-ledge

about the used hardware. Additionally, the applications ex-

ecuted on the network vary from installation to installation,

because they depend heavily on user preferences and the

available nodes. The opening of a broad mass market requires

concepts which support an easy end user programming, i.e.,

enable an end-user to intuitively install, (re-) configure, and

extend applications. Furthermore, automation support for the

installation and configuration of applications in large scale

installations is important. Subnets with similar functionality

should only have to be configured once and similar installa-

tions should be configurable analogously to existing ones.

Bridging. Embedded networks do not operate in isolation

but often possess access to wide area networks or the Internet.

An easy integration of embedded networks with external

components requires Web service based interfaces, as these

are the de-facto standard for the communication with external

services. The challenge thereby is to connect the Web service

domain with its high resource demand and its highly available

components to the embedded network domain with its small

footprint nodes. Web service interfaces alone are not sufficient

for the integration of embedded networks with enterprise back-

ends, e.g., in a shop floor integration scenario. Additionally,

the data delivered by the sensor network has to be integrated

into the enterprise knowledge domain. This requires semantic
information that allows to combine the measured data with the

information contained in the back-end databases.

Summing up, we identified the following challenges for the

development of embedded network applications:

• Heterogeneous hardware from various vendors

• Run-time adaptability

• Life cycle management

• Distributed execution of applications

• Resource efficient data processing

• Scalability to capabilities of the underlying hardware

• Error detection and recovery

• End-user programmability

• Automation support for installation and configuration

• Web service based interface for communication with

external services

• Semantic support for enterprise integration

Besides these requirements, security aspects play an important

role, especially if wireless communication is used. The imple-

mentation of security mechanisms is not in the focus of this

paper. We believe that these are orthogonal to the presented

solutions and have to be studied separately. In fact, many

approaches known from the Web service domain might be

transferable to embedded networks, given some adaptations to

care for the limited resources on the devices.

III. εSOA

Service oriented architectures inherently support two major

requirements mentioned in Section 2: heterogeneous infras-

tructures and run-time adaptability. Services provide a high

level of abstraction that safely hides the implementation details

of the hardware devices from the developer. Additionally,

treating sensors and actuators as services allows dealing with

the dynamics of the underlying network. Newly added devices

provide services which can be automatically discovered and

(semi-)automatically integrated into existing applications or

used to build new applications. The benefits of SOAs known

from traditional application fields such as enterprise service

architectures can be translated to embedded network applica-

tions, too. The decomposition of applications into loosely cou-

pled software modules provides high flexibility, re-usability,

and extensibility and simultaneously eases the coexistence of

different applications. Another benefit is the possibility to

integrate services from various hard- and software vendors

in a seamless way. Furthermore, due to the high abstraction

level, domain knowledge is sufficient to intuitively understand

the functionality of services and to install and (re-)configure

applications in the network.

The special requirements of embedded networks discussed

in Section 2 require some adaptations of the traditional SOA

implementations like Web services:

Data Driven Services. While traditional SOAs are based

on a request-response message pattern, control applications

running on embedded networks are typically data driven:

600 2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009)

data is acquired periodically at the sensors and pushed to

connected services. These services produce new data based

on the received input which is consecutively pushed to the

next service in the processing chain.

Service Life Cycle. Service instances which abstract hard-

ware devices, such as sensor services, may be used by multi-

ple applications simultaneously. If one of these applications

changes the state of the service, this is visible to other

applications. Web service instances on the other hand are

typically not shared and changes to one instance are not visible

to other applications. SOAs for embedded networks therefore

have to provide techniques to facilitate multi-user access.

Resource Contraints. Services used in the embedded do-

main will often be executed on small devices with severely

limited storage and processing capabilitites, what requires ef-

ficient message formats for the communication between these

devices. This can be achieved by a clear separation between

the description of the data, which is specified only once, and

the transmission format, which contains solely the raw data

payload in a binary representation. Additionally services and

the middleware they are executed in have to be desinged in an

efficient way to facilitate the execution on small sized devices.

We will call services with these special characteristics

embedded services (εServices), i.e., services implemented on

small or embedded devices. The corresponding service ori-

ented architecture consisting of these services is called εSOA.

Embedded network applications based on an εSOA consist

of a set of connected εServices. Each εService can either

produce data (sensor εService), process data (logic εService),

or consume data (actuator εService). The available hardware

is abstracted as hardware services, which may be actuator

εServices or sensor εServices. Logic services on the other hand

do not depend on an underlying hardware and are executed on

programmable control devices. The communication between

services is based on data streams. A data stream consists of

a sequence of data packets and connects an output port of

an εService with an input port of another εService. In other

words, εServices can be seen as operators on data streams,

which produce data streams (sensor εServices), process data

streams (logic εServices) or consume data streams (actuator

εServices). This data flow model is translatable to an event

based processing model on the nodes. The service logic is only

executed upon the arrival of a new event, such as incoming

data, an elapsed time period, or environmental events like a

measurement value that exceeds a certain threshold. Between

these invocations, the node can stay in a “sleep mode” that

preserves energy resources.

IV. εSOA MIDDLEWARE DESIGN PRINCIPLES

Our εSOA middleware is based on a hierarchy of three

views of the embedded network, as depicted in Figure 1.

A. Abstract Infrastructure View

The Abstract Infrastructure View provides a unified model

of the available hardware and network connections. All hard-

ware devices that are connected via a general-purpose network

are represented by nodes. The nodes are connected by links,

Concrete System
Abstract Infrastructure

Service

Application

Pattern Repository

Service Placement

Code Generation

Pattern Filling

sensor/actuator

wireless link

Fig. 1. Embedded Network Views

which represent a possible single-hop communication between

two nodes. The actual transport medium and the communica-

tion characteristics are replaced by properties which are anno-

tated to the links, e.g., bandwidth or packet loss rate. These

properties and the links between individual nodes have to be

provided by the underlying network protocols. Each node can

possess several sensor and actuator devices: on-board sensors

and actuators as well as devices that are directly connected

to the node. Nodes without any sensing or acting capabilities

may also be included in the network, e.g., gateways between

different networks or programmable control units. The nodes

are classified into two classes, programmable nodes which can

execute arbitrary code (gray boxes) and nodes which possess

only limited configuration options (white boxes).

B. Service View

The Service View provides a service oriented view of the

available sensor and actuator hardware. Each sensing or acting

device is represented by a corresponding hardware service.

If a node possesses multiple sensors and/or actuators, this

will result in multiple services. Additionally, the Service

Layer contains a repository of available logic services. Each

service is annotated with a set of metadata describing its

characteristics: its general properties, such as measurement

rates, its inputs and outputs, and the data that can be sent or

received. This data is described by a data type and a reference

to a domain specific taxonomy which defines the kind of data

a sensor measures, e.g., “Temperature”.

The metadata may have different originators. Hardware ser-

vices will typically be described by the manufacturer, and logic

services by the programmer of the service. During the physical

installation of nodes, additional metadata can be entered by

the installer, such as the position and orientation of sensors

and actuators or management data like inventory numbers.

The third category is dynamic metadata, which represents the

current state of nodes, such as energy resources or utilization,

and is monitored during run-time. Our εSOA middleware

makes no assumptions about the presence of specific metadata

fields, as these are heavily application specific. Instead it

2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009) 601

offers generic filtering algorithms that support the extraction,

monitoring, and configuration of node subsets with given

characteristics, e.g., all nodes which are in the same room

or possess the same “floor” property.

C. Application View

The Application View supervises the applications running

within the platform. It provides an overview of the installed

applications, the contained service instances and the infor-

mation exchanged between these instances. The Application

View offers a repository with application patterns in order

to ease the installation and configuration of applications. An

application pattern describes an application as a composition

of abstract services, called slots, and the data connections

between these services. Every abstract service is defined by

a metadata description, defining the required in- and outputs,

their data types and characteristics. At run-time, the abstract

services of a pattern are matched against the available hard-

ware services and the logic services contained in the service

repository in order to determine whether a specific application

can be installed or not. The data connections between the

available services can be fully automatically derived from the

connections in the pattern. If the mapping of services to slots

is unambiguous, i.e., there is exactly one service candidate

for each slot, this mechanism allows to install applications

fully automatically. If there is more than one candidate, the

user has to manually select the appropriate one. If not all

slots in the pattern can be filled the user can be provided

with a “shopping list”, which specifies the missing hardware

components for the desired application. The user can compare

this list with the available products of various vendors in order

to determine which hardware possesses the required sensing

or acting capabilities.

D. Application Development Workflow

The workflow for the installation of a new application is

illustrated by the arrows on the left side of Figure 1. After the

selection of a pattern and the assignment of suitable services to

all slots, the middleware derives a “good” service placement,

i.e., an optimized mapping of services to physical nodes. The

optimization can be done for various goals, such as mini-

mization of network load or homogeneous resource utilization

on all nodes. The next step is the generation of platform

specific code for the targeted nodes and the installation of

this code on the nodes. During code generation, the specific

characteristics of the node, e.g. CPU architecture and memory

size, are taken into account to generate a compact and efficient

service implementation. After that, the services are instantiated

and configured according to the information provided by the

application pattern, i.e., the destination for outgoing data is

configured and service parameters such as thresholds are set.

V. TECHNICAL REALIZATION

In this section we will outline some implementation details

of our prototypical implementation of an εSOA middleware

and provide technical solutions for the requirements presented

in Section 2.

Logic Service 1 Logic Service 2 Logic Service 3

Sensor 1 Actuator 1

Broker

Network

Node 1 Node 2

m
id

dl
ew

ar
e

Network

Broker

Node
Manager

Node
Manager

Fig. 2. Node Architecture

A. Efficient Distributed Data Processing

The constrained resources concerning processing power,

memory, communication bandwidth, and energy resources

require a middleware that supports an efficient collection,

processing, and dissemination of data.

Generation of Efficient, Platform-Specific Code. Our plat-

form deals with the heterogeneous hardware by using model

based code generation, as presented in detail in [1]. The

general node architecture is depicted in Figure 2. The main

component is the Broker, which handles the data flow at

the application level. The physical communication and data

routing are abstracted by the Network component. The Node
Manager implements the node announcement and service life

cycle management. Services are embedded in the specific

platform by the generation of a service stub. This approach

facilitates a simple porting of services to other platforms as

long as these provide a compiler for the same programming

language. Another benefit of the code generation approach

is the possibility to scale the middleware functionality down

to the bare minimum required on a node, e.g., by using the

techniques presented in [2]. Features not needed on every node

are for example:

• the execution of dynamically loaded code

• support for specific network protocols

• monitoring or logging functionality

Event Based Data Processing. Sensor measurements are

typically required in periodic intervals, e.g., once every 5

seconds. Between these measurements, energy saving tech-

niques can be applied, e.g. turning off sensor hardware, putting

the CPU to sleep mode, etc. Typical operating systems for

embedded devices already support these features out-of-the-

box. Our middleware caters for this requirement by providing

an event based processing model. The execution of application

logic can be triggered either periodically, by incoming data,

or by environmental changes.

Distributed Execution of Applications. εSOAs inherently

support the distributed execution of applications: all εServices

which do not rely on specific hardware, i.e., typically all logic

services, can be allocated at any programmable node. This

allows optimizing the execution of applications for various

criteria, such as resource consumption, reliability, respon-

siveness, etc. A big variety of data types can be used for

the communication between εServices, ranging from simple

602 2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009)

measurements represented by a numerical value to complex

business objects encountered during communication with the

enterprise back-end. The middleware running on the nodes

only provides data binding interfaces for the simple data types

defined in XML-schema. If more complex types should be

used, custom data binding code is generated and shipped

with the service. This mechanism minimizes the overhead on

small devices, but still offers the flexibility to use arbitrary

data types on more powerful nodes. The external specification

of the representation and meaning of data types by the

metadata description allows reducing the transmitted data on

the network to the raw data payload. This solution provides

a transmission that is highly bandwidth efficient, however

the transmitted data is not self-descriptive anymore. As a

consequence, the compatibility between connected in- and

outputs has to be checked during service composition, what

can be done automatically based on the metadata descriptions.

Of course it is still possible (but most likely computational

too expensive for small devices) to dynamically infer the data

type of an incoming data stream by inspecting the metadata

description of the corresponding output.

B. Metadata Aided Service Composition

The metadata based description of services is beneficial for

application development in two ways: It supports end user

programming and provides automation support for service

composition.

End User Programming. An intuitive end user program-

ming interface is a decisive requirement for the acceptance of

a sensor network middleware by non-expert users. A typical

end-user will have little to no knowledge about the used mid-

dleware and the available software and often only very basic

knowledge about the installed hardware. An example is a home

owner who wants to build a light control application. This user

will know that he needs some light switches, some light bulbs

and some kind of control hardware, e.g., a programmable logic

controller. While he will typically have no knowledge about

implementation details, he will have a good understanding of

the application domain, e.g., which switch has to be connected

to which bulb. We think that application patterns are an

intuitive programming paradigm for this kind of users. The

user can browse a repository of pre-selected patterns, which

are compatible with his hardware and choose a suitable one.

Afterwards he can assign the available hardware services in a

drag and drop manner to the slots defined by the pattern. The

required logic services can be selected in a similar manner: the

user simply chooses from a list of services with compatible

metadata. The crucial observation is that both of the user’s

selections are solely based on domain knowledge represented

in the metadata description. Nevertheless the created service

composition will be guaranteed to work properly, as long as

the metadata is correctly specified.

More experienced users may also develop own application

patterns. This requires some basic understanding of the data

types and properties of the used services, but no detailed

knowledge about the implementation of the involved services.

Patterns can be extracted out of existing service compositions

or built from scratch by linking together services. A pattern

should possess as few requirements as possible in order to keep

it compatible with as many concrete services as possible, but

still be restrictive enough to ensure the functionality of the

composed application. Therefore the main task of the user is

the selection of a minimal property set out of the properties

present in the used services. Again, this decision is solely

based on domain knowledge, i.e., it can be performed by a

user with no programming skills at all. The newly created

patterns can also be shared between end users. A community

of users filling an Internet based repository of application

patterns for various services is a promising vision for scenarios

like building automation.
The development of logic services is well supported by the

model based code generation: a programmer only has to fill a

generated stub with application specific code. Simple services,

e.g. a light control service, can be composed of basic services,

such as comparators, adders, etc. and do not require manual

programming at all. The user defined patterns may be shared

with an interested community .
(Semi-) Automatic Service Composition. Automation sup-

port is important in application fields with lots of subnets

of similar structure, e.g., rooms with similar equipment in a

large building. The (re-)configuration of every subnet can be a

tedious task and should be automated as far as possible. Appli-

cation patterns provide a good starting point for optimizations.

Changes to a single installation can be easily propagated to

other installations that base on the same pattern. Furthermore,

patterns can be inferred by inspecting the services in a given

installation. Based on these patterns, suggestions for new

installations can be made, providing a “copy & paste” like

functionality. Depending on the amount of available metadata,

this process can be performed fully automatically or interac-

tively by asking the user to solve possible ambiguities.
C. Run-time Adaptability

Often embedded networks are not static but change over

time when new nodes are added and existing nodes are re-

moved or become unavailable. Another source of changes are

mobile nodes, which enter and leave the network. Our εSOA

platform supports these dynamics by providing a discovery

mechanism for new nodes and the different system views

presented in the previous section. Upon detection of a new

node, the (semi-)automatic service composition can be used

to provide a fast integration of the new hardware with the

running applications.
The failure of nodes can be handled locally or globally. Lo-

cal recovery is applicable if redundant εServices, i.e., εServices

with a compatible metadata description, can replace a failed

εService, or if redundant communication channels can be used

by the network protocols. If this is not the case, a global

recovery component can (semi-)automatically reconfigure the

network, e.g., by switching to an application that does not

require the failed node. This mechanism provides a graceful

degradation to applications with reduced functionality instead

of leaving the user with a non-functional installation.

2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009) 603

The adaptation of nodes to new applications is only possible,

if new εServices can be added to nodes at run-time. Our

platform provides a management service which allows the

(de-)installation, instantiation, startup, shutdown, and recon-

figuration of services. Depending on the underlying operating

system, the execution of dynamically loaded code may be

possible or not. In the latter case, only services pre-installed on

a node can be instantiated and started. In the former case, the

compiled service is transmitted over the network and loaded

by the operating system. In both cases, the newly created

service instance is started and configured according to the

application’s requirements. If an application is removed, all

services exclusively used by this application are shut down

and de-installed.

D. Integration with External Services

The upcoming challenge for application developers is the

integration of two worlds, Web services on the one side and

embedded Services on the other side. A quick and seamless in-

formation flow between both domains (“real-time awareness”)

is growing in importance for manufacturing and logistics: a

break in the information exchange between the embedded

world and the business back-end is not tolerable anymore.

Failures and delays on the device level have to be reported fast,

in order to allow the timely execution of compensatory actions.

Another example are highly flexible production environments,

which have to be (re-)configurable from back-end services to

reduce downtimes and support on-demand production.

The integration has to be performed in two ways: A devel-

oper familiar with Web service technologies should be able

to interact with services from the embedded world just like

he would interact with any other Web service. If a business

process is modeled with BPEL[3], the process designer should

be able to use εServices in the same manner as Web services

in order to acquire or submit information to field level devices.

On the other hand, a developer familiar with application

development for embedded networks should have access to

services in the enterprise back-end in the same manner as

he accesses other embedded services. E.g., if data has to be

transmitted to a back-end Web service, it should be sufficient

to route the corresponding data stream to the remote service.

This mediation can be performed by a bridge service

that converts incoming and outgoing messages and provides

WSDL interfaces for the services contained in the embedded

network. A detailed description of a possible implementation

of such a bridge can be found in [4].

VI. DEMONSTRATOR

A comfortable home with an excellent quality of life is

one of the main drivers in building automation and charac-

terized by buzzwords like Intelligent House or Smart Home.

Although the necessary technologies for realizing this vision

are already available, general rollout has not taken place yet.

One cause may be the significant installation costs espe-

cially in private households. On the other hand, sophisticated

building automation is increasingly installed in industrial and

business buildings, especially to lower management costs.

Fig. 3. Smart Home Demonstrator

Traditional building automation approaches emulate classical

wired switched circuits and become significantly complex with

an increasing or time-varying number of sensors and actuators.

Based on the εSOA platform described in the previous

sections, we developed a demonstrator, which covers a future

home automation scenario. The assembling of our demonstra-

tor is shown in Figure 3. We assume that in the near future

energy providers use dynamically changing energy prices in

order to influence the overall energy consumption in a way

that smoothes load peaks. We further assume that some kind

of power storage system, such as the battery of an electric car,

is present in future homes. We implemented the following

scenario: A household comprising a battery and loads (a

refrigerator and 2 lights) with different power consumption

and energy saving options. One task of the automation logic

is to minimze the energy costs throughout the day. If prices are

cheap, the battery is charged and the refrigerator cools down to

a lower threshold. If prices are high, the house is disconnected

from the power grid and draws its energy from the battery.

Additionally, the refrigerator is put to energy saving mode,

i.e., it stops cooling until an upper temperature threshold is

reached. There are other functional requirements not presented

in detail here, e.g., the home has to connect to the power grid if

the summed consumption of all devices exceeds the power of

the battery, the battery should not be completely depleted, etc.

The electricity prices are delivered by an external Web service,

which is represented by a virtual sensor in the network. The

used ZigBee based motes possess a set of I/O devices used to

read signals from the switches and turn on or off the loads.

The requirement to support end user programming can be

also motivated by this example. Starting from a traditional

control system, the user can add a battery and install a new

pattern to benefit from the described price saving mechanism.

Furthermore, the εSOA approach offers a new flexibility to

end users. Changes, e.g. of the lighting, can be performed

easily using the offered graphical user interface depicted in

Figure 4. The demonstrator also points out how different

devices can be used to administrate the embedded network.

The programmable phone, for instance, can be used to monitor

sensor readings and to adjust thresholds, such as the maximum

temperature of the fridge. The experiences made during the

development of the demonstrator revealed further optimization

604 2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009)

Fig. 4. GUI for Pattern Installation

possibilities, which are presented in the last section.

VII. RELATED WORK

There are standardized middleware architectures for specific

application domains, e.g., KNX[5] for the building automation

domain or AUTOSAR[6] for automotive applications. These

approaches work on a very low abstraction level and therefore

support neither end user programmability nor a seamless

integration with external services, because the data processing

paradigm is not compatible with service oriented principles.

There are middleware approaches for monitoring oriented

sensor networks, e.g., TinyDB[7] or Cougar[8]. A typical

characteristic of these systems is a hierarchical network struc-

ture, in which data is more and more aggregated towards the

root. This infrastructure introduces unnecessary bottlenecks

and single points of failure for control oriented applications

involving multiple sensors and actuators.

A SOA approach for embedded networks is also persuaded

by other projects, such as SIRENA[9] and SOCRADES[10].

These projects aim at making embedded devices directly

accessible with Web Service technologies by installing an

adopted Web Service stack, the DPWS[11] stack. While this

approach is suitable for a certain range of devices, we believe

that there will always be a class of very small and lighweight

devices, which will not be able to deal with the additional

overhead introduced by the Web Service technologies and

therefore require a more efficient SOA implementation.

Other projects which apply a service oriented approach

are OASiS[12], MORE[13], or RUNES[14]. We believe that

our model based code generation and the use of application

patterns allows better exploiting the characteristics of a given

embedded network by generating tailored code and optimizing

the placement of services.

VIII. SUMMARY AND ONGOING WORK

In this paper, we presented the requirements and boundary

conditions for the development of applications for embedded

networks. We proposed an architecture based on an adapted

service oriented architecture, the εSOA. We described the ar-

chitecture of an εSOA middleware, outlined technical solutions

for the individual requirements, and showed the feasibility of

the approach for a prototypical implementation in a building

management scenario.

Based on the presented principles further optimization is

subject of ongoing research. The optimizations focus on

resource efficiency of application execution, reliability of

distributed applications and simplicity of application instanti-

ation. The application execution can be improved by applying

technologies known from data stream management systems,

e.g., sharing of data streams between multiple applications.

Different service placement strategies have to be evaluated

and advanced heuristics for scenarios with little knowledge

about the underlying network should be derived. Another

direction for future work is the automatic learning of service

patterns based on a repository of existing applications. Routing

optimization with low overhead for protocols and routing

tables can only be provided if application level connectivity is

available at the routing layer. The development of such cross-

layer network stacks is an interesting future research area.

Furthermore we plan to enrich the semantic description of

services to compute further metrics. These metrics may be

used to select the most appropriate service out of a set of

similar services.

REFERENCES

[1] C. Buckl, S. Sommer, A. Scholz, A. Knoll, and A. Kemper, “Generating
a Tailored Middleware for Wireless Sensor Network Applications,”
SUTC, pp. 162–169, 2008.

[2] R. Pandey and J. Wu, “BOTS: A Constraint-based Component System
for Synthesizing Scalable Software Systems,” in LCTES, 2006, pp. 189–
198.

[3] “BPEL, Business Process Execution Language,” http://www-
128.ibm.com/developerworks/library/specification/ws-bpel.

[4] C. Buckl, S. Sommer, A. Scholz, A. Knoll, A. Kemper, J. Heuer, and
A. Schmitt, “Services to the field: An approach for resource constrained
sensor/actor networks,” in The Fourth Workshop on Service Oriented
Architectures in Converging Networked Environments (SOCNE), 2009.

[5] KNX, “http://www.knx.org/.”
[6] AUTOSAR – Automotive Open System Architecture,

“http://www.autosar.org/.”
[7] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TinyDB: An

Acquisitional Query Processing System for Sensor Networks,” TODS,
vol. 30, no. 1, pp. 122–173, 2005.

[8] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” SIGMOD Rec., vol. 31, no. 3, pp. 9–18,
2002.

[9] F. Jammes and H. Smit, “Service-oriented Paradigms in Industrial
Automation,” in IEEE Transactions on Industrial Informatics, vol. 1,
2005, pp. 62–70.

[10] L. de Souza, P. Spiess, D. Guinard, M. Khler, S. Karnouskos, and
D. Savio, “SOCRADES: A Web Service Based Shop Floor Integration
Infrastructure,” IOT’08, pp. 50–67, 2008.

[11] Devices Profile for Web Services, “http://specs.xmlsoap.org/
ws/2006/02/devprof/devicesprofile.pdf.”

[12] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and J. Szti-
panovits, “OASiS: A Programming Framework for Service-Oriented
Sensor Networks,” in COMSWARE’06, 2007.

[13] MORE – Network-centric Middleware for Group communication
and Resource Sharing across Heterogeneous Embedded Systems,
“http://www.ist-more.org/.”

[14] P. Costa, G. Coulson, C. Mascolo, G. P. Piccoand, and S. Zachari-
adis, “The RUNES Middleware: A Reconfigurable Component-based
Approach to Networked Embedded Systems,” in PIMRC’05, 2005.

2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009) 605

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

