
Towards an Adaptive Execution of Applications in
Heterogeneous Embedded Networks

Andreas Scholz, Stephan Sommer, Alfons Kemper, Alois Knoll
TU München, Institute of Informatics

Boltzmannstr. 3, D-85748 Garching, Germany
scholza,sommerst,kemper,knoll@in.tum.de

Christian Buckl, Gerd Kainz
fortiss GmbH

Guerickestr. 25, D-80805 München, Germany
christian.buckl@fortiss.org, kainz@fortiss.org

Jörg Heuer, Anton Schmitt
Siemens Corporate Technology, Embedded Networks and Service Infrastructure

D-81730 München, Germany
joerg.heuer@siemens.com, anton.schmitt@siemens.com

ABSTRACT
Embedded networks are emerging in many application fields,
such as the automotive or building and factory automation
sector. Compared to other distributed systems, embedded
networks offer a new challenge for developers: heterogeneity
and resource constraints. The nodes contained in these net-
works can differ greatly w.r.t. their storage, processing and
sensing/acting capabilities, ranging from very simple sensor
devices with very limited resources over programmable logic
controllers to very powerful nodes such as PCs. In order
to achieve an efficient execution of applications running on
such a network, a middleware is required that automatically
adapts the embedded network to the requirements of the in-
stalled applications. In this paper, we will present a model
driven development approach that allows the specification
of application requirements, and a corresponding middle-
ware solution that supports the automatic adaptation of the
application execution based on these requirements and the
characteristics of the underlying hardware.

1. INTRODUCTION
Embedded networks containing a multitude of networked

nodes with varying sensing, acting, and processing capabil-
ities are gaining increasing importance in many application
areas such as the automotive, building management, or fac-
tory automation sector. Besides the challenges concerning
the development of suitable hardware devices and commu-

nication infrastructures, the application development is in-
creasingly difficult. The special characteristics of embed-
ded networks, such as resource limitations, heterogeneous
hardware, ranging from PCs over embedded controllers to
primitive devices like switches, and the use of diverse com-
munication protocols pose new and unique challenges.

Service Oriented Architectures are a promising approach
to overcome these diffculties and are applied in several re-
search projects. The decomposition of monolithic control
applications into smaller interoperating services has several
benefits. First, the higher level of abstraction allows to
safely hide implementation details from the application de-
veloper and fosters the development of solutions that al-
low the end-user to install and configure applications in an
embedded network. This is decisive in areas such as the
building and home automation sector. Second, the intro-
duction of well defined and re-usable interfaces eases the
integration of components stemming form different vendors.
Third, SOAs inherently support the distributed execution of
applications, because the individual services which are com-
posed to larger applications can be distributed throughout
the network. This distribution of components plays a cen-
tral role for the optimization of the application execution in
embedded networks, especially if the networks are heteroge-
neous. The exact optimization goals may vary depending on
the applications scenario, e.g., one goal could be to optimize
the overall lifetime of a battery powered network, another
goal could be to avoid network congestions by homogeniz-
ing the utilization of network connections. An additional
complexity is introduced by network dynamics: new nodes
may enter the network, existing nodes may fail and network
characteristics can change over time, especially if wireless
communication media are used.

The complexity of large embedded networks and the dy-
namics mentioned in the previous section require mecha-
nisms that allow an embedded network to autonomously
adapt the execution of applications, because manual opti-
mization by a trained expert is too expensive and too time-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SESENA’10, May 3, 2010, Cape Town, South Africa.
Copyright © 2010 ACM 978-1-60558-969-5/10/05…$10.00.

26

Figure 1: Example Application: Air Condition

consuming. In this paper we show how optimization goals
can be specified at the application level and how these goals
can be realized by a middleware that optimizes the place-
ment of services based on these goals and the characteristics
of the underlying hardware. The detailed contributions of
this paper are: (1) the introduction of a system architecture
that supports the adaptation of the application execution
w.r.t. the underlying hardware, (2) the definition of a set of
metrics that allow quantifying the quality of a placement,
and (3) the development of optimization algorithms that al-
low deriving good placements based on these metrics.

The rest of this paper is structured as follows: In Sec-
tion 2, we provide a short overview over the εSOA project[12],
our solution for building service oriented embedded network
applications. We introduce metrics for quantifying the qual-
ity of service placements in Section 3 and describe algorithms
that calculate a service placement based on these metrics
in Section 4. In Section 5, we provide a short overview of
our demonstrator: a heterogeneous embedded network for
energy management in smart buildings. We conclude the
paper with an overview of related work in Section 6 and a
summary and a presentation of ongoing work in Section 7.

2. SERVICE ORIENTED SYSTEM ARCHI-
TECTURE

In this paper we aim at embedded networks that are using
a service oriented paradigm. In such a system, all function-
ality in the network is encapsulated in services, which can ei-
ther represent hardware devices such as sensors or actuators,
or software components that contain the application logic.
Each service possesses a metadata description which defines
its in- and output ports. The communication between ser-
vices is done by connecting an output of one service to a
compatible input of another service. Ports are compatible,
if they expect data of the same type. The services them-
selves are data driven, i.e., operate only on the data they
receive and have no knowledge about the sources their data
stems from and the targets their outputs are forwarded to.
This design greatly enhances the reusability of the services
and allows to move services between nodes without worry-
ing about hard-coded addresses in the service implementa-
tions1. Figure 1 shows an example application comprising
four services. Service A represents a temperature sensor,
service B a humidity sensor. Each of these services pos-
sesses a single output that produces measurements with a
configurable data rate. The data produced by these two ser-
vices is consumed by a logic service C, which possesses two
corresponding inputs. The metadata descriptions of these
inputs ensure that the correct data is supplied by requiring

1This design is well known from Web services where there is
also a clear separation between the services themselves and
the composition language, e.g., BPEL.

Figure 2: Node Architecture

data of type “temperature”2 for the upper input and data of
type “humidity” for the lower input. The output of service
C is connected to the input of service D, which controls an
air condition based on the commands received at its input.
The logic service contains the “intelligence” of the applica-
tion and decides when to turn on or off the air condition,
based on the humidity and the temperature of the room.

2.1 Node Architecture
Figure 2 shows the architecture of a node in the εSOA

platform, our solution for building service oriented embed-
ded networks (this is a typical architecture for service ori-
ented systems and can also be found in other projects). Ev-
ery node possesses a communication stack that allows the
node to exchange messages with other nodes in the net-
work. We will assume that this stack handles communi-
cation across different communication media and network
boundaries transparently, a possible stack that contains this
functionality is presented in [13]. Based on this stack, a
message Broker component handles the delivery of messages
between services. Incoming messages are dispatched to the
targeted instances and outgoing messages are forwarded to
the corresponding remote hosts. The Broker contains a rout-
ing table that specifies these actions and that can be mod-
ified by a special component of the middleware, the Broker
Management. It allows inspecting, adding, changing and re-
moving entries in the Broker table. The services executed on
a node are controlled by the Lifecycle Management compo-
nent. It allows the installation of new services3, the starting
and stopping of running services, and the de-installation of
services.

2.2 Model Driven Development
In order to support the automatic adaptation of applica-

tions to the characteristics of a given network, we developed
the εSOA platform which is described in more detail in [12].
The εSOA platform uses a model driven development ap-

2These types can be taken from a domain specific taxonomy.
3The installation of a new service requires the dynamic load-
ing of service implementations which are shipped over the
network. Some operating systems support this functional-
ity out of the box, e.g., Contiki[5], other operating systems,
such as the popular TinyOS[14] do not. The authors of
[6] show a concept that allows to add this functionality to
TinyOS and similar operating systems. In this paper, we
assume that a dynamic code loading mechanism is available
on the nodes. If such a mechanism cannot be implemented,
a possible workaround is to install a software library with
commonly used services on each node. The optimizations
presented in this paper can still be applied to such a sys-
tem by modeling the availability of services on the different
nodes via the constraint system explained in the following
sections.

27

Figure 3: Abstraction Layers Used For Modelling
Embedded Networks

proach. It is based on a model of the hardware available in
a given network and a model of the applications and their
functional and non-functional requirements. Examples of
such requirements are memory and CPU demands, network
bandwidth requirements, etc. These two models are com-
bined by a global optimizer, which configures and programs
the embedded network in a way that ensures an efficient ex-
ecution of all running applications - or issues a warning that
the available hardware is not capable of running the desired
applications.

The model is based on abstraction layers, which are shown
in Figure 3. Based on a given Concrete System, an Ab-
stract Infrastructure model is built. Every node from the
concrete system is represented as a node in the Abstract
Infrastructure. The special characteristics of a node, such
as the available memory, the CPU power, energy resources,
etc, are annotated as properties at the node. Analogously,
all communication links between devices are represented by
links in the Abstract Infrastructure, which are annotated
with characteristics such as bandwidth, reliability, etc. Note
that these links represent single-hop unicast communication
capabilities. If a wireless communication medium is used, a
link is added to all nodes that are in communication range
of a specific node. Analogously, a link is added between
all nodes that communicate via a shared bus channel, etc.
What characteristics are available and relevant in a given
system depends on the underlying hard- and software and
the intended application field. The εSOA platform can be
extended with domain specific models that allow the addi-
tion of new properties. Note that the system model may not
only comprise static properties, but also properties that are
acquired at runtime and that are subject to change, such as
energy resources, reliability metrics, etc.

The next level of abstraction is the Service layer that pro-
vides an overview of all services and applications running on
the nodes in the network. Additionally it contains a service
repository with new services that can be downloaded and
installed on the nodes on demand. If a user wants to cre-
ate a new application, he selects a set of services from the
running services and/or the repository and composes these
service to an application by connecting the in- and outputs
of the services. Each of these services may possess a set
of requirements, e.g., memory, cpu and bandwidth require-
ments, or hardware requirements, such as specific sensor or
actor devices. These requirements have two purposes: they

ensure that a service is only installed at nodes that pos-
sess all hardware requirements needed for the service, and
they help avoiding overload situations which may occur if
too many resource intensive services are installed at a single
node. After the selection and composition of the services,
the εSOA middleware will handle the installation of the new
application in the network. An important step in this opera-
tion is the determination of a good placement of the services,
i.e., the creation of a mapping between the services and the
nodes these services should be executed on. We will present
algorithms for the calculation of such a placement in Sec-
tion 4. Based on this placement, the required services are
installed at the nodes and the Broker tables are configured
to allow the message exchange between the services.

3. METRICS
A prerequisite for the calculation of a service placement

are metrics that allow to quantify the quality of a placement
and allow comparing different placements. The available
metrics depend on the information available in the system
model. For the calculation of some of the metrics mentioned
in this section, information from the routing layer is required
to determine the routes used in the physical network for
the transmission of data streams (the streams only specify
the start and end point of the transmissions, not the hops
in between). This information can be either supplied by a
heuristic that calculates the shortest path between nodes in
the physical network, or be queried through the cross layer
interface.

At the current stage, we do not support timing constraints
during the calculation of metrics. For some metrics, such as
the CPU utilization, it is not only important how large the
demand of a service for this resource is, but also when it
is requested. If the underlying resources can only be used
exclusively, simultaneous demands will result in delays and
increase the time needed to execute a service. We are cur-
rently investigating how the execution model on the nodes
and the timing requirements of the services can be incorpo-
rated to improve the calculation of the metrics described in
the following paragraphs.

Many of the metrics described below require information
from the system model regarding the capabilities of the avail-
able hardware and the requirements of the applications. In
many cases, this information will be available immediately
because it is contained in the hardware specifications or
given by the application developer. If this is not the case,
most information can also be collected by observing the ser-
vice execution on the nodes. In this scenario the system will
be launched with a placement based on a very simple metric,
e.g., the hop count, and can be optimized when additional
information is available through monitoring.

Currently we have implemented 6 metrics. Just like new
properties in the system model, new metrics can be added
easily to the system to allow a customization for specific ap-
plication fields. For the utilization metrics, we will describe
how the utilization coefficient for every node is calculated.
These coefficients are combined to receive the overall utiliza-
tion based on the maximum, mean or a specific percentile
of the coefficients.

Hop Count
A simple metric that is always available is the hop-count. It
is calculated by summing up the number of hops involved

28

for the transmission of all data streams flowing through the
system. This very simple metric works fairly well for the
optimization of the network utilization if the data streams
used by the applications have similar data volumes.

Data Volume
If information about the expected volume of data-streams is
available, the hop-count metric can be refined to calculate
the data volume metric. This metric is based on the summed
data volume transmitted over all links, i.e., the data rate of
each stream multiplied with the number of hops needed for
routing the stream. If an application comprises services that
produce low data volume streams out of high data volume
streams, e.g., a control service like the one presented in the
air condition example that requires periodic measurements
but only rarely issues commands to an actor service, this
metric will ensure that the data consuming service is placed
as close to the data producing services as possible (prefer-
ably on the same node). This metric closely resembles the
heuristics used in systems like TinyDB, which “push” ser-
vices as close to the stream sources as possible.

Link Utilization
The data volume metric can be further extended to calcu-
late the overall link utilization metric, if additional informa-
tion about the bandwidth of the links is available. For each
link the summed data rates of all streams flowing through a
link is divided by the link’s bandwidth. If this coefficient is
greater than one, the link is marked as overloaded4.

Network Utilization
In many cases, logical links to different nodes are using the
same physical communication medium, e.g., ethernet links
using switches or wireless links interfering with each other.
To avoid overload situations under these circumstances, an
additional utilization metric, the network utilization is cal-
culated for each physical communication medium available
at each node. This is done by aggregating the data volumes
for all logical links using the same physical medium, e.g., all
ZigBee links.

Memory Utilization
The memory utilization metric can be calculated if informa-
tion about the memory demand of services is available. In
many cases this information can be determined by inspect-
ing the service code. If this is not the case, the user has
to specify it manually in the system model or it has to be
determined at runtime by observing the memory usage of
the running service.

CPU Utilization
The CPU utilization is calculated based on CPU cycles.
The calculation of this metric requires information about
the CPU capacity of each node, and an estimation of the
required CPU cylces for the execution of each service.

4Placements containing overloaded resources are not imme-
diately discarded because the user can opt to install the ap-
plications based on these placements anyway. This can be a
reasonable decision of all placements result in overload situ-
ations and the middleware possesses features to compensate
link congestions at runtime, e.g., by dynamically reducing
the data acquisition rates at the sensor devices

Combined Metrics
All the individual metrics mentioned above can be combined
with a weighting function to create an overall rating for a
placement.

4. ALGORITHMS
The task of a placement algorithm is to determine an op-

timal placement, i.e., a placement with as little costs as pos-
sible, based on a user supplied weighting function for the
metrics presented in the previous section and the system
model containing information about the hardware charac-
teristics and the application requirements. The optimiza-
tion problem of distributing services to nodes can be easily
mapped to the bin packing problem: the task is to distribute
n services with resource demands d1 . . . dn to m nodes with
resource capacities c1 . . . cm in a way that avoids overload
situations. The problem is therefore NP hard. For small
networks (< 10 nodes) and a small number of services (< 10
services), a solution based on a simple enumeration of all
possible combinations is possible. For larger problem in-
stances, more efficient solutions have to be applied.

We are analyzing well-known optimization techniques, such
as Ant Colony Optimization, Simulated Annelaing and Ge-
netic Programming w.r.t. their suitability for solving this
optimization problem. We will present first results with
these approaches in the following sections, a detailed anal-
ysis is currently work in progress. The optimization tech-
niques are intended to be used on a central management
node in the network that possesses global knowledge about
the network topology, hardware characteristics and service
requirements. This is typical the case for management nodes
which control the application execution in an embedded net-
work, or a subnet of a larger network. The algorithms aim
at finding a global solution to the optimization problem,
i.e., will move already installed services in the network if
a new application should be installed and requires already
occupied resources. These reorganizations come at a cost,
because services have to be migrated between nodes and the
corresponding applications will cease to work during the mi-
gration process. To provide a good trade-off between the mi-
gration costs and the long time savings of a new placement,
the algorithms create a list of placements containing differ-
ent levels of reorganization, which can be used by the user
to select an appropriate placement. This is done by running
the placement optimization multiple times with different re-
strictions for the placement of services, e.g., restricting all
installed services to the node they are executed on will result
in a scenario with no reorganization.

We also designed a distributed greedy heuristic to solve
this problem, which we will present at the end of this section.
This heuristic is beneficial in environments where central
knowledge about the network strucutre is not available or
too expensive to maintain, e.g., due to memory constraints.
It requires only very little memory on the nodes, however
the resulting placements can have a lower quality than the
placements created with the centralized optimization algo-
rithms.

4.1 Ant Colony Optimization
It is very difficult to apply the Ant Colony Optimization

algorithm to the problem of mapping services to nodes. The
reason for this is that the service placement problem exhibits

29

no optimal substructure in many cases. If one service is as-
signed to a node, this decission may influences other service
assignments, because the assigned service will increase the
resource utilization on the node and the used communica-
tion links. As a consequence, adding a single new service to
an optimal placement may require a massive reorganization
of the already assigned services in order to meet all resource
constraints. Mapped to the Ant Colony Optimization algo-
rithm this leads to the following problem: even if we found
a fairly good “path”, i.e., a placement with low costs, for
a subset of our services we cannot reuse this information
in subsequent runs. The assignment of other services can
change the resource utilization on the nodes used in this
subset and therefore render the solution invalid.

4.2 Simulated Annealing
The crucial part for the implementation of the Simulated

Annealing algorithm is the specification of a suitable neigh-
borhood function. Based on a given placement of services,
this function should return a new placement that is a“neigh-
bor” of the given placement. We have experimented with
different functions: moving a single service to a neighbor
node, moving a single service up to x nodes, moving a sin-
gle service to a random node, moving multiple services at
once, etc. The experiments were conducted on networks
of different size and different topology (randomly generated
networks and grid-like networks). Moving a single service to
a random node in the network was the neighborhood func-
tion that yielded the best overall results. The neighborhood
functions that move a single service to a neighboring node
tend to get stuck in local optima, because it requires very
many steps to move a service through the network. As a
consequence the running time of the Simulated Annealing
has to be extended considerably in order to achieve compa-
rable results to the solution with random node selections.
Moving multiple services at once resulted in worse results
compared to the movement of a single service. This is most
likely due to the very large number of possible neighbors,
especially in larger networks. We also experimented with
different temperature functions and initial placements, but
these only had minor impact on the overall execution time
of the annealing algorithm and no measurable impact on
the quality of the resulting placements. These preliminary
test also showed a drawback of the Simulated Annealing ap-
proach: in a typical network there are a lot of sub-optimal
solutions which have costs very close to the optimal solution
and Simulated Annealing will very likely choose one of these
sub-optimal solutions.

4.3 Genetic Programming
As our first tests show, Genetic Programming seems to be

the most suitable strategy. As mutation function we chose
the neighborhood function already used in the Simulated
Annealing approach, i.e., to mutate a genome we move one
service to a randomly chosen new node. If elitist selection is
applied, i.e., the currently best genome is always preserved
in the gene pool, Genetic Programming is capable of finding
the optimal solution even if there are a lot of sub-optimal so-
lutions with small cost differences. We are currently experi-
menting with different crossing algorithms, e.g., we create a
new placement out of a subset of service to node assignments
from one genome and the remaining assignments from the
other genome.

(a) Costs for service one (b) Costs for service two

(c) Refined costs

Figure 4: Scenarios for Placement Heuristic

4.4 Distributed Heuristic
The distributed heuristic operates solely on local knowl-

edge available at each node. It provides only a local opti-
mization, i.e., it will determine a good placement if an ad-
ditional application should be installed in the system, but it
will not re-arrange running applications in order to achieve
a globally optimal solution. It is intended to be used if the
network has to react to sudden changes in the underlying
topology, e.g., when a node enters or leaves the network, and
no global optimization is possible. Due to the distributed
execution of the heuristic, no central controller is required
that possess a global view of the embedded network.

The heuristic is based on a simple broadcast mechanism
which is illustrated with the example shown in Figure 4(a).
Assume we want to place a simple application consisting of
a chain of 3 services. In order to keep the example concise,
we will use as metric solely the transmitted data volume.
Assume that the data stream between the two leftmost ser-
vices of the application is 4, and the data rate for the stream
between the two rightmost services is 1. Further we assume
that the third service of the application is restricted to run
on node E.

Initially the description if the application is distributed to
all nodes. After that, each node iteratively calculates the
costs for getting the output stream of each service in the
application chain and broadcast this value to all nodes in
the network. In the first round, the node containing the re-
quired sensor device (node A) will therefore announce a cost
value of 0 for the first service. Based on this announcement,
nodes B and E can determine that they can provide the data
stream with a cost of 4 (a stream with data rate 4 has to be
transmitted over 1 link), whereas nodes C and D can pro-
vide the data with costs 8 (stream with data rate 4 routed
over 2 links). In the next iteration, each node calculates the
costs for hosting service two of the chain. This results in the
values shown in Figure 4(b): 0 for node A, 4 for node B and
E and a value of 8 for nodes C and D (because the execution
of service incorporates no costs in our metric, the costs for
executing a service are the costs for receiving its required
input data). The new information is now distributed in the

30

network. Services B, C, D and E now discover, that it is
cheaper to let node A host the second service. This is due
to the very low data rate of 1 of the output stream of the sec-
ond service. As a consequence, the nodes update their costs
to a value of 1 (the costs for transmitting a stream of volume
1 over one hop), and 2 respectively (see Figure 4(c)). The
third service can only be executed on node E, what yields a
total cost for the execution of the application of 2.

The worst case network traffic created by this heuristic is
a broadcast from each node for every position of the applica-
tion. So this approach is only feasible for small applications.
In other scenarios, it is advisable to use the Simulated An-
nealing based optimization.

5. RELATED WORK
There are other projects that use a service oriented ap-

plication model for the development of embedded networks.
Examples are the the DPWS[4] based SIRENA[7] and
SOCRADES[3] projects and the OASiS[8], MORE[10], and
RUNES[2] projects. These systems could benefit from the
optimized placement of services based on application re-
quirements and network characteristics shown in this paper.

Regarding related work with respect to optimal place-
ment of services/aggregators most work deals with sensor
networks that perform monitoring tasks [9, 15, 11, 1]. In
such systems, applications/queries can be organized in a
tree-like structure. In contrast to this related work, this
paper presents a solution for sensor-actuator networks. It
allows optimizing applications that are not centered around
a dedicated sink node and it allows a global optimization
of embedded networks that takes into account interferences
between multiple simultaneously executed applications.

6. SUMMARY AND ONGOING WORK
In this paper we motivated the problem of adaptive exe-

cution of applications in heterogeneous embedded networks
comprising nodes with different capabilities and different
communication channels. In our approach, the placement
of services is optimized based on application requirements
and the characteristics of the underlying hardware. We pre-
sented a set of metrics that allow quantifying the quality
of service placements, and stated the optimization problem
that has to be solved in order to compute an optimal place-
ment. We outlined preliminary results for well-known op-
timization techniques and a heuristic that can be executed
without central knowledge about the network structure.

Besides the ongoing evaluation of the optimization tech-
niques, we also plan to to extend the model driven devel-
opment approach. A crucial part of the application execu-
tion in embedded networks is the communication between
services. Some services have very loose QoS requirements
and may tolerate packet loss, e.g., readings from a sensor
device sending data every second, whereas other services
demand the reliable and timely transmission of messages,
e.g., a fire alarm. We are currently investigating how these
requirements can be specified at the application level and
what mechanisms are required in order to guarantee QoS
requirements across heterogeneous network infrastructures
comprising multiple different network technologies and com-
munication protocols. Another direction for research are
fault tolerant systems. The algorithms presented in this
paper can be used to provide some very basic failure recov-

ery mechanisms, e.g., to calculate a new placement if a node
fails and to re-configure the application to not use this node.
However, this approach is not feasible for systems that have
to recover from errors very fast. We are investigating which
mechanisms can be used to minimize the application down-
time, e.g., by pre-calculating alternative service placements
or by installing redundant services based on the modeled
reliability requirements.

7. REFERENCES
[1] B. J. Bonfils. Adaptive and decentralized operator

placement for in-network query processing. In In
IPSN, pages 47–62, 2003.

[2] P. Costa, G. Coulson, C. Mascolo, G. P. Piccoand,
and S. Zachariadis. The RUNES Middleware: A
Reconfigurable Component-based Approach to
Networked Embedded Systems. In PIMRC’05, 2005.

[3] L. de Souza, P. Spiess, D. Guinard, M. Köhler,
S. Karnouskos, and D. Savio. SOCRADES: A Web
Service Based Shop Floor Integration Infrastructure.
IOT’08, pages 50–67, 2008.

[4] Devices Profile for Web Services.
http://specs.xmlsoap.org/
ws/2006/02/devprof/devicesprofile.pdf.

[5] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors
(Emnets-I), 2004.

[6] M. Gauger, P. J. Marrt’on, and C. Niedermeier.
TinyModules: Code Module Exchange in TinyOS. In
INSS’09, 2009.

[7] F. Jammes and H. Smit. Service-oriented Paradigms
in Industrial Automation. In IEEE Transactions on
Industrial Informatics, volume 1, pages 62–70, 2005.

[8] M. Kushwaha, I. Amundson, X. Koutsoukos,
S. Neema, and J. Sztipanovits. OASiS: A
Programming Framework for Service-Oriented Sensor
Networks. In COMSWARE’06, 2007.

[9] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: An Acquisitional Query Processing System
for Sensor Networks. TODS, 30(1):122–173, 2005.

[10] MORE – Network-centric Middleware for Group
communication and Resource Sharing across
Heterogeneous Embedded Systems.
http://www.ist-more.org/.

[11] P. Pietzuch, J. Ledlie, J. Shneidman,
M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-aware operator placement for
stream-processing systems. In In ICDE, 2006.

[12] A. Scholz, C. Buckl, S. Sommer, A. Kemper, A. Knoll,
J. Heuer, and A. Schmitt. εSOA – service oriented
architectures adapted for embedded networks. In
INDIN’09, 2009.

[13] A. Scholz, I. Gaponova, S. Sommer, A. Kemper,
A. Knoll, C. Buckl, J. Heuer, and A. Schmitt. Efficient
communication in control-oriented embedded
networks. In ETFA’09, 2009.

[14] TinyOS. http://www.tinyos.net/.

[15] Y. Yao and J. Gehrke. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Rec., 31(3):9–18, 2002.

31

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

